Skip to main content

Advertisement

Log in

Environmental degradation of streams leads to the loss of ecomorphologically similar fish species

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Human activities change the environmental conditions of streams and alter their assemblages. However, the environmental factors associated with the change in the ecomorphological similarity of the fish assemblage have not been investigated enough. In this context, we sampled data from three urban and six rural streams in the Pirapó River Basin to assess which environmental factors influence the taxonomic and ecomorphological structures of the fish assemblage. We hypothesized that (1) streams with greater environmental heterogeneity have higher species diversity; (2) the greater species diversity is associated with a greater diversity of body shapes and coexistence of more ecomorphologically distinct species. Twenty-two ecomorphological indices related to the food acquisition, locomotion, and habitat use of species were used to calculate interspecific ecomorphological distances that were analyzed using principal component analysis and multiple linear regression. The results show that the rural streams showed less degraded environmental conditions and greater environmental heterogeneity than the urban ones, which was related to the increase in species diversity and ecomorphological similarity of the assemblage. We can conclude that streams containing greater environmental heterogeneity can support more diverse fish assemblages. Furthermore, environmental degradation results in the loss of ecomorphologically similar species, in which only those with distinct ecological requirements remain in the degraded streams. Therefore, conservation efforts that aim at sustaining environmental heterogeneity and mitigating urban land use do not only maintain the species’ diversity, but also the coexistence of ecomorphological similar fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexandre, C. V., K. E. Esteves, M. A. M. de Moura e Mello, 2010. Analysis of fish communities along a rural–urban gradient in a neotropical stream (Piracicaba River Basin, São Paulo, Brazil). Hydrobiologia 641: 97–114.

    Article  CAS  Google Scholar 

  • Allan, J. D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics 35: 257–284.

    Article  Google Scholar 

  • Allan, J. D. & M. M. Castillo, 2009. Stream Ecology: Structure and Function of Running Waters. Springer, Dordrecht.

    Google Scholar 

  • Allan, D., D. Erickson & J. Fay, 1997. The influence of catchment land use on stream integrity across multiple spatial scales. Freshwater Biology 37: 149–161.

    Article  Google Scholar 

  • Autodesk, 2009. AutoCAD: Graphic Computation, Autodesk Inc, San Rafael.

    Google Scholar 

  • Berkman, H. E. & C. F. Rabeni, 1987. Effect of siltation on stream fish communities. Environmental Biology of Fishes 18: 285–294.

    Article  Google Scholar 

  • Bower, L. M. & K. O. Winemiller, 2019. Fish assemblage convergence along stream environmental gradients: an intercontinental analysis. Ecography 42: 1691–1702.

    Article  Google Scholar 

  • Brabec, E., S. Schulte & P. L. Richards, 2002. Impervious surfaces and water quality: a review of current literature and its implications for watershed planning. Journal of Planning Literature 16: 499–514.

    Article  Google Scholar 

  • Breda, L., E. F. Oliveira & E. Goulart, 2005. Ecomorfologia de locomoção de peixes com enfoque para espécies neotropicais. Acta Scientarum (Biological Sciences) 27: 371–381.

    Google Scholar 

  • Bruno, D., C. Gutiérrez-Cánovas, D. Sánchez-Fernández, J. Velasco & C. Nilsson, 2016. Impacts of environmental filters on functional redundancy in riparian vegetation. Journal of Applied Ecology 53: 846–855.

    Article  Google Scholar 

  • Casatti, L., 2004. Ichthyofauna of two streams (silted and reference) in the Upper Paraná river basin, Southeastern Brazil. Brazilian Journal of Biology 64: 757–765.

    Article  CAS  Google Scholar 

  • Casatti, L., C. de Paula Ferreira & F. R. Carvalho, 2009. Grass-dominated stream sites exhibit low fish species diversity and dominance by guppies: an assessment of two tropical pasture river basins. Hydrobiologia 632: 273–283.

    Article  Google Scholar 

  • Casatti, L., F. B. Teresa, T. Gonçalves-Souza, E. Bessa, A. R. Manzotti, C. S. Gonçalves & J. O. Zeni, 2012. From forests to cattail: how does the riparian zone influence stream fish? Neotropical Ichthyology 10: 205–214.

    Article  Google Scholar 

  • Chao, A., N. J. Gotelli, T. C. Hsieh, E. L. Sander, K. H. Ma, R. K. Colwell & A. M. Ellison, 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84: 45–67.

    Article  Google Scholar 

  • Couceiro, S. R. M., N. Hamada, S. L. B. Luz, B. R. Forsberg & T. P. P. Pimentel, 2007. Deforestation and sewage effects on aquatic macroinvertebrates in urban streams in Manaus, Amazonas, Brazil. Hydrobiologia 575: 271–284.

    Article  CAS  Google Scholar 

  • Cruz, L. C. & P. S. Pompeu, 2020. Drivers of fish assemblage structures in a Neotropical urban watershed. Urban Ecosystems 23: 819–829.

    Article  Google Scholar 

  • Cruz, B. B., F. A. Teshima & M. Cetra, 2013. Trophic organization and fish assemblage structure as disturbance indicators in headwater streams of lower Sorocaba River basin, Sao Paulo, Brazil. Neotropical Ichthyology 11: 171–178.

    Article  Google Scholar 

  • Cunico, M., A. A. Agostinho & J. D. Latini, 2006. Influência da urbanização sobr luência da urbanização sobre as assembléias de peixes em três cór em três córregos de Mar os de Maringá, Paraná. Revista Brasileira De Zoologia 23: 1101–11101.

    Article  Google Scholar 

  • Cunico, A. M., E. A. Ferreira, A. A. Agostinho, A. C. Beaumord & R. Fernandes, 2012. The effects of local and regional environmental factors on the structure of fish assemblages in the Pirapó Basin, Southern Brazil. Landscape and Urban Planning 105: 336–344.

    Article  Google Scholar 

  • Dala-Corte, R. B., X. Giam, J. D. Olden, F. G. Becker, T. F. Guimarães, A. S. Melo, 2016. Revealing the pathways by which agricultural land-use affects stream fish communities in South Brazilian grasslands. Freshwater Biology 61(11): 1921–1934. https://doi.org/10.1111/fwb.12825.

    Article  Google Scholar 

  • Faraway, J., 2016. faraway: Functions and Datasets for Books by Julian Faraway. , https://cran.r-project.org/package=faraway.

  • Ferreira, C. S. S., R. P. D. Walsh, Z. Kalantari & A. J. D. Ferreira, 2020. Impact of land-use changes on spatiotemporal suspended sediment dynamics within a peri-urban catchment. Water 12: 665–685.

    Article  Google Scholar 

  • Gaston, K. A., J. A. Eft & T. E. Lauer, 2012. Morphology and its effect on habitat selection of stream fishes. Proceedings of the Indiana Academy of Science 121: 71–78.

    Google Scholar 

  • Gatz, J., 1979. Ecological morphology of freshwater stream fishes. Tulane Studies in Zoology and Botany 21: 91–124.

    Google Scholar 

  • Gotelli, N. J., 2001. Research frontiers in null model analysis. Global Ecology and Biogeography 10: 337–343.

    Article  Google Scholar 

  • Gotelli, N. J. & A. M. Ellison, 2004. A Primer of Ecological Statistics. Publishers Sunderland, Massachusetts.

    Google Scholar 

  • Graça, W. J., & C. S. Pavanelli, 2007. Peixes da planície de inundação do alto Rio Paraná e áreas adjacentes. Eduem, Maringá.

  • Guillemot, N., M. Kulbicki, P. Chabanet & L. Vigliola, 2011. Functional Redundancy Patterns Reveal Non-Random Assembly Rules in a Species-Rich Marine Assemblage. PLoS ONE 6: e26735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding, J. S., E. F. Benfield, P. V. Bolstad, G. S. Helfman & E. B. D. Jones, 1998. Stream biodiversity: the ghost of land use past. Proceedings of the National Academy of Sciences 95: 14843–14847.

    Article  CAS  Google Scholar 

  • Hepp, L. U., S. V. Milesi, C. Biasi & R. M. Restello, 2010. Effects of agricultural and urban impacts on macroinvertebrates assemblages in streams (Rio Grande do Sul, Brazil). Zoologia (curitiba) 27: 106–113.

    Article  Google Scholar 

  • Hoagstrom, C. W. & C. R. Berry, 2008. Morphological diversity among fishes in a Great Plains river drainage. Hydrobiologia 596: 367–386.

    Article  Google Scholar 

  • Hynes, H. B. N., 1975. The stream and its valley. SIL Proceedings 1922–2010(19): 1–15.

    Google Scholar 

  • Jackson, D. A., 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74: 2204–2214.

    Article  Google Scholar 

  • Junqueira, N. T., L. F. Magnago & P. S. Pompeu, 2020. Assessing fish sampling effort in studies of Brazilian streams. Scientometrics 123: 841–860.

    Article  Google Scholar 

  • Kaufmann, P. R. & J. M. Faustini, 2012. Simple measures of channel habitat complexity predict transient hydraulic storage in streams. Hydrobiologia 685: 69–95.

    Article  Google Scholar 

  • Kim, H., H. Jeong, J. Jeon & S. Bae, 2016. The impact of impervious surface on water quality and its threshold in Korea. Water 8: 111–120.

    Article  CAS  Google Scholar 

  • Laliberté, E., J. A. Wells, F. DeClerck, D. J. Metcalfe, C. P. Catterall, C. Queiroz, I. Aubin, S. P. Bonser, Y. Ding, J. M. Fraterrigo, S. McNamara, J. W. Morgan, D. S. Merlos, P. A. Vesk & M. M. Mayfield, 2010. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecology Letters 13: 76–86.

    Article  PubMed  Google Scholar 

  • Laub, B. G., D. W. Baker, B. P. Bledsoe & M. A. Palmer, 2012. Range of variability of channel complexity in urban, restored and forested reference streams. Freshwater Biology 57: 1076–1095.

    Article  Google Scholar 

  • Leal, C. G., N. T. Junqueira, C. B. M. Alves & P. S. Pompeu, 2014. Morphological space stability in rivers under different disturbance regimes. Copeia 2014: 149–159.

    Article  Google Scholar 

  • Legendre, P. & L. Legendre, 2012. Numerical Ecology. Elsevier, New York.

    Google Scholar 

  • Lundquist, M. J. & W. Zhu, 2019. Aquatic insect diversity in streams across a rural–urban land-use discontinuum. Hydrobiologia 837: 15–30.

    Article  Google Scholar 

  • Maack, R., 2002. Geografia física do estado do Paraná. Imprensa Oficial, Curitiba.

  • Macarthur, R. & R. Levins, 1967. The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist 101: 377–385.

    Article  Google Scholar 

  • Matesanz, S., T. E. Gimeno, M. de la Cruz, A. Escudero & F. Valladares, 2011. Competition may explain the fine-scale spatial patterns and genetic structure of two co-occurring plant congeners. Journal of Ecology 99: 838–848.

    Article  CAS  Google Scholar 

  • McKinney, M. L., 2006. Urbanization as a major cause of biotic homogenization. Biological Conservation 127: 247–260.

    Article  Google Scholar 

  • Montaña, C. G. & K. O. Winemiller, 2010. Local-scale habitat influences morphological diversity of species assemblages of cichlid fishes in a tropical floodplain river. Ecology of Freshwater Fish 19: 216–227.

    Article  Google Scholar 

  • Montaña, C. G., K. O. Winemiller & A. Sutton, 2014. Intercontinental comparison of fish ecomorphology: null model tests of community assembly at the patch scale in rivers. Ecological Monographs 84: 91–107.

    Article  Google Scholar 

  • Mouchet, M. A., M. D. M. Burns, A. M. Garcia, J. P. Vieira & D. Mouillot, 2013. Invariant scaling relationship between functional dissimilarity and co-occurrence in fish assemblages of the Patos Lagoon estuary (Brazil): environmental filtering consistently overshadows competitive exclusion. Oikos 122: 247–257.

    Article  Google Scholar 

  • Mouillot, D., O. Dumay & J. A. Tomasini, 2007. Limiting similarity, niche filtering and functional diversity in coastal lagoon fish communities. Estuarine, Coastal and Shelf Science 71: 443–456.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, & H. Wagner, 2019. vegan: Community Ecology Package. https://cran.r-project.org/package=vegan.

  • Oliveira, E. F., E. Goulart, L. Breda, C. V. Minte-Vera, L. R. S. Paiva & M. R. Vismara, 2010. Ecomorphological patterns of the fish assemblage in a tropical floodplain: effects of trophic, spatial and phylogenetic structures. Neotropical Ichthyology 8: 569–586.

    Article  Google Scholar 

  • Pagotto, J., E. Goulart, E. Oliveira, & C. Yamamura, 2009. A ecomorfologia como ferramenta para análise da estrutura de assembleias Contribuições da história da ciência e das teorias ecológicas para a Limnologia. Eduem, Maringá: 327–346.

  • Passos, M. M., 2007. A raia divisória: eco-história da raia divisória. Eduem, Maringá.

  • Pena, E. A., & E. H. Slate, 2019. gvlma: Global Validation of Linear Models Assumptions. https://cran.r-project.org/package=gvlma.

  • Peres-Neto, P. R., 1999. Alguns métodos e estudos em ecomorfologia de peixes de riachos. In Caramashi, E. P., R. Mazzoni & P. R. Peres-Neto (eds), Ecologia de peixes de riachos PPGE-UFRJ, Rio de Janeiro: 209–236.

    Google Scholar 

  • Peres-Neto, P. R., 2004. Patterns in the co-occurrence of fish species in streams: the role of site suitability, morphology and phylogeny versus species interactions. Oecologia 140: 352–360.

    Article  PubMed  Google Scholar 

  • Pessoa, L. A., M. T. Baumgartner, M. P. S. Junior, J. P. A. Pagotto, L. G. A. Pessoa & E. Goulart, 2021. Effect of land-use types on the ecomorphological structure of fish assemblage in distinct mesohabitats of neotropical streams. Biota Neotropica 21: e20201034.

    Article  Google Scholar 

  • Pouilly, M., F. Lino, J.-G. Bretenoux & C. Rosales, 2003. Dietary-morphological relationships in a fish assemblage of the Bolivian Amazonian floodplain. Journal of Fish Biology 62(5): 1137–1158. https://doi.org/10.1046/j.1095-8649.2003.00108.x.

    Article  Google Scholar 

  • Pusey, B. J. & A. H. Arthington, 2003. Importance of the riparian zone to the conservation and management of freshwater fish: a review. Marine and Freshwater Research 54: 1.

    Article  Google Scholar 

  • QGIS Development Team, 2018. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org.

  • Ribeiro, M. D., F. B. Teresa & L. Casatti, 2016. Use of functional traits to assess changes in stream fish assemblages across a habitat gradient. Neotropical Ichthyology 14: e140185.

    Article  Google Scholar 

  • Ricklefs, R. & D. Miles, 1994. Ecological and evolutionary inferences from morphology: an ecological perspective. In Wainwright, P. & S. Reilly (eds), Ecological Morphology: Integrative Organismal Biology University of Chicago Press, Chicago: 13–41.

    Google Scholar 

  • Roa-Fuentes, C. A., J. Heino, M. V. Cianciaruso, S. Ferraz, J. O. Zeni & L. Casatti, 2019. Taxonomic, functional, and phylogenetic β-diversity patterns of stream fish assemblages in tropical agroecosystems. Freshwater Biology 64: 447–460.

    Article  Google Scholar 

  • Ruaro, R., É. A. Gubiani, A. M. Cunico, J. Higuti, Y. Moretto & P. A. Piana, 2019. Unified multimetric index for the evaluation of the biological condition of streams in Southern Brazil based on fish and macroinvertebrate assemblages. Environmental Management 64: 661–673.

    Article  PubMed  Google Scholar 

  • Sánchez-Hernández, J., H. Gabler & P. Amundsen, 2017. Prey diversity as a driver of resource partitioning between river- dwelling fish species. Ecology and Evolution 7: 2058–2068.

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva, R. R. & C. R. F. Brandão, 2010. Morphological patterns and community organization in leaf-litter ant assemblages. Ecological Monographs 80: 107–124.

    Article  Google Scholar 

  • Simon, A. & A. J. C. Collison, 2002. Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability. Earth Surface Processes and Landforms 27(5): 527–546. https://doi.org/10.1002/esp.325.

    Article  Google Scholar 

  • Socolar, J. B., J. J. Gilroy, W. E. Kunin & D. P. Edwards, 2016. How should beta-diversity inform biodiversity conservation? Trends in Ecology & Evolution 31: 67–80.

    Article  Google Scholar 

  • Stein, A., K. Gerstner & H. Kreft, 2014. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters 17: 866–880.

    Article  PubMed  Google Scholar 

  • Strahler, A. N., 1952. Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin 63(11): 1117. https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2.

    Article  Google Scholar 

  • Teresa, F. B. & L. Casatti, 2012. Influence of forest cover and mesohabitat types on functional and taxonomic diversity of fish communities in Neotropical lowland streams. Ecology of Freshwater Fish 21: 433–442.

    Article  Google Scholar 

  • Urban, M. C., D. K. Skelly, D. Burchsted, W. Price & S. Lowry, 2006. Stream communities across a rural–urban landscape gradient. Diversity and Distributions 12: 337–350.

    Article  Google Scholar 

  • Villéger, S., J. Ramos Miranda, D. Flores Hernández & D. Mouillot, 2010. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications 20: 1512–1522.

    Article  PubMed  Google Scholar 

  • Wang, L., J. Lyons, P. Kanehl & R. Bannerman, 2001. Impacts of urbanization on stream habitat and fish across multiple spatial scales. Environmental Management 28: 255–266.

    Article  CAS  PubMed  Google Scholar 

  • Watson, D. J. & E. K. Balon, 1984. Ecomorphological analysis of fish taxocenes in rainforest streams of northern Borneo. Journal of Fish Biology 25: 371–383.

    Article  Google Scholar 

  • Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York. https://ggplot2.tidyverse.org.

  • Willis, S. C., K. O. Winemiller & H. Lopez-Fernandez, 2005. Habitat structural complexity and morphological diversity of fish assemblages in a Neotropical floodplain river. Oecologia 142: 284–295.

    Article  CAS  PubMed  Google Scholar 

  • Winemiller, K. O., 1991. Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecological Monographs 61: 343–365.

    Article  Google Scholar 

  • Winemiller, K. O., A. A. Agostinho & E. P. Caramashi, 2008. Fish ecology in tropical streams. In Dudgeon, D. (ed.), Tropical Stream Ecology Academic Press, San Diego: 107–146.

    Chapter  Google Scholar 

  • Wright, J. P. & A. S. Flecker, 2004. Deforesting the riverscape: the effects of wood on fish diversity in a Venezuelan piedmont stream. Biological Conservation 120(3): 439–447. https://doi.org/10.1016/j.biocon.2004.02.022.

    Article  Google Scholar 

  • Zeni, J. O., M. A. Pérez-Mayorga, C. A. Roa-Fuentes, G. L. Brejão & L. Casatti, 2019. How deforestation drives stream habitat changes and the functional structure of fish assemblages in different tropical regions. Aquatic Conservation: Marine and Freshwater Ecosystems 29: 1238–1252.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Norma Segatti Hahn, Rosana Mazzoni Buchas, Edson Fontes de Oliveira, and Horácio Ferreira Júlio Júnior for their valuable suggestions for the improvement of this manuscript; Luiz Fernando Caserta Tencatt for helping us with the identification of the fish species; Daniel Santos, Fabrício Oda, Bruno Sugayama, Fagner de Souza and Rogério Hanisch for their help with field and laboratory work; The anonymous referees for improving this manuscript. PEA/Nupélia/UEM/PROEX for logistic support; Coordination of Improvement of Higher Education Personnel (CAPES/Ministry of Education, Brazil) for the scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Paulo Alves Pagotto.

Additional information

Handling editor: Grethe Robertsen

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 797 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagotto, J.P.A., Pessoa, L.A., Goulart, E. et al. Environmental degradation of streams leads to the loss of ecomorphologically similar fish species. Hydrobiologia 849, 2299–2316 (2022). https://doi.org/10.1007/s10750-022-04868-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04868-y

Keywords

Navigation