Skip to main content

Advertisement

Log in

Congruence and responsiveness in the taxonomic compositions of Amazonian aquatic macroinvertebrate and fish assemblages

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Stream degradation in Amazonia is outpacing our ability to effectively monitor it for three key reasons: (1) Many changes are cumulative and occur gradually; (2) Scientists have failed to clearly link anthropogenic disturbances with ecological and economic indicators of concern to decision makers and the public; (3) There are too many potential indicators to assess in a cost-effective manner. Therefore, we sought to assess congruency at three taxonomic resolutions (species, genus and family) and between assemblages (fish species and macroinvertebrate genera) and groups of taxa (fish: Characiformes and Siluriformes; macroinvertebrates: Anisoptera, Heteroptera, Odonata, Trichoptera, Zygoptera, EPT [Ephemeroptera, Plecoptera and Trichoptera] and THZ [Trichoptera, Heteroptera and Zygoptera]). To do so, we assessed taxonomic, land-use and habitat data from 92 stream sites in the eastern Amazonian state of Pará. We found that anthropogenic disturbances of our sites influenced abundance and incidence of macroinvertebrate and fish taxa, but the two assemblages responded to slightly different stressors. Family and genera levels were suitable substitutes for similarity patterns measured at the macroinvertebrate genera and fish species levels, respectively. Odonata, Trichoptera, EPT and THZ were highly congruent with whole macroinvertebrate assemblage (genus level) variation. Characiformes was also congruent with whole fish assemblage (species level) variation. Congruence among macroinvertebrates and fish was intermediate (55% to 79%) and related to differing responses to environmental variables. Our results suggest that some groups (e.g., Odonata, Trichoptera and Characiformes) are useful surrogates of macroinvertebrate or fish assemblages to evaluate anthropogenic disturbance in Amazonian streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Antonelli, A., A. Zizka, F. A. Carvalho, R. Scharn, C. D. Bacon, D. Silvestro & F. L. Condamine, 2018. Amazonia is the primary source of Neotropical biodiversity. Proceedings of the National Academy of Sciences 115: 6034–6039.

    Article  CAS  Google Scholar 

  • Athayde, S., M. Mathews, S. Bohlman, W. Brasil, C. R. C. Doria, J. Dutka-Gianelli, P. M. Fearnside, B. Loiselle, E. E. Marques, T. S. Melis, B. Millikan, E. M. Moretto, A. Oliver-Smith, A. Rossete, R. Vacca & D. Kaplan, 2019. Mapping research on hydropower and sustainability in the Brazilian Amazon: advances, gaps in knowledge and future directions. Current Opinion in Environmental Sustainability 37: 50–69.

    Article  Google Scholar 

  • Barbosa, H. O., K. B. Machado, M. C. Vieira, H. R. Pereira, L. F. Gomes, J. C. Nabout, F. B. Teresa & L. C. G. Vieira, 2019. Alternatives for the biomonitoring of fish and phytoplankton in tropical streams. Neotropical Biology and Conservation 14: 361–380.

    Article  Google Scholar 

  • Barlow, J., G. D. Lennox, J. Ferreira, E. Berenguer, A. C. Lees, R. Mac Nally, J. R. Thomson, S. F. B. Ferraz, J. Louzada, V. H. F. Oliveira, L. Parry, R. R. C. Solar, I. C. G. Vieira, L. E. O. C. Aragão, R. A. Begotti, R. F. Braga, T. M. Cardoso, R. C. Oliveira, C. M. Souza, N. G. Moura, S. S. Nunes, J. V. Siqueira, R. Pardini, J. M. Silveira, F. Z. Vaz-de-Mello, R. C. S. Veiga, A. Venturieri & T. A. Gardner, 2016. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535: 144–147.

    Article  CAS  PubMed  Google Scholar 

  • Barlow, J., F. França, T. A. Gardner, C. C. Hicks, G. D. Lennox, E. Berenguer, L. Castello, E. P. Economo, J. Ferreira, B. Guénard, C. G. Leal, V. Isaac, A. C. Lees, C. L. Parr, S. K. Wilson, P. J. Young & N. A. J. Graham, 2018. The future of hyperdiverse tropical ecosystems. Nature 559: 517–526.

    Article  CAS  PubMed  Google Scholar 

  • Bar-On, Y. M., R. Phillips & R. Milo, 2018. The biomass distribution on Earth. Proceedings of the National Academy of Sciences 11:6506–6511

    Article  CAS  Google Scholar 

  • Borcard, D., F. Gillet & P. Legendre, 2011. Numerical Ecology with R, Springer, New York:

    Book  Google Scholar 

  • Brejão, G. L., D. J. Hoeinghaus, M. A. Pérez-Mayorga, S. F. B. Ferraz & L. Casatti, 2018. Threshold responses of Amazonian stream fishes to timing and extent of deforestation. Conservation Biology 32: 860–871.

    Article  PubMed  Google Scholar 

  • Briars, R. A. & J. Biggs, 2003. Indicator taxa for the conservation of pond invertebrate diversity. Aquatic Conservation: Marine and Freshwater Ecosystems 13: 323–330.

    Article  Google Scholar 

  • Bried, J., L. Ries, B. Smith, M. Patten, J. Abbott, J. Ball-Damerow, R. Cannings, A. Cordero-Rivera, A. Cordoba-Aguilar, P. Marco Jr., K. D. Dijkstra, A. Dolny, R. van Grunsven, D. Halstead, F. Harabis, C. Hassall, M. Jeanmougin, C. Jones, L. Juen, V. Kalkman, G. Kietzka, C. S. Mazzacano, A. Orr, M. A. Perron, M. Rocha-Ortega, G. Sahlen, M. Samways, A. Siepielski, J. Simaika, F. Suhling, L. Underhill & E. White, 2020. Towards global volunteer monitoring of odonate abundance. BioScience 70: 914–923.

    Article  Google Scholar 

  • Brito, J. G., R. T. Martins, V. C. Oliveira, N. Hamada, J. L. Nessimian, R. M. Hughes, S. F. B. Ferraz & F. R. de Paula, 2018. Biological indicators of diversity in tropical streams: congruence in the similarity of invertebrate assemblages. Ecological Indicators 85: 85–92.

    Article  Google Scholar 

  • Brito, J. G., F. O. Roque, R. T. Martins, N. Hamada, J. L. Nessimian, V. C. Oliveira, R. M. Hughes, F. R. Paula, S. Ferraz & N. Hamada, 2020. Small forest losses degrade stream macroinvertebrate assemblages in the eastern Brazilian Amazon. Biological Conservation 241: 108263.

    Article  Google Scholar 

  • Brito, J. P., F. G. Carvalho & L. Juen, 2021. Response of the Zygopteran community (Odonata: Insecta) to change in environmental integrity driven by urbanization in eastern Amazonian streams. Ecologies 2: 150–163.

    Article  Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 1998. Practical use of the information-theoretic approach. In: model selection and inference. Springer, New York.

  • Buss, D. F., D. Carlisle, T. S. Chon, J. Culp, J. S. Harding, H. E. Keizer-Vlek, W. A. Robinson, S. Strachan, C. Thirion & R. M. Hughes, 2015. Stream biomonitoring using macroinvertebrates around the globe: a comparison of large-scale programs. Environmental Monitoring and Assessment 187: 1–21.

    Article  Google Scholar 

  • Carneiro, F. M., L. M. Bini & L. M. Rodrigues, 2010. Influence of taxonomic and numerical resolution on the analysis of temporal changes in phytoplankton communities. Ecological Indicators 10: 249–255.

    Article  Google Scholar 

  • Carvalho, D. R., C. G. Leal, N. T. Junqueira, M. A. Castro, D. C. Fagundes, C. B. M. Alves, R. M. Hughes & P. S. Pompeu, 2017. A fish-based multimetric index for Brazilian savanna streams. Ecological Indicators 77: 386–396.

    Article  Google Scholar 

  • Casatti, L., C. P. Ferreira & F. Langeani, 2009. A fish-based biotic integrityindex for assessment of lowland streams in southeastern Brazil. Hydrobiologia 623: 173–189.

    Article  Google Scholar 

  • Castello, L. & M. N. Macedo, 2016. Large-scale degradation of Amazonian freshwater ecosystems. Global Change Biology 22: 990–1007.

    Article  PubMed  Google Scholar 

  • Chen, K., R. M. Hughes, J. G. Brito, C. G. Leal, R. P. Leitão, J. M. B. de Oliveira-Júnior, V. C. de Oliveira, K. Dias-Silva, S. F. B. Ferraz, J. Ferreira, N. Hamada, L. Juen, J. Nessimian, P. S. Pompeu & J. Zuanon, 2017. A multi-assemblage, multi-metric biological condition index for eastern Amazon streams. Ecological Indicators 78: 48–61.

    Article  Google Scholar 

  • Convention on Biological Diversity, 1992. The convention on biological diversity. https://www.cbd.int/youth/0003.shtml

  • Couceiro, S. R., N. Hamada, S. L. Luz, B. R. Forsberg & T. P. Pimentel, 2007. Deforestation and sewage effects on aquatic macroinvertebrates in urban streams in Manaus, Amazonas, Brazil. Hydrobiologia 575: 271–284.

    Article  CAS  Google Scholar 

  • Cunha, E. J. & L. Juen, 2017. Impacts of oil palm plantations on changes in environmental heterogeneity and Heteroptera (Gerromorpha and Nepomorpha) diversity. Journal of Insect Conservation 21: 111–119.

    Article  Google Scholar 

  • Cunha, E. J. & L. Juen, 2020. Environmental drivers of the metacommunity structure of insects on the surface of tropical streams of the Amazon. Austral Ecology 45: 586–595.

    Article  Google Scholar 

  • Cunha, E. J., L. F. A. Montag & L. Juen, 2015. Oil palm crops effects on environmental integrity of Amazonian streams and Heteroptera (Hemiptera) species diversity. Ecological Indicators 52: 422–429.

    Article  Google Scholar 

  • Dala-Corte, R. B., A. S. Melo, T. Siqueira, L. M. Bini, R. T. Martins, A. M. Cunico, A. M. Pes, A. L. B. Magalhães, B. S. Godoy, C. G. Leal, C. S. Monteiro-Júnior, C. Stenert, D. M. P. Castro, D. R. Macedo, D. P. Lima-Junior, E. A. Gubiani, F. C. Massariol, F. B. Teresa, F. G. Becker, F. N. Souza, F. Valente-Neto, F. L. Souza, F. F. Salles, G. L. Brejão, J. G. Brito, J. R. S. Vitule, J. Simião-Ferreira, K. Dias-Silva, L. Albuquerque, L. Juen, L. Maltchik, L. Casatti, L. Montag, M. E. Rodrigues, M. Callisto, M. A. M. Nogueira, M. R. Santos, N. Hamada, P. A. Z. Pamplin, P. S. Pompeu, R. P. Leitão, R. Ruaro, R. Mariano, S. R. M. Couceiro, V. Abilhoa, V. C. Oliveira, Y. Shimano, Y. Moretto, Y. R. Súarez & F. O. Roque FO, 2020. Thresholds of freshwater biodiversity in response to riparian vegetation loss in the Neotropical region. Journal of Applied Ecology 57: 1391–1402.

    Article  Google Scholar 

  • Dasgupta, P., 2021. The Economics of Biodiversity: The Dasgupta Review, HM Treasury, London:

    Google Scholar 

  • da Silva, S. S., P. M. Fearnside, P. M. L. de Alencastro Graça, I. F. Brown, A. Alencar & A. W. F. de Melo, 2018a. Dynamics of forest fires in the southwestern Amazon. Forest Ecology and Management 424: 312–322.

    Article  Google Scholar 

  • Dagosta, F. C. & M. de Pinna, 2019. The fishes of the Amazon: Distribution and biogeographical patterns, with a comprehensive list of species. Bulletin of the American Museum of Natural History 431: 1–163.

    Article  Google Scholar 

  • Davies, S. P. & S. K. Jackson, 2006. The biological condition gradient: a descriptive model for interpreting change in aquatic ecosystems. Ecological Applications 16: 1251–1266.

    Article  PubMed  Google Scholar 

  • Dias-Silva, K. D., H. S. R. Cabette, L. Juen, P. de Marco & Jr., 2010. The influence of habitat integrity and physical-chemical water variables on the structure of aquatic and semi-aquatic Heteroptera. Zoologia 27: 918–930.

    Article  Google Scholar 

  • Díaz, S., J. Settele, E. Brondizio, H. T. Ngo, M. Gueze, J. Agard, A. Arneth, P. Balvanera, K. A. Brauman, S. H. M. Butchart, K. M. A. Chan, L. A. Garibaldi, K. Ichii, J. Liu, S. M. Subramanian, G. F. Midgley, P. Miloslavich, Z. Molnár, D. Obura, A. Pfaff, S. Polasky, A. Purvis, J. Razzaque, B. Reyers, R. Roy Chowdhury, Y. J. Shin, I. J. Visseren-Hamakers, K. J. Willis & C. N. Zayas, 2019. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. https://www.ipbes.net/system/tdf/ipbes_7_10_add.1_en_1.pdf?file=1&type=node&id=35329.

  • Di Luzio, M., R. Srinivasan & J. G. Arnold, 2004. A GIS-coupled hydrological model system for the watershed assessment of agricultural nonpoint and point sources of pollution. Transactions in GIS 8: 113–136.

    Article  Google Scholar 

  • dos Anjos, M. B. & J. Zuanon, 2007. Sampling effort and fish species richness in small terra firme forest streams of central Amazonia, Brazil. Neotropical Ichthyology 5: 45–52.

    Article  Google Scholar 

  • Ehrlich, P. R., 1968. The Population Bomb, Ballantine Books, New York:

    Google Scholar 

  • Ellwanger, J., B. Kulmann-Leal, V. Kaminski, J. Valverde, A. Gorini da Veiga, F. Spilki, P. Fearnside, L. Caesar, L. Giatti, G. Wallau, S. Almeida, M. Borba, V. P. da Hora & J. Chies, 2020. Beyond diversity loss and climate change: impacts of Amazon deforestation on infectious diseases and public health. Anais Da Academia Brasileira De Ciências. https://doi.org/10.1590/0001-3765202020191375.

    Article  PubMed  Google Scholar 

  • Feio, M. J., R. M. Hughes, M. Callisto, S. J. Nichols, O. N. Odume, B. R. Quintella, M. Kuemmerlen, F. C. Aguiar, S. Almeida, P. Alonso-EguiaLis, F. O. Arimoro, F. J. Dyer, J. S. Harding, S. Jang, P. R. Kaufmann, S. Lee, J. Li, D. R. Macedo, A. Mendes, N. Mercado-Silva, W. Monk, K. Nakamura, C. G. Ndiritu, R. Ogden, M. Peat, T. B. Reynoldson, B. Rios-Touma, P. Segurado & A. G. Yates, 2021. The biological assessment and rehabilitation of the world’s rivers: an overview. Water 13: 371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foley, J. A., R. DeFries, G. P. Asner, C. Barford, G. Bonan, S. R. Carpenter, F. S. Chapin, M. T. Coe, G. C. Daily, H. K. Gibbs, J. H. Helkowski, T. Holloway, E. A. Howard, C. J. Kucharik, C. Monfreda, J. A. Patz, I. C. Prentice, N. Ramankutty & P. K. Snyder, 2005. Global consequences of land use. Science 309: 570–575.

    Article  CAS  PubMed  Google Scholar 

  • Gardner, T. A., J. Barlow, J. S. Araujo, T. C. Ávila-Pires, A. B. Bonaldo, J. E. Costa, M. C. Esposito, L. V. Ferreira, J. Hawes, M. I. M. Hernandez, M. S. Hoogmoed, R. N. Leite, N. F. Lo-Man-Hung, J. R. Malcolm, M. B. Martins, L. A. M. Mestre, R. Miranda-Santos, W. L. Overal, L. Parry, S. L. Peters, M. A. Ribeiro, M. N. F. da Silva, C. da Silva Motta & C. A. Peres, 2008. The cost-effectiveness of biodiversity surveys in tropical forests. Ecology Letters 11: 139–150.

    Article  PubMed  Google Scholar 

  • Gardner, T., et al., 2013. A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network. Philosophical Transactions of the Royal Society B 368: 20120166.

    Article  Google Scholar 

  • Godoy, B. S., A. P. J. Faria, L. Juen, S. Loudi & L. G. Oliveira, 2019. Taxonomic sufficiency and effects of environmental and spatial drivers on aquatic insect Community. Ecological Indicators 107: 105624.

    Article  Google Scholar 

  • Gomes, L. F., L. C. G. Vieira & M. P. Bonnet, 2015. Two practical approaches to monitoring the zooplankton community at Lago Grande do Curuai, Pará, Brazil. Acta Amazônica 45: 293–298.

    Article  Google Scholar 

  • Guareschi, S., P. Abellán, A. Laini, A. J. Green, J. A. Sánchez-Zapata, J. Velasco & A. Millán, 2015. Cross-taxon congruence in wetlands: assessing the value of waterbirds as surrogates of macroinvertebrate biodiversity in Mediterranean Ramsar sites. Ecological Indicators 49: 204–215.

    Article  Google Scholar 

  • Hawkins, C. P., Y. Cao & B. Roper, 2010. Method of predicting reference condition biota affects the performance and interpretation of ecological indices. Freshwater Biology 55: 1066–1085.

    Article  Google Scholar 

  • Heino, J., 2010. Are indicator groups and cross-taxon congruence useful for predicting biodiversity in aquatic ecosystems? Ecological Indicators 10: 112–117.

    Article  Google Scholar 

  • Heino, J., 2014. Taxonomic surrogacy, numerical resolution and responses of stream macroinvertebrate communities to ecological gradients: are the inferences transferable among regions? Ecological Indicators 36: 186–194.

    Article  Google Scholar 

  • Heino, J. & J. Soininen, 2007. Are higher taxa adequate surrogates for species-level assemblage patterns and species richness in stream organisms? Biological Conservation 137: 78–89.

    Article  Google Scholar 

  • Herlihy, A. T., J. C. Sifneos, R. M. Hughes, D. V. Peck & R. M. Mitchell, 2020. Relation of lotic fish and benthic macroinvertebrate condition indices to environmental factors across the conterminous USA. Ecological Indicators 112: 105958.

    Article  Google Scholar 

  • Hooke, R. L., 2000. On the history of humans as geomorphic agents. Geology 28: 843–846.

    Article  Google Scholar 

  • Hughes., R. M., 1993. Stream indicator and design workshop. EPA/600/R-93/138. U.S. Environmental Protection Agency, Corvallis.

  • Hughes, R. M., 2015. Recreational fisheries in the USA: economics, management strategies, and ecological threats. Fisheries Science 81: 1–9.

    Article  CAS  Google Scholar 

  • Hughes, R. M. & D. V. Peck, 2008. Acquiring data for large aquatic resource surveys: the art of compromise among science, logistics, and reality. Journal of the North American Benthological Society 27: 837–859.

    Article  Google Scholar 

  • Juen, L. & A. Feest, 2019. Evaluating the biodiversity quality response of tropical Odonata to tree clearance. International Journal of Tropical Insect Science 39: 45–52.

    Article  Google Scholar 

  • Kaufmann, P. R., P. Levine, E. G. Robison, C. Seeliger & D. V. Peck, 1999. Quantifying Physical Habitat in Wadeable Streams. EPA/620/R-99/003, U.S. Environmental Protection Agency, Washington.

  • Kietzka, G. J., J. S. Pryke, R. Gaigher & M. Samways, 2021. Congruency between adult male dragonflies and their larvae in river systems is relative to spatial grain. Ecological Indicators 124: 107390.

    Article  Google Scholar 

  • Landeiro, V. L., L. M. Bini, A. S. Melo, A. M. O. Pes & W. E. Magnusson, 2012. The roles of dispersal limitation and environmental conditions in controlling caddisfly (Trichoptera) assemblages. Freshwater Biology 57: 1554–1564.

    Article  Google Scholar 

  • Larsen, F. W., J. Bladt, A. Balmford & C. Rahbek, 2012. Birds as biodiversity surrogates: will supplementing birds with other taxa improve effectiveness? Journal of Applied Ecology 49: 349–356.

    Article  Google Scholar 

  • Leal, C. G., P. S. Pompeu, T. A. Gardner, R. P. Leitão, R. M. Hughes, P. R. Kaufmann, J. Zuanon, F. R. de Paula, S. F. B. Ferraz, J. R. Thomson, R. MacNally, J. Ferreira & J. Barlow, 2016. Multi-scale assessment of human-induced changes on Amazonian instream habitat. Landscape Ecology 31: 1725–1745.

    Article  Google Scholar 

  • Leal, C. G., J. Barlow, T. Gardner, R. M. Hughes, R. P. Leitão, R. MacNally, P. Kaufmann, S. F. B. Ferraz, J. Zuanon, F. R. de Paula, J. Ferreira, J. R. Thomson, G. D. Lennox, E. P. Dary, C. P. Röpke & P. S. Pompeu, 2018. Is environmental legislation conserving tropical stream faunas? A large-scale assessment of local, riparian and catchment-scale influences on Amazonian fish. Journal of Applied Ecology 55: 1312–1326.

    Article  Google Scholar 

  • Leal, C. G., G. D. Lennox, S. F. B. Ferraz, J. Ferreira, T. A. Gardner, J. R. Thomson, E. Berenguer, A. C. Lees, R. M. Hughes, R. MacNally, L. E. O. C. Aragão, J. G. de Brito, L. Castello, R. D. Garrett, N. Hamada, L. Juen, R. P. Leitão, J. Louzada, T. F. Morello, N. G. Moura, J. L. Nessimian, J. M. B. Oliveira-Junior, V. H. F. de Oliveira, V. C. de Oliveira, L. Parry, P. S. Pompeu, R. R. C. Solar, J. Zuanon & J. Barlow, 2020. Integrated terrestrial-freshwater planning doubles tropical aquatic species conservation. Science 370: 117–121.

    Article  CAS  PubMed  Google Scholar 

  • Legendre, P. P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.

    Article  PubMed  Google Scholar 

  • Leitão, R. P., J. Zuanon, D. Mouillot, C. G. Leal, R. M. Hughes, P. R. Kaufmann, S. Villéger, P. S. Pompeu, D. Kasper, F. R. de Paula, S. F. B. Ferraz & T. Gardner, 2018. Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. Ecography 41: 219–232.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopes, M. P., R. T. Martins, L. S. Silveira & R. G. Alves, 2015. The leaf breakdown of Picramnia sellowii (Picramniales: Picramniaceae) as index of anthropic disturbances in tropical streams. Brazilian Journal of Biology 75: 846–853.

    Article  CAS  Google Scholar 

  • Martins, I., R. Ligeiro, R. M. Hughes, D. R. Macedo & M. Callisto, 2018. Regionalization is key to establish reference conditions for neotropical savanna streams. Marine and Freshwater Research 69: 82–94.

    Article  Google Scholar 

  • Martins, R. T., S. R. M. Couceiro, A. S. Melo, M. P. Moreira & N. Hamada, 2017. Effects of urbanization on stream benthic invertebrate communities in Central Amazon. Ecological Indicators 73: 480–491.

    Article  CAS  Google Scholar 

  • Martins, R. T., J. Brito, K. D. da Silva, C. G. Leal, R. P. Leitão, V. C. Oliveira, J. M. B. Oliveira-Junior, S. F. B. Ferraz, F. R. Paula, F. O. Roque, N. Hamada, L. Juen, J. L. Nessimian, P. S. Pompeu & R. M. Hughes, 2021. Low forest-loss thresholds threaten Amazônia fish and macroinvertebrate assemblage integrity. Ecological Indicators 127: 107773.

    Article  Google Scholar 

  • Melo, A. S., 2005. Effects of taxonomic and numeric resolution on the ability to detect ecological patterns at a local scale using stream macroinvertebrates. Archiv Für Hydrobiologie 164: 309–324.

    Article  Google Scholar 

  • Mendes, T. P., J. M. B. Oliveira-Junior, H. S. R. Cabette, J. D. Batista & L. Juen, 2017. Congruence and the biomonitoring of aquatic ecosystems: are odonate larvae or adults the most effective for the evaluation of impacts? Neotropical Entomology 46: 631–641.

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Penagos, C. C., L. B. Calvão & L. Juen, 2021. A new biomonitoring method using taxonomic families as substitutes for the suborders of the Odonata (Insecta) in Amazonian streams. Ecological Indicators 124: 107388.

    Article  Google Scholar 

  • Merrick, L. 2015. Oregon’s National Rivers and Streams Assessment 2008–2009. Oregon Department of Environmental Quality, Oregon. https://www.oregon.gov/deq/FilterDocs/2008-2009assessmentreport.pdf

  • Monteiro-Júnior, C. S., S. R. M. Couceiro, N. Hamada & L. Juen, 2013. Effect of vegetation removal for road building on richness and composition of Odonata communities in Amazonia, Brazil. International Journal of Odonatology 16: 135–144.

    Article  Google Scholar 

  • Moya, N., R. M. Hughes, E. Dominguez, F. M. Gibon, E. Goita & T. Oberdorff, 2011. Macroinvertebrate-based multimetric predictive models for measuring the biotic condition of Bolivian streams. Ecological Indicators 11: 840–847.

    Article  Google Scholar 

  • Mulvey, M., R. Leferink & A. Borisenko, 2009. Willamette Basin Rivers and Streams Assessment. DEQ 09-LAB-016. Oregon Department of Environmental Quality, Portland. https://www.oregon.gov/deq/FilterDocs/WillametteBasinAssessment2009.pdf

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O'Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs & H. Wagner, 2016. Vegan: Community Ecology Package. R Package, Version 2.4–1. https://CRAN.R-project.org/package=vega

  • Oliveira-Júnior, J. M. B. & L. Juen, 2019. The Zygoptera/Anisoptera ratio (Insecta: Odonata): a New tool for habitat alterations assessment in Amazonian streams. Neotropical Entomology 48: 552–560.

    Article  PubMed  Google Scholar 

  • Oliveira-Junior, J. M. B., P. de Marco-Junior, K. Dias-Silva, R. P. Leitão, C. G. Leal, P. S. Pompeu, T. A. Gardner, R. M. Hughes & L. Juen, 2017. Effects of human disturbance and riparian conditions on Odonata (Insecta) assemblages in eastern Amazon basin streams. Limnologica 66: 31–39.

    Article  Google Scholar 

  • Paavola, R., T. Muotka, R. Virtanen, J. Heino, D. Jackson & A. Mäki-Petäys, 2006. Spatial scale affects community concordance among fishes, benthic macroinvertebrates, and bryophytes in streams. Ecological Applications 16: 368–379.

    Article  PubMed  Google Scholar 

  • Padial, A. A., S. A. J. Declerck, L. de Meester, C. C. Bonecker, F. A. Lansac-Tôha, L. C. Rodrigues, A. Takeda, S. Train, L. F. M. Velho & L. M. Bini, 2012. Evidence against the use of surrogates for biomonitoring of Neotropical floodplains. Freshwater Biology 57: 2411–2423.

    Article  Google Scholar 

  • Peres-Neto, P. R. & D. A. Jackson, 2001. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129: 169–178.

    Article  PubMed  Google Scholar 

  • Pinheiro, J., D. Bates, S. DebRoy & D. Sarkar, 2021. R Core Team nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–152, https://CRAN.R-project.org/package=nlme.

  • Pompeu, P. S., C. G. Leal, D. R. Carvalho, N. T. Junqueira, M. A. Castro & R. M. Hughes, 2019. Effects of catchment land use on stream fish assemblages in the Brazilian savanna. American Fisheries Society Symposium 90: 303–320.

    Google Scholar 

  • R Development Core Team, 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/.

  • Ribas, L. G. S. & A. A. Padial, 2014. The use of coarser data is an effective strategy for biological assessments. Hydrobiologia 779: 259–259.

    Article  Google Scholar 

  • Ribeiro, C., L. Juen & M. E. Rodrigues, 2021. The Zygoptera/Anisoptera ratio as a tool to assess anthropogenic changes in Atlantic Forest streams. Biodiversity and Conservation 30: 1315–1329.

    Article  Google Scholar 

  • Roque, F. O., M. Uehara-Prado, F. Valente-Neto, J. M. O. Quintero, K. T. Ribeiro, M. B. Martins, M. G. Lima, F. L. Souza, E. Fischer, U. L. Silva Jr., F. Y. Ishida, A. Gray-Spence, J. O. P. Pinto, D. B. Ribeiro, C. A. Martins, P. C. Renaud, O. Pays & W. E. Magnusson, 2018. A network of monitoring networks for evaluating biodiversity conservation effectiveness in Brazilian protected areas. Perspectives in Ecology and Conservation 16: 177–185.

    Article  Google Scholar 

  • Ruaro, R., E. A. Gubiani, R. M. Hughes & R. P. Mormul, 2020. Global trends and challenges in multimetric indices of ecological condition. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2019.105862.

    Article  Google Scholar 

  • Schinegger, R., M. Palt, P. Segurado & S. Schmutz, 2016. Untangling the effects of multiple human stressors and their impacts on fish assemblages in European running waters. Science of the Total Environment 573: 1079–1088.

    Article  CAS  Google Scholar 

  • Silva, D. R. O., R. Ligeiro, R. M. Hughes & M. Callisto, 2016. The role of physical habitat and sampling effort on estimates of benthic macroinvertebrate taxonomic richness at basin and site scales. Environmental Monitoring and Assessment 188: 340.

    Article  PubMed  Google Scholar 

  • Silva, D. R. O., A. T. Herlihy, R. M. Hughes & M. Callisto, 2017. An improved macroinvertebrate multimetric index for the assessment of wadeable streams in the neotropical savanna, Brazil. Ecological Indicators 81: 514–525.

    Article  Google Scholar 

  • Silva, D. R. O., A. T. Herlihy, R. M. Hughes, D. R. Macedo & M. Callisto, 2018b. Assessing the extent and relative risk of aquatic stressors on stream macroinvertebrate assemblages in the neotropical savanna. Science of the Total Environment 633: 179–188.

    Article  CAS  Google Scholar 

  • Silva, L. F. R., D. M. P. de Castro, L. Juen, M. Callisto, R. M. Hughes & M. G. Hermes, 2021a. A matter of suborder: are Zygoptera and Anisoptera larvae influenced by riparian vegetation in Neotropical Savanna streams? Hydrobiologia 848: 4433–4444.

    Article  Google Scholar 

  • Silva, L. F. R., D. M. P. de Castro, L. Juen, M. Callisto, R. M. Hughes & M. G. Hermes, 2021b. Functional responses of Odonata larvae to human disturbances in Neotropical Savanna headwater streams. Ecological Indicators 133: 108367.

    Article  Google Scholar 

  • Siqueira, T., L. M. Bini, F. O. Roque & K. Cottenie, 2012. A metacommunity framework for enhancing the effectiveness of biological monitoring strategies. PLoS ONE 7: e43626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonter, L. J., D. Herrera, D. J. Barrett, G. L. Galford, C. J. Moran & B. S. Soares-Filho, 2017. Mining drives extensive deforestation in the Brazilian Amazon. Nature Communications 8: 1–7.

    Article  CAS  Google Scholar 

  • Steffen, W., K. Richardson, J. Rockstrom, S. E. Cornell, I. Fetzer, E. M. Bennett, R. Biggs, S. R. Carpenter, W. de Vries, C. A. de Wit, C. Folke, D. Gerten, J. Heinke, G. M. Mace, L. M. Persson, V. Ramanathan, B. Reyers & S. Sorlin, 2015. Planetary boundaries: guiding human development on a changing planet. Science 347: 736–746.

    Article  CAS  Google Scholar 

  • Stoddard, J. L., A. T. Herlihy, D. V. Peck, R. M. Hughes, T. R. Whittier & E. Tarquinio, 2008. A process for creating multi-metric indices for large-scale aquatic surveys. Journal of the North American Benthological Society 27: 878–891.

    Article  Google Scholar 

  • Terra, B. D. F., R. M. Hughes & F. G. Araújo, 2013a. Sampling sufficiency for fish assemblage surveys of Atlantic Forest streams, southeastern Brazil. Fisheries 38: 150–158.

    Article  Google Scholar 

  • Terra, B. D. F., R. M. Hughes, M. R. Francelino & F. G. Araújo, 2013b. Assessment of biotic condition of Atlantic Rain Forest streams: a fish-based multimetric approach. Ecological Indicators 34: 136–148.

    Article  Google Scholar 

  • Valente-Neto, F., F. O. Roque, M. E. Rodrigues, L. Juen & C. M. Swan, 2016. Toward a practical use of Neotropical odonates as bioindicators: Testing congruence across taxonomic resolution and life stages. Ecological Indicators 61: 952–959.

    Article  Google Scholar 

  • Valente-Neto, F., M. E. Rodrigues & F. O. Roque, 2018. Selecting indicators based on biodiversity surrogacy and environmental response in a riverine network: Bringing operationality to biomonitoring. Ecological Indicators 94: 198–206.

    Article  Google Scholar 

  • Valente-Neto, F., B. T. Martinez, A. Ferreira, F. S. Neto, F. R. de Souza, R. P. Souza, S. C. Escarpinati, R. M. Hughes & F. O. Roque, 2021. Incorporating costs, thresholds and spatial extents for selecting stream bioindicators in an ecotone between two Brazilian biodiversity hotspots. Ecological Indicators 127: 107761.

    Article  Google Scholar 

  • Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S, Springer, New York:

    Book  Google Scholar 

  • Vitousek, P. M., H. A. Mooney, J. Lubchenco & J. M. Melillo, 1997. Human domination of Earth’s ecosystems. Science 277: 494–499.

    Article  CAS  Google Scholar 

  • Vörösmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan, C. Reidy Liermann & P. M. Davies, 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561.

    Article  PubMed  CAS  Google Scholar 

  • Whittier, T. R. & J. Van Sickle, 2010. Macroinvertebrate tolerance values and an assemblage tolerance index (ATI) for western USA streams and rivers. Journal of the North American Benthological Society 29: 852–866.

    Article  Google Scholar 

  • Wilkinson, B. H., 2005. Humans as geologic agents: a deep-time perspective. Geology 33: 161–164.

    Article  Google Scholar 

  • Zar, J. H., 2010. Biostatistical Analysis, Prentice-Hall/Pearson, Upper Saddle River:

    Google Scholar 

Download references

Acknowledgements

We thank Toby Gardner for program coordination, leadership, and his amazing level of enthusiasm for such a complex project. We greatly appreciate the willing support of the workers unions and many collaborating private landowners in Santarém–Belterra and Paragominas. AMO Pes (Trichoptera), FAA Lencioni (Odonata), FFF Moreira (Heteroptera), JMC Nascimento (Leptophlebiidae), PV Cruz (Baetidae), and UG Neiss (Odonata) helped identify macroinvertebrates. We thank Jansen Zuanon and Silvio FB Ferraz for fundamental help in sampling design and data acquisition. RTM received post-doctoral fellowships from FIXAM/FAPEAM (062.01558/2018) and visiting researcher fellowships from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 380592/2022-3). Individual scholarships were received from CNPq (156915/2011-1) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)—Programa de Doutorado-sanduiche no Exterior (PDSE 1914-13-8) to RPL; CAPES--PDSE (2943/13-1) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2017/25383-0) to CGL; FAPEAM to JGB; and CNPq--Programa de Expansão da Pós-graduação em áreas Estratégicas to VCO. Individual productivity grants were received by PSP (CNPq 303548/2017-7), LJ (CNPq 304710/2019-9), NH (CNPq 308970/2019-5) and FOR (CNPq 302755/2018-7). PSP received a research grant from Fundação de Amparo à Pesquisa do Estado de Minas Gerais (PPM-00608/15). RMH received Fulbright Brazil and Amnis Opes Institute grants. Major research funding was supplied by the: Instituto Nacional de Ciência e Tecnologia–da Biodiversidade e Uso da Terra na Amazônia (574008/2008-0), Empresa Brasileira de Pesquisa Agropecuária (02.08.06.005.00), United Kingdom Darwin Initiative (17-023), United Kingdom Natural Environment Research Council (NE/F01614X/1 and NE/G000816/1), The Nature Conservancy, Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM 062.00202/2013; 0621187/2017), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)--Programa de Capacitação Institucional (482209/2010-0), CNPq INCT ADAPTA II (465540/2014-7), Coordination for the Improvement of Higher Education Personnel (CAPES), and FAPEAM-Program POSGRAD. This is contribution #70 of the Projeto Igarapés and #121 of the Rede Amazônia Sustentável publication series.

Funding

Amazonas State Research Foundation—FAPEAM. Programa de Apoio à Fixação de Doutores no Amazonas–FIXAM/AM-062.01558/2018. FAPEAM-Program POSGRAD. INCT ADAPTA II (0621187/2017). 062.00202/2013. FAPEAM-Program POSGRAD. National Council of Development for Scientific and Technological Development—CNPq. 156915/2011-1. INCT ADAPTA II (465540/2014-7). Programa de Expansão da Pós-graduação em áreas Estratégicas. 303548/2017-7. 304710/2019-9. 308970/2019-5. Programa de Capacitação Institucional (482209/2010-0). CAPES–Coordination for the Improvement of Higher Education Personnel. PDSE 1914-13-8. PDSE 2943/13-1. Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP. 2017/25383-0. Fundação de Amparo à Pesquisa do Estado de Minas Gerais. PPM-00608/15. Fulbright Brazil and Amnis Opes Institute grants. Instituto Nacional de Ciência e Tecnologia–da Biodiversidade e Uso da Terra na Amazônia. (574008/2008-0). Empresa Brasileira de Pesquisa Agropecuária (02.08.06.005.00). United Kingdom Darwin Initiative (17-023). United Kingdom Natural Environment Research Council. NE/F01614X/1. NE/G000816/1. The Nature Conservancy.

Author information

Authors and Affiliations

Authors

Contributions

RTM: conceptualization, data analyses, visualization, writing (original draft), writing (reviewing & editing). JB: conceptualization, methods, data acquisition, data analysis, writing (review & editing). KDS: methods, data acquisition, writing (review & editing). CGL: conceptualization, methods, data acquisition, data curation, writing (reviewing & editing). RPL: conceptualization, methods, data acquisition, data curation, writing (reviewing & editing). VCO: methods, data acquisition. JMBOJ: methods, data acquisition, writing (reviewing & editing). FRP: methods, data acquisition, writing (reviewing & editing). FOR: writing (reviewing & editing). NH: supervision, methods. LJ: conceptualization, methods, data acquisition, writing (reviewing & editing). JLN: methods. PSP: supervision, methods, writing (reviewing & editing). RMH: methods, data acquisition, conceptualization, writing (original draft), writing (reviewing & editing).

Corresponding author

Correspondence to Renato T. Martins.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Handling Editor: Marcelo S. Moretti.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, R.T., Brito, J., Dias-Silva, K. et al. Congruence and responsiveness in the taxonomic compositions of Amazonian aquatic macroinvertebrate and fish assemblages. Hydrobiologia 849, 2281–2298 (2022). https://doi.org/10.1007/s10750-022-04867-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04867-z

Keywords

Navigation