Skip to main content

Advertisement

Log in

Effects of escape vents on the size selection of whelk (Rapana venosa) and Asian paddle crab (Charybdis japonica) in the small-scale pot fishery of the Yellow Sea, China

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The small-scale whelk (Rapana venosa) and Asian paddle crab (Charybdis japonica) pot fishery are of great socio-economic importance to coastal communities of the Yellow Sea, China. However, the conventional pot with a regulated mesh size of 25 mm is unfavorable to the sustainability of these two species due to its poor selectivity. In this study, we intend to improve the size selectivity of pots by configuring escape vents. Three different escape vent sizes (diameter of 45 mm, 50 mm, and 55 mm) were tested using a catch comparison method. Our results demonstrated that escape vents significantly improved the size selectivity of pots for whelk and crab. The escape vent with a diameter of 55 mm released the maximum number of undersized whelk and meanwhile maintained the catch efficiency of individuals above the Market Reference Size (MRS; 45 mm) compared with the conventional (control) pots. The escape vent with a diameter of 50 mm significantly reduced the retention of undersized crab to 21% and increased the catch rates of individuals above the Minimum Landing Size (MLS; 50 mm) to 112%. Although hard to achieve “perfect selectivity” for morphologically different species in mixed fisheries, we recommend a compromise escape vent size of 52 mm in comprehensive consideration of resources’ sustainability and fishermen’s profits. The promising results of this study can provide feasibility and insight to develop management strategies for small-scale pot fishery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The research data in the current study are available from the corresponding author on reasonable request.

References

  • Akaike, H., 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716–723.

    Article  Google Scholar 

  • Arana, P. M., J. C. Orellana & Á. De Caso, 2011. Escape vents and trap selectivity in the fishery for the Juan Fernández rock lobster (Jasus frontalis), Chile. Fisheries Research 110: 1–9.

    Article  Google Scholar 

  • Archdale, M. V., C. P. Añasco & S. Hiromori, 2006. Comparative fishing trials for invasive swimming crabs Charybdis japonica and Portunus pelagicus using collapsible pots. Fisheries Research 82: 50–55.

    Article  Google Scholar 

  • Boutson, A., C. Mahasawasde, S. Mahasawasde, S. Tunkijjanukij & T. Arimoto, 2009. Use of escape vents to improve size and species selectivity of collapsible pot for blue swimming crab Portunus pelagicus in Thailand. Fisheries Science 75: 25–33.

    Article  CAS  Google Scholar 

  • Brčić, J., B. Herrmann & A. Sala, 2018. Can a square-mesh panel inserted in front of the cod end improve size and species selectivity in Mediterranean trawl fisheries? Canadian Journal of Fisheries and Aquatic Sciences 75: 704–713.

    Article  Google Scholar 

  • Broadhurst, M. K., 2000. Modifications to reduce bycatch in prawn trawls: a review and framework for development. Reviews in Fish Biology and Fisheries 10: 27–60.

    Article  Google Scholar 

  • Broadhurst, M. K. & R. B. Millar, 2018. Configuring escape gaps in recreational rectangular traps to improve size selection for eastern rock lobster, Sagmariasus verreauxi. Fisheries Research 207: 182–186.

    Article  Google Scholar 

  • Broadhurst, M. K., P. A. Butcher & R. B. Millar, 2017a. Escape gaps in recreational panulirid traps: Reducing catches of undersized Sagmariasus verreauxi while increasing fishing power for legal sizes. Fisheries Research 189: 55–61.

    Article  Google Scholar 

  • Broadhurst, M. K., R. B. Millar & B. Hughes, 2017b. Performance of industry-developed escape gaps in Australian Portunus pelagicus traps. Fisheries Research 187: 120–126.

    Article  Google Scholar 

  • Broadhurst, M. K., R. B. Millar & B. Hughes, 2018. Utility of multiple escape gaps in Australian Scylla serrata traps. Fisheries Research 204: 88–94.

    Article  Google Scholar 

  • Broadhurst, M. K., D. J. Tolhurst, B. Hughes, V. Raoult, T. M. Smith & T. F. Gaston, 2020. Optimising mesh size with escape gaps in a dual-species portunid-trap fishery. Aquaculture and Fisheries 5: 308–316.

    Article  Google Scholar 

  • Brown, C. G., 1982. The effect of escape gaps on trap selectivity in the United Kingdom crab (Cancer pagurus L.) and lobster (Homarus gammarus (L.)) fisheries. ICES Journal of Marine Science 40: 127–134.

    Article  Google Scholar 

  • Canty, A. & B. D. Ripley, 2012. Boot: bootstrap r (S-Plus) functions. R Package Version 1: 3–5.

    Google Scholar 

  • Cheng, Z., H. A. Einarsson, S. Bayse, B. Herrmann & P. Winger, 2019. Comparing size selectivity of traditional and knotless diamond-mesh codends in the Iceland redfish (Sebastes spp.) fishery. Fisheries Research 216: 138–144.

    Article  Google Scholar 

  • Eldridge, P. J., V. G. Burrell & G. Steele, 1979. Development of a self-culling blue crab pot. Marine Fisheries Review 41: 21–27.

    Google Scholar 

  • Everson, A. R., R. A. Skillman & J. J. Polovina, 1992. Evaluation of rectangular and circular escape vents in the Northwestern Hawaiian Islands lobster fishery. North American Journal of Fisheries Management 12: 161–171.

    Article  Google Scholar 

  • Fisheries Administration Bureau, MARA & PRC, 2020. 2020 China Fishery Statistics Yearbooks, China Agriculture Press, Beijing: (in Chinese).

    Google Scholar 

  • Fisheries Administration Bureau, MARA & PRC, 2016. 2016 China Fishery Statistics Yearbooks, China Agriculture Press, Beijing: (in Chinese).

    Google Scholar 

  • Fryer, R. J., 1991. A model of between-haul variation in selectivity. ICES Journal of Marine Science 48: 281–290.

    Article  Google Scholar 

  • Gandy, R. L., C. E. Crowley, E. H. Leone & C. R. Crawford, 2018. Increasing the selectivity of the stone crab Menippe mercenaria trap by the addition of a cull ring. North American Journal of Fisheries Management 6: 1275.

    Article  Google Scholar 

  • Guillory, V. & J. Merrell, 1993. An Evaluation of Escape Rings in Blue Crab Traps, Louisiana Department of Wildlife and Fisheries Technical Bulletin Number 44, Baton Rouge:

    Google Scholar 

  • Guillory, V., R. Allemand, K. King & L. Bare, 2004. An evaluation of 5.87-cm and 6.03-cm escape rings for blue crab Callinectes sapidus traps. North American Journal of Fisheries Management 24: 1431–1434.

    Article  Google Scholar 

  • Havens, K. J., D. M. Bilkovic, D. Stanhope & K. Angstadt, 2009. Location, location, location: the importance of cull ring placement in blue crab traps. Transactions of the American Fisheries Society 138: 720–724.

    Article  Google Scholar 

  • He, P., 2010. Behavior of Marine Fishes: Capture Processes and Conservation Challenges, Wiley-Blackwell, Oxford:

    Book  Google Scholar 

  • Herrmann, B., L. A. Krag, R. P. Frandsen, N. Madsen, B. Lundgren & K.-J. Stæhr, 2009. Prediction of selectivity from morphological conditions: methodology and a case study on cod (Gadus morhua). Fisheries Research 97: 59–71.

    Article  Google Scholar 

  • Herrmann, B., M. Sistiaga, K. N. Nielsen & R. B. Larsen, 2012. Understanding the size selectivity of Redfish (Sebastes spp.) in North Atlantic Trawl Codends. Journal of Northwest Atlantic Fishery Science 44: 1–13.

    Article  Google Scholar 

  • Herrmann, B., E. Grimaldo, J. Brčić & K. Cerbule, 2021. Modelling the effect of mesh size and opening angle on size selection and capture pattern in a snow crab (Chionoecetes opilio) pot fishery. Ocean & Coastal Management 201: 105495.

    Article  Google Scholar 

  • Jirapunpipat, K., P. Phomikong, M. Yokota & S. Watanabe, 2008. The effect of escape vents in collapsible pots on catch and size of the mud crab Scylla olivacea. Fisheries Research 94: 73–78.

    Article  Google Scholar 

  • Kalogirou, S., L. Pihl, C. D. Maravelias, B. Herrmann, C. J. Smith, N. Papadopoulou, E. Notti & A. Sala, 2019. Shrimp trap selectivity in a Mediterranean small-scale-fishery. Fisheries Research 211: 131–140.

    Article  Google Scholar 

  • Kennelly, S. J. & M. K. Broadhurst, 2002. By-catch begone: changes in the philosophy of fishing technology. Fish and Fisheries 3: 340–355.

    Article  Google Scholar 

  • Krouse, J. S., 1978. Effectiveness of escape vent shape in traps for catching legal-sized lobster, Homarus americanus, and harvestable-sized crabs, cancer borealis and cancer irroratus. Fishery Bulletin 76: 425–432.

    Google Scholar 

  • Lundin, M., L. Calamnius & A. Fjälling, 2015a. Size selection of whitefish (Coregonus maraena) in a pontoon trap equipped with an encircling square mesh selection panel. Fisheries Research 161: 330–335.

    Article  Google Scholar 

  • Lundin, M., L. Calamnius, S.-G. Lunneryd & C. Magnhagen, 2015b. The efficiency of selection grids in perch pontoon traps. Fisheries Research 162: 58–63.

    Article  Google Scholar 

  • Millar, R. B., 1993. Incorporation of between-haul variation using bootstrapping and nonparametric estimation of selection curves. Fishery Bulletin 91: 564–572.

    Google Scholar 

  • Nashimoto, K., K. Suzuki, T. Takagi, K. Motomatsu & T. Hiraishi, 1995. Selectivity of traps for whelks Neptunea arthritica. Nippon Suisan Gakk 61: 525–530.

    Article  Google Scholar 

  • Park, H.-H., R. B. Millar, H.-C. An & H.-Y. Kim, 2007. Size selectivity of drum-net traps for whelk (Buccinum opisoplectum dall) in the Korean coastal waters of the East Sea. Fisheries Research 86: 113–119.

    Article  Google Scholar 

  • Qi, Z., X. Ma, Z. Wang, G. Lin, F. Xu, Z. Dong & F. Li, 1989. Mollusca of Huanghai and Bohai, Agriculture Publishing House, Beijing: (in Chinese).

    Google Scholar 

  • Rotherham, D., D. D. Johnson, W. G. Macbeth & C. A. Gray, 2013. Escape gaps as a management strategy for reducing bycatch in net-covered traps for the giant mud crab Scylla serrata. North American Journal of Fisheries Management 33: 307–317.

    Article  Google Scholar 

  • Rudershausen, P. J., J. E. Hightower & J. A. Buckel, 2016. Can optimal trap mesh size be predicted from body depth in a laterally-compressed fish species? Fisheries Research 179: 259–270.

    Article  Google Scholar 

  • Sala, A., A. Lucchetti, C. Piccinetti & M. Ferretti, 2008. Size selection by diamond- and square-mesh codends in multi-species Mediterranean demersal trawl fisheries. Fisheries Research 93: 8–21.

    Article  Google Scholar 

  • Santos, J., B. Herrmann, B. Mieske, D. Stepputtis, U. Krumme & H. Nilsson, 2016. Reducing flatfish bycatch in roundfish fisheries. Fisheries Research 184: 64–73.

    Article  Google Scholar 

  • Sary, Z., H. Oxenford & J. Woodley, 1997. Effects of an increase in trap mesh size on an overexploited coral reef fishery at Discovery Bay, Jamaica. Marine Ecology Progress Series 154: 107–120.

    Article  Google Scholar 

  • Shen, G. & M. Heino, 2014. An overview of marine fisheries management in China. Marine Policy 44: 265–272.

    Article  Google Scholar 

  • Shepherd, G. R., C. W. Moore & R. J. Seagraves, 2002. The effect of escape vents on the capture of black sea bass, Centropristis striata, in fish traps. Fisheries Research 54: 195–207.

    Article  Google Scholar 

  • Sistiaga, M., B. Herrmann, E. Grimaldo & R. B. Larsen, 2010. Assessment of dual selection in grid based selectivity systems. Fisheries Research 105: 187–199.

    Article  Google Scholar 

  • Stasko, A. B., 1975. Modified lobster traps for catching crabs and keeping lobsters out. Journal of the Fisheries Research Board of Canada 32: 2515–2520.

    Article  Google Scholar 

  • Stearns, G., R. Conrad, D. Winfrey, N. Shippentower-Games & D. Finley, 2017. Dungeness crab trap catch efficiency related to escape ring location and size. North American Journal of Fisheries Management 37: 1039–1044.

    Article  Google Scholar 

  • Tallack, S. M. L., 2007. Escape ring selectivity, bycatch, and discard survivability in the New England fishery for deep-water red crab, Chaceon quinquedens. ICES Journal of Marine Science 64: 1579–1586.

    Article  Google Scholar 

  • Tang, Y., Y. Liu, C. Liu & W. Zhang, 2019. Improving the accordion-shaped trap selectivity for black rockfish by mounting escape vents: a case study from the small-scale fishery in Shandong, China. Fisheries Research 219: 105317.

    Article  Google Scholar 

  • Treble, R. J., R. B. Millar & T. I. Walker, 1998. Size-selectivity of lobster pots with escape-gaps: application of the SELECT method to the southern rock lobster (Jasus edwardsii) fishery in Victoria, Australia. Fisheries Research 34: 289–305.

    Article  Google Scholar 

  • Wang, R., Z. Wang & J. Zhang, 1993. Marine Shellfish Aquaculture, Qingdao Ocean University Press, Qingdao: (in Chinese).

    Google Scholar 

  • Wienbeck, H., B. Herrmann, J. P. Feekings, D. Stepputtis & W. Moderhak, 2014. A comparative analysis of legislated and modified Baltic Sea trawl codends for simultaneously improving the size selection of cod (Gadus morhua) and plaice (Pleuronectes platessa). Fisheries Research 150: 28–37.

    Article  Google Scholar 

  • Wileman, D. A., R. S. T. Ferro, R. Fonteyne & R. B. Millar, 1996. Manual of methods of measuring the selectivity of towed fishing gears. ICES Cooperative Research Report No. 215.

  • Winger, P. D. & P. J. Walsh, 2007. The feasibility of escape mechanisms in conical snow crab traps. ICES Journal of Marine Science 64: 1587–1591.

    Article  Google Scholar 

  • Yang, B., Y. Tang & Z. Liang, 2011. Selectivity of escape-hole size in tube traps for white-spotted conger Conger myriaster. Chinese Journal of Oceanology and Limnology 29: 1041–1047.

    Article  Google Scholar 

  • Yang, B., B. Herrmann, L. Yan, J. Li & T. Wang, 2021. Size selectivity and catch efficiency of diamond-mesh codends in demersal trawl fishery for conger pike (Muraenesox cinereus) of the South China Sea. Ocean & Coastal Management 211: 105777.

    Article  Google Scholar 

  • Yu, M., L. Zhang, C. Liu & Y. Tang, 2021. Improving size selectivity of round pot for Charybdis japonica by configuring escape vents in the Yellow Sea, China. PeerJ 9: e12282.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, P., C. Li, W. Li & X. Zhang, 2016. Effect of an escape vent in accordion-shaped traps on the catch and size of Asian paddle crabs Charybdis japonica in an artificial reef area. Chinese Journal of Oceanology and Limnology 34: 1238–1246.

    Article  Google Scholar 

  • Zhang, J., Z. Pei, P. He & J. Shi, 2020. Effect of escape vents on retention and size selectivity of crab pots for swimming crab Portunus trituberculatus in the East China Sea. Aquaculture and Fisheries 6: 340–346.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Rizhao Fisheries Group Company for providing assistance and the crew of “Lurihaiyu 77038” for their help and support during the sea trials. This study was supported by the Project of Marine and Fishery Technology Innovation of Shandong (No. 2017HYCX007).

Funding

This study was supported by the Project of Marine and Fishery Technology Innovation of Shandong (No. 2017HYCX007).

Author information

Authors and Affiliations

Authors

Contributions

MJY and YLT conceived the idea; MJY, LYZ, and WZ designed the sampling; MJY. and CDL. analyzed the data and interpreted the results. All authors carried out the writing of the manuscript and approved the final version of the manuscript.

Corresponding author

Correspondence to Yanli Tang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling editor: Grazia Pennino

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (R 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Liu, C., Tang, Y. et al. Effects of escape vents on the size selection of whelk (Rapana venosa) and Asian paddle crab (Charybdis japonica) in the small-scale pot fishery of the Yellow Sea, China. Hydrobiologia 849, 3101–3115 (2022). https://doi.org/10.1007/s10750-022-04899-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04899-5

Keywords

Navigation