Skip to main content
Log in

Body size explains patterns of fish dominance in streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Even after more than a century of research, the processes underlying species abundance distribution patterns are controversial. Here, we gathered abundance and size (standard length) data of fish species in 54 streams in the Midwest of Brazil to test whether subordinate species abundances (i.e., any species that is not dominant in a community) in each stream are correlated with the absolute size difference between dominant and subordinate species. A negative relationship between these variables would suggest a predominant role of environmental filtering because those species that differ more from the dominant species (the one with the optimum trait value) would become progressively less abundant. On the other hand, a positive relationship would suggest a limit to the similarity as the abundances of subordinate species that differ more from the dominant species would increase. Our results clearly indicated that subordinate species were those that most differed from the dominant species in terms of size. In addition, we found that the subordinate species were larger than the dominant species. Taken together, we infer that environmental filters favoring small body sizes (e.g., shallow water depth and scarcity of large shelters) are the main processes determining species abundance distributions in the streams we studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets of this study are available upon request.

Code availability

Not applicable.

References

  • Bates, B., M. Maechler, B. M. Bolker & S. C. Walker, 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48.

    Article  Google Scholar 

  • Blackburn, T. M. & K. J. Gaston, 1997. A critical assessment of the form of the interspecific relationship between abundance and body size in animals. The Journal of Animal Ecology 66: 233.

    Article  Google Scholar 

  • Borenstein, M., L. V. Hedges, J. P. T. Higgins & H. R. Rothstein, 2009. Introduction to Meta-Analysis, Wiley, Chichester:

    Book  Google Scholar 

  • Bower, L. M. & K. O. Winemiller, 2019a. Fish assemblage convergence along stream environmental gradients: an intercontinental analysis. Ecography 42: 1691–1702.

    Article  Google Scholar 

  • Bower, L. M. & K. O. Winemiller, 2019b. Intercontinental trends in functional and phylogenetic structure of stream fish assemblages. Ecology and Evolution 9: 13862–13876.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown, B. L. & C. M. Swan, 2010. Dendritic network structure constrains metacommunity properties in riverine ecosystems. Journal of Animal Ecology 79: 571–580.

    Article  CAS  Google Scholar 

  • Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.

    Article  Google Scholar 

  • Carlson, S. M., A. P. Hendry & B. H. Letcher, 2004. Natural selection acting on body size, growth rate and compensatory growth: an empirical test in a wild trout population. Evolutionary Ecology Research 6: 955–973.

    Google Scholar 

  • Carlson, S. M., E. M. Olsen & L. A. Vøllestad, 2008. Seasonal mortality and the effect of body size: a review and an empirical test using individual data on brown trout. Functional Ecology 22: 663–673.

    Article  Google Scholar 

  • Damuth, J., 1981. Population density and body size in mammals. Nature 290: 699–700.

    Article  Google Scholar 

  • Erős, T., P. Takács, A. Specziár, D. Schmera & P. Sály, 2017. Effect of landscape context on fish metacommunity structuring in stream networks. Freshwater Biology 62: 215–228.

    Article  Google Scholar 

  • Ferreira, F. & M. Petrere-Jr, 2008. Comments about some species abundance patterns: classic, neutral, and niche partitioning models. Brazilian Journal of Biology 68: 1003–1012.

    Article  CAS  Google Scholar 

  • Ford, B. M. & J. D. Roberts, 2020. Functional traits reveal the presence and nature of multiple processes in the assembly of marine fish communities. Oecologia 192: 143–154.

    Article  PubMed  Google Scholar 

  • Fricke, R., W. N. Eschmeyer, & R. Van der Laan, 2019. Eschmeyer Catalog of Fishes: genera, species, references.

  • Froese, R., & D. Pauly, 2019. FishBase. version (04/2019). www.fishbase.org.

  • Harvey, B. C. & A. J. Stewart, 1991. Fish size and habitat depth relationships in headwater streams. Oecologia 87: 336–342.

    Article  CAS  PubMed  Google Scholar 

  • Hechinger, R. F., K. D. Lafferty, A. P. Dobson, J. H. Brown & A. M. Kuris, 2011. A common scaling rule for abundance, energetics, and production of parasitic and free-living species. Science 333: 445–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henriques-Silva, R., M. Logez, N. Reynaud, P. A. Tedesco, S. Brosse, S. R. Januchowski-Hartley, T. Oberdorff & C. Argillier, 2019. A comprehensive examination of the network position hypothesis across multiple river metacommunities. Ecography 42: 284–294.

    Article  Google Scholar 

  • Hidasi-Neto, J., L. M. Bini, T. Siqueira & M. V. Cianciaruso, 2020. Ecological similarity explains species abundance distribution of small mammal communities. Acta Oecol 102: 103502.

    Article  Google Scholar 

  • Hitt, N. P. & P. L. Angermeier, 2008. River-stream connectivity affects fish bioassessment performance. Environmental Management 42: 132–150.

    Article  PubMed  Google Scholar 

  • Hubbell, S. P., 2001. The unified neutral theory of biodiversity and biogeography, Princeton University Press, New Jersey:

    Google Scholar 

  • Ilha, P., L. Schiesari, F. I. Yanagawa, K. Jankowski & C. A. Navas, 2018. Deforestation and stream warming affect body size of Amazonian fishes. PLoS ONE 13: e0196560.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Isaac, N. J. B., D. Storch & C. Carbone, 2011. Taxonomic variation in size–density relationships challenges the notion of energy equivalence. Biology Letters 7: 615–618.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klipel, J., R. S. Bergamin, G. D. D. S. Seger, M. B. Carlucci & S. C. Müller, 2021. Plant functional traits explain species abundance patterns and strategies shifts among saplings and adult trees in Araucaria forests. Austral Ecology 46: 1084–1096.

    Article  Google Scholar 

  • Koricheva, J. & J. Gurevitch, 2014. Uses and misuses of meta-analysis in plant ecology. Journal of Ecology 102: 828–844.

    Article  Google Scholar 

  • Larsen, S., L. Comte, A. Filipa Filipe, M. Fortin, C. Jacquet, R. Ryser, P. A. Tedesco, U. Brose, T. Erős, X. Giam, K. Irving, A. Ruhi, S. Sharma & J. D. Olden, 2021. The geography of metapopulation synchrony in dendritic river networks. Ecology Letters 24: 791–801.

    Article  PubMed  PubMed Central  Google Scholar 

  • MacArthur, R. H., 1957. On the relative abundance of bird species. Proceedings of the National Academy of Sciences 43: 293–295.

    Article  CAS  Google Scholar 

  • MacArthur, R. H. & R. Levins, 1967. The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist 101: 377–385.

    Article  Google Scholar 

  • Magurran, A. E., 2005. Species abundance distributions: pattern or process? Functional Ecology 19: 177–181.

    Article  Google Scholar 

  • Mason, N. W. H., C. Lanoiselée, D. Mouillot, J. B. Wilson & C. Argillier, 2008. Does niche overlap control relative abundance in French lacustrine fish communities? A new method incorporating functional traits. Journal of Animal Ecology 77: 661–669.

    Article  Google Scholar 

  • Matthews, T. J. & R. J. Whittaker, 2015. On the species abundance distribution in applied ecology and biodiversity management. Journal of Applied Ecology 52: 443–454.

    Article  Google Scholar 

  • Matthews, W. J., 1998. Patterns in Freshwater Fish Ecology, Springer, Boston:

    Book  Google Scholar 

  • McGill, B. J., 2003. Does mother nature really prefer rare species or are log-left-skewed SADs a sampling artefact? Ecology Letters 6: 766–773.

    Article  Google Scholar 

  • McGill, B. J., B. A. Maurer & M. D. Weiser, 2006. Empirical evaluation of neutral theory. Ecology 87: 1411–1423.

    Article  PubMed  Google Scholar 

  • McGill, B. J., R. S. Etienne, J. S. Gray, D. Alonso, M. J. Anderson, H. K. Benecha, M. Dornelas, B. J. Enquist, J. L. Green, F. He, A. H. Hurlbert, A. E. Magurran, P. A. Marquet, B. A. Maurer, A. Ostling, C. U. Soykan, K. I. Ugland & E. P. White, 2007. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecology Letters 10: 995–1015.

    Article  PubMed  Google Scholar 

  • Mouchet, M. A., S. Villéger, N. W. H. Mason & D. Mouillot, 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology 24: 867–876.

    Article  Google Scholar 

  • Mouillot, D., N. W. H. Mason & J. B. Wilson, 2007. Is the abundance of species determined by their functional traits? A new method with a test using plant communities. Oecologia 152: 729–737.

    Article  PubMed  Google Scholar 

  • Murray, B. R., B. L. Rice, D. A. Keith, P. J. Myerscough, J. Howell, A. G. Floyd, K. Mills & M. Westoby, 1999. Species in the tail of rank-abundance curves. Ecology 80: 1806.

    Google Scholar 

  • Oliveira, F. J. M., D. P. Lima-Junior & L. M. Bini, 2020. Current environmental conditions are weak predictors of fish community structure compared to community structure of the previous year. Aquatic Ecology 54: 729–740.

    Article  CAS  Google Scholar 

  • Peters, R. H., 1983. The ecological implications of body size, Vol. 2. Cambridge University Press, New York:

    Book  Google Scholar 

  • Pinheiro, J., D. Bates, S. DebRoy, D. Sakar, & R. C. Team, 2018. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.

  • Power, M. E., 1984. Depth distributions of armored catfish: predator-induced resource avoidance? Ecology 65: 523–528.

    Article  Google Scholar 

  • R Core Team, 2021. R: a Language and environment for statistical computing. Vienna, Austria, http://www.r-project.org/.

  • Reis, R. E., S. O. Kullander, & C. J. Ferraris, 2003. Check List of the freshwater fishes of South and Central America. EDIPUCRS. Porto Alegre, RS.

  • Schmera, D., D. Árva, P. Boda, E. Bódis, Á. Bolgovics, G. Borics, A. Csercsa, C. Deák, E. Á. Krasznai, B. A. Lukács, P. Mauchart, A. Móra, P. Sály, A. Specziár, K. Süveges, I. Szivák, P. Takács, M. Tóth, G. Várbíró, A. E. Vojtkó & T. Erős, 2017. Does isolation influence the relative role of environmental and dispersal-related processes in stream networks? An empirical test of the network position hypothesis using multiple taxa. Freshwater Biology 63: 74–85.

    Article  Google Scholar 

  • Sugihara, G., L.-F. Bersier, T. R. E. Southwood, S. L. Pimm & R. M. May, 2003. Predicted correspondence between species abundances and dendrograms of niche similarities. Proceedings of the National Academy of Sciences 100: 5246–5251.

    Article  CAS  Google Scholar 

  • Thornbrugh, D. J. & K. B. Gido, 2010. Influence of spatial positioning within stream networks on fish assemblage structure in the Kansas River basin, USA. Canadian Journal of Fisheries and Aquatic Sciences 67: 596–596.

    Article  Google Scholar 

  • Tokeshi, M., 1993. Species abundance patterns and community structure. Advances in Ecological Research 24: 111–186.

    Article  Google Scholar 

  • Ueida, V. S. & R. M. C. Castro, 1999. Coleta e fixação de peixes de riacho. In Caramaschi, E. P., R. Mazzoni & P. R. Peres-Neto (eds), Ecologia de peixes de riachos Oecologia Brasiliensis, Rio de Janeiro: 1–22.

    Google Scholar 

  • Umaña, M. N., C. Zhang, M. Cao, L. Lin & N. G. Swenson, 2015. Commonness, rarity, and intraspecific variation in traits and performance in tropical tree seedlings. Ecology Letters 18: 1329–1337.

    Article  PubMed  Google Scholar 

  • Venere, P. C. & V. Garutti, 2011. Peixes do Cerrado: Parque Estadual da Serra Azul, Rio Araguaia, MT, RiMa, São Carlos:

    Google Scholar 

  • Viechtbauer, W., 2010. Conducting meta-analyses in R with the metafor Package. Journal of Statistical Software 36: 1–48.

    Article  Google Scholar 

  • White, E. P., S. K. M. Ernest, A. J. Kerkhoff & B. J. Enquist, 2007. Relationships between body size and abundance in ecology. Trends in Ecology & Evolution 22: 323–330.

    Article  Google Scholar 

  • Wilson, A. J., J. A. Hutchings & M. M. Ferguson, 2003. Selective and genetic constraints on the evolution of body size in a stream-dwelling salmonid fish. Journal of Evolutionary Biology 16: 584–594.

    Article  CAS  PubMed  Google Scholar 

  • Winemiller, K. O., 1991. Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecological Monographs 61: 343–365.

    Article  Google Scholar 

  • Zuur, A. F., E. N. Ieno, N. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed effects models and extensions in ecology with R, Springer, New York:

    Book  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for their valuable comments. FJMO was supported by a fellowship from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). We are grateful to the Fundação de Amparo à Pesquisa do Estado de Mato Grosso (FAPEMAT) for the financial support (227925/2015). DPLJ and LMB are supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (448823/2014-4 and 308974/2020-4, respectively). This paper was developed in the context of National Institutes for Science and Technology (INCT) in Ecology, Evolution, and Biodiversity Conservation supported by MCTIC/CNPq (465610/2014‐5) and FAPEG (201810267000023).

Funding

Fundação de Amparo à Pesquisa do Estado de Mato Grosso (FAPEMAT Notice 002/2015, Process 155509/2015) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Finance Code 001). This work was also developed in the context of the National Institutes for Science and Technology (INCT) in Ecology, Evolution and Biodiversity Conservation, supported by MCTIC/CNPq (proc. 465610/20145) and FAPEG.

Author information

Authors and Affiliations

Authors

Contributions

LMB and FJMO conceived and designed the study. FJMO and DPLJr performed data collection in the field. FJMO and LMB performed the analyses and wrote the manuscript with the support of DPLJr. FJMO, DPLJr, and LMB reviewed the manuscript and approved the publication.

Corresponding author

Correspondence to Fagner Junior M. Oliveira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Animal Use Ethics Committee of the Federal University of Mato Grosso (CEUA/UFMT – Nº 23108.152116).

Additional information

Handling Editor: Fernando M. Pelicice

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8043 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, F.J.M., Lima Junior, D.P. & Bini, L.M. Body size explains patterns of fish dominance in streams. Hydrobiologia 849, 2241–2251 (2022). https://doi.org/10.1007/s10750-022-04860-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04860-6

Keywords

Navigation