Skip to main content

Advertisement

Log in

Population decline of an endangered unionid, Pronodularia japanensis, in streams is revealed by eDNA and conventional monitoring approaches

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Environmental DNA (eDNA) is useful to detect the presence of aquatic organisms from water samples, especially for rare and cryptic species. Two freshwater unionid mussels¸ Pronodularia japanensis and Nodularia douglasiae, have rapidly declined over the last three decades and are now threatened with extinction on the Matsuyama Plain, south-western Japan. We designed a species-specific eDNA marker targeting the COI region of P. japanensis. The distribution of this species in the Kunichi River system on the Matsuyama Plain was investigated using both quantitative PCR with this eDNA marker and conventional surveying. We show that the distribution area of P. japanensis did not change between 2013–2014 and 2020–2021, but its density decreased by 99%. eDNA of P. japanensis was detected, with 100% success, from sites where this species was collected by hand. Furthermore, eDNA was detected at nine sites where P. japanensis was not collected but was expected to occur. This study has established a species-specific eDNA marker targeting the COI region of P. japanensis, and this eDNA marker has been validated as effective for surveying the distribution of this species. Using this eDNA marker, extensive investigation of remaining populations and the monitoring of them should improve conservation practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

All relevant data are available as supplementary tables and supplementary files.

References

  • Allan, J. D. & A. S. Flecker, 1993. Biodiversity conservation in running waters. Bioscience 43: 32–43.

    Article  Google Scholar 

  • Belle, C. C., B. C. Stoeckle & J. Geist, 2019. Taxonomic and geographical representation of freshwater environmental DNA research in aquatic conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 29: 1996–2009.

    Article  Google Scholar 

  • Beng, K. C. & R. T. Corlett, 2020. Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodiversity and Conservation 29: 2089–2121.

    Article  Google Scholar 

  • Böhm, M., N. I. Dewhurst-Richman, M. Seddon, S. E. H. Ledger, C. Albrecht, D. Allen, A. E. Bogan, J. Cordeiro, K. S. Cummings, A. Cuttelod, G. Darrigran, W. Darwall, Z. Fehér, C. Gibson, D. L. Graf, F. Köhler, M. Lopes-Lima, G. Pastorino, K. E. Perez, K. Smith, D. van Damme, M. V. Vinarski, T. von Proschwitz, T. von Rintelen, D. C. Aldridge, N. A. Aravind, P. B. Budha, C. Clavijo, D. Van Tu, O. Gargominy, M. Ghamizi, M. Haase, C. Hilton-Taylor, P. D. Johnson, Ü. Kebapçı, J. Lajtner, C. N. Lange, D. A. W. Lepitzki, A. Martínez-Ortí, E. A. Moorkens, E. Neubert, C. M. Pollock, V. Prié, C. Radea, R. Ramirez, M. A. Ramos, S. B. Santos, R. Slapnik, M. O. Son, A.-S. Stensgaard & B. Collen, 2021. The conservation status of the world’s freshwater molluscs. Hydrobiologia 848: 3231–3254.

    Article  Google Scholar 

  • Breton, S., H. D. Beaupré, D. T. Stewart, W. R. Hoeh & P. U. Blier, 2007. The unusual system of doubly uniparental inheritance of mtDNA: isn’t one enough? Trends in Genetics 23: 465–474.

    Article  CAS  PubMed  Google Scholar 

  • Brookes, A., 1988. Channelized Rivers: Perspectives For Environmental Management, A Wiley-Interscience publication, Chichester.

    Google Scholar 

  • Carlsson, J. E. L., D. Egan, P. C. Collins, E. D. Farrell, F. Igoe & J. Carlsson, 2017. A qPCR MGB probe based eDNA assay for European freshwater pearl mussel (Margaritifera margaritifera L.). Aquatic Conservation: Marine and Freshwater Ecosystems 27: 1341–1344.

    Article  Google Scholar 

  • Curole, J. P. & T. D. Kocher, 2002. Ancient sex-specific extension of the cytochrome c oxidase II gene in bivalves and the fidelity of doubly-uniparental inheritance. Molecular Biology and Evolution 19: 1323–1328.

    Article  CAS  PubMed  Google Scholar 

  • Currier, C. A., T. J. Morris, C. C. Wilson & J. R. Freeland, 2018. Validation of environmental DNA (eDNA) as a detection tool for at-risk freshwater pearly mussel species (Bivalvia: Unionidae). Aquatic Conservation: Marine and Freshwater Ecosystems 28: 545–558.

    Article  Google Scholar 

  • Deiner, K. & F. Altermatt, 2014. Transport distance of invertebrate environmental DNA in a natural river. PLoS ONE 9: e88786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudgeon, D., 2006. The impacts of human disturbance on stream benthic invertebrates and their drift in North Sulawesi, Indonesia. Freshwater Biology 51: 1710–1729.

    Article  Google Scholar 

  • Dysthe, J. C., T. Rodgers, T. W. Franklin, K. J. Carim, M. K. Young, K. S. McKelvey, K. E. Mock & M. K. Schwartz, 2018. Repurposing environmental DNA samples—detecting the western pearlshell (Margaritifera falcata) as a proof of concept. Ecology and Evolution 8: 2659–2670.

    Article  PubMed  PubMed Central  Google Scholar 

  • Folmer, O., M. Black, W. Hoeh, R. Lutz & R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.

    CAS  PubMed  Google Scholar 

  • Gasparini, L., S. Crookes, R. S. Prosser & R. Hanner, 2020. Detection of freshwater mussels (Unionidae) using environmental DNA in riverine systems. Environmental DNA 2: 321–329

    Article  Google Scholar 

  • Graf, D. L. & K. S. Cummings, 2021. A ‘big data’ approach to global freshwater mussel diversity (Bivalvia: Unionoida), with an updated checklist of genera and species. Journal of Molluscan Studies 87: eyaa034.

    Article  Google Scholar 

  • Hata, H., Y. Uemura, K. Ouchi & H. Matsuba, 2019. Hybridization between an endangered freshwater fish and an introduced congeneric species and consequent genetic introgression. PLoS ONE 14: e0212452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hata, H., D. Togaki, K. Ogasawara, K. Matsumoto, T. Yamamoto, H. Murakami, J. Nakajima & M. Inoue, 2021a. A remaining population of an endangered freshwater unionid, Pronodularia japanensis (Lea, 1958), in a fragmented agricultural ditch. Japanese Journal of Conservation Ecology 26: 315–322.

    Google Scholar 

  • Hata, H., Y. Uemura & K. Ouchi, 2021b. Decline of unionid mussels enhances hybridisation of native and introduced bitterling fish species through competition for breeding substrate. Freshwater Biology 66: 189–201.

    Article  CAS  Google Scholar 

  • Hoellein, T. J., C. B. Zarnoch, D. A. Bruesewitz & J. DeMartini, 2017. Contributions of freshwater mussels (Unionidae) to nutrient cycling in an urban river: filtration, recycling, storage, and removal. Biogeochemistry 135: 307–324.

    Article  CAS  Google Scholar 

  • Ishikawa, H. & N. Chiba, 1999. Catalogue of the freshwater molluscs of Ehime Prefecture. Bulletin of Ehime Prefectural Science Museum 14: 1–50.

    Google Scholar 

  • Kondo, T., 2008. Monograph of Unionoida in Japan (Mollusca: Bivalvia), Vol. 3. Malacological Society of Japan, Japan.

    Google Scholar 

  • Kuwahara, A., H. Matsuba, M. Inoue & H. Hata, 2017. Population decline in unionid mussels in the Matsuyama Plain, Ehime Prefecture. Japanese Journal of Conservation Ecology 22: 91–103.

    Google Scholar 

  • LeBlanc, F., R. Steeves, V. Belliveau, F. Akaishi & N. Gagné, 2021. Detecting the brook floater, a freshwater mussel species at risk, using environmental DNA. Aquatic Conservation: Marine and Freshwater Ecosystems 31: 1233–1244.

    Article  Google Scholar 

  • Lopes-Lima, M., A. Hattori, T. Kondo, J. Hee Lee, S. Ki Kim, A. Shirai, H. Hayashi, T. Usui, K. Sakuma, T. Toriya, Y. Sunamura, H. Ishikawa, N. Hoshino, Y. Kusano, H. Kumaki, Y. Utsugi, S. Yabe, Y. Yoshinari, H. Hiruma, A. Tanaka, K. Sao, T. Ueda, I. Sano, J.-I. Miyazaki, D. V. Gonçalves, O. K. Klishko, E. S. Konopleva, I. V. Vikhrev, A. V. Kondakov, MYu. Gofarov, I. N. Bolotov, E. M. Sayenko, M. Soroka, A. Zieritz, A. E. Bogan & E. Froufe, 2020. Freshwater mussels (Bivalvia: Unionidae) from the rising sun (Far East Asia): phylogeny, systematics, and distribution. Molecular Phylogenetics and Evolution 146: 106755.

    Article  PubMed  Google Scholar 

  • Lopes-Lima, M., N. Riccardi, M. Urbanska, F. Köhler, M. Vinarski, A. E. Bogan & R. Sousa, 2021. Major shortfalls impairing knowledge and conservation of freshwater molluscs. Hydrobiologia 848: 2831–2867.

    Article  Google Scholar 

  • Lor, Y., T. M. Schreier, D. L. Waller & C. M. Merkes, 2020. Using environmental DNA (eDNA) to detect the endangered Spectaclecase Mussel (Margaritifera monodonta). Freshwater Science 39: 837–847.

    Article  Google Scholar 

  • Matsuba, H., S. Yoshimi, M. Inoue & H. Hata, 2014. Origin of Tanakia limbata in Ehime prefecture indicated by phylogeographic analysis of mitochondrial cytochrome b gene sequences. Japanese Journal of Ichthyology 61: 89–96.

    Google Scholar 

  • Matsukawa, M., M. Higuchi, T. Yamamoto & K. Ido, 1993. Primary information on death assemblages in fluvial environments—comparative analysis between living and dead fresh-water molluscan assemblages in the Kunichigawa River, southern Matsuyama, Japan. Journal of Geographic Society of Japan 99: 643–657.

    Google Scholar 

  • Merkes, C. M., K. E. Klymus, M. J. Allison, C. Goldberg, C. C. Helbing, M. E. Hunter, C. A. Jackson, R. F. Lance, A. M. Mangan, E. M. Monroe, A. J. Piaggio, J. P. Stokdyk, C. C. Wilson & C. Richter, 2019. Generic qPCR Limit of Detection (LOD) / Limit of Quantification (LOQ) calculator. R Script. Available at: https://github.com/cmerkes/qPCR_LOD_Calc. https://doi.org/10.5066/P9GT00GB. Accessed: 1 September 2021

  • Minamoto, T., H. Yamanaka, T. Takahara, M. N. Honjo & Z. Kawabata, 2012. Surveillance of fish species composition using environmental DNA. Limnology 13: 193–197.

    Article  CAS  Google Scholar 

  • Minegishi, Y., M.K.-S. Wong, T. Kanbe, H. Araki, T. Kashiwabara, M. Ijichi, K. Kogure & S. Hyodo, 2019. Spatiotemporal distribution of juvenile chum salmon in Otsuchi Bay, Iwate, Japan, inferred from environmental DNA. PLoS ONE 14: e0222052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ministry of the Environment, Japan, 2020. The Japanese Red Lists 2020 [Internet]. Ministry of the Environment, Japan. Available at: http://www.env.go.jp/press/files/jp/114457.pdf.

  • Naimo, T. J., E. D. Damschen, R. G. Rada & E. M. Monroe, 1998. Nonlethal evaluation of the physiological health of unionid mussels: methods for biopsy and glycogen analysis. Journal of the North American Benthological Society 17: 121–128.

    Article  Google Scholar 

  • Negishi, J. N., Y. Kayaba, K. Tsukahara & Y. Miwa, 2008. Ecological studies on Unionoida: current status and future challenges. Japanese Journal of Ecology 58: 37–50.

    Google Scholar 

  • Onikura, N., J. Nakajima, K. Eguchi, R. Inui, E. Higa, T. Miyake, K. Kawamura, S. Matsui & S. Oikawa, 2006. Change in distribution of bitterlings, and effects of urbanization on populations of bitterlings and unionid mussels in Tatara River System, Kyushu, Japan. Journal of Japan Society on Water Environment 29: 837–842.

    Article  CAS  Google Scholar 

  • Onikura, N., J. Nakajima, R. Inui & J. Kaneto, 2016. Priority maps for protecting the habitats of threatened freshwater fishes in urban areas: a case study of five rivers in the Fukuoka Plain, northern Kyushu Island, Japan. Ichthyological Research 63: 347–355.

    Article  Google Scholar 

  • Preece, E. P., M. Bryan, S. M. Mapes, C. Wademan & R. Dorazio, 2021. Monitoring for freshwater mussel presence in rivers using environmental DNA. Environmental DNA 3: 591–604.

    Article  Google Scholar 

  • Prié, V., A. Valentini, M. Lopes-Lima, E. Froufe, M. Rocle, N. Poulet, P. Taberlet & T. Dejean, 2020. Environmental DNA metabarcoding for freshwater bivalves biodiversity assessment: methods and results for the Western Palearctic (European sub-region). Hydrobiologia 848: 2931–2950.

    Article  CAS  Google Scholar 

  • R Core Team., 2020. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: http://www.R-project.org/

  • Rodgers, T. W., J. C. Dysthe, C. Tait, T. W. Franklin, M. K. Schwartz & K. E. Mock, 2020. Detection of 4 imperiled western North American freshwater mussel species from environmental DNA with multiplex qPCR assays. Freshwater Science 39: 762–772.

    Article  Google Scholar 

  • Sanchez, B. & A. N. Schwalb, 2019. Detectability affects the performance of survey methods: a comparison of sampling methods of freshwater mussels in Central Texas. Hydrobiologia 848: 2919–2929.

    Article  Google Scholar 

  • Sano, I., T. Saito, J.-I. Miyazaki, A. Shirai, T. Uechi, T. Kondo & S. Chiba, 2020. Evolutionary history and diversity of unionoid mussels (Mollusca: Bivalvia) in the Japanese Archipelago. Plankton and Benthos Research 15: 97–111.

    Article  Google Scholar 

  • Sansom, B. J. & L. M. Sassoubre, 2017. Environmental DNA (eDNA) shedding and decay rates to model freshwater mussel eDNA transport in a river. Environmental Science & Technology 51: 14244–14253.

    Article  CAS  Google Scholar 

  • Schill, W. B. & H. S. Galbraith, 2019. Detecting the undetectable: Characterization, optimization, and validation of an eDNA detection assay for the federally endangered dwarf wedgemussel, Alasmidonta heterodon (Bivalvia: Unionoida). Aquatic Conservation: Marine and Freshwater Ecosystems 29: 603–611.

    Article  Google Scholar 

  • Schmidt, B. C., S. F. Spear, A. Tomi & C. M. B. Jachowski, 2021. Evaluating the efficacy of environmental DNA (eDNA) to detect an endangered freshwater mussel Lasmigona decorata (Bivalvia:Unionidae). Freshwater Science 40: 354–367.

    Article  Google Scholar 

  • Shogren, A. J., J. L. Tank, S. P. Egan, D. Bolster & T. Riis, 2019. Riverine distribution of mussel environmental DNA reflects a balance among density, transport, and removal processes. Freshwater Biology 64: 1467–1479.

    Article  CAS  Google Scholar 

  • Smith, C., M. Reichard, P. Jurajda & M. Przybylski, 2004. The reproductive ecology of the European bitterling (Rhodeus sericeus). Journal of Zoology 262: 107–124.

    Article  Google Scholar 

  • Spooner, D. E. & C. C. Vaughn, 2006. Context-dependent effects of freshwater mussels on stream benthic communities. Freshwater Biology 51: 1016–1024.

    Article  CAS  Google Scholar 

  • Stoeckle, B. C., R. Kuehn & J. Geist, 2016. Environmental DNA as a monitoring tool for the endangered freshwater pearl mussel (Margaritifera margaritifera L.): a substitute for classical monitoring approaches? Aquatic Conservation: Marine and Freshwater Ecosystems 26: 1120–1129.

    Article  Google Scholar 

  • Stoeckle, B. C., S. Beggel, R. Kuehn & J. Geist, 2021. Influence of stream characteristics and population size on downstream transport of freshwater mollusk environmental DNA. Freshwater Science 40: 191–201.

    Article  Google Scholar 

  • Taberlet, P., E. Coissac, M. Hajibabaei & L. H. Rieseberg, 2012. Environmental DNA. Molecular Ecology 21: 1789–1793.

    Article  CAS  PubMed  Google Scholar 

  • Thalinger, B., D. Kirschner, Y. Pütz, C. Moritz, R. Schwarzenberger, J. Wanzenböck & M. Traugott, 2021. Lateral and longitudinal fish environmental DNA distribution in dynamic riverine habitats. Environmental DNA 3: 305–318.

    Article  Google Scholar 

  • The eDNA Society, 2019. Environmental DNA Sampling and Experiment Manual Version 2.1. The eDNA Society, Otsu, Japan

  • Thomsen, P. F., J. Kielgast, L. L. Iversen, C. Wiuf, M. Rasmussen, M. T. P. Gilbert, L. Orlando & E. Willerslev, 2012. Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology 21: 2565–2573.

    Article  CAS  PubMed  Google Scholar 

  • Togaki, D., H. Doi & I. Katano, 2019. Detection of freshwater mussels (Sinanodonta spp.) in artificial ponds through environmental DNA: a comparison with traditional hand collection methods. Limnology 21: 59–65.

    Article  CAS  Google Scholar 

  • Uchii, K., H. Doi, T. Okahashi, I. Katano, H. Yamanaka, M. K. Sakata & T. Minamoto, 2019. Comparison of inhibition resistance among PCR reagents for detection and quantification of environmental DNA. Environmental DNA 1: 359–367.

    Article  Google Scholar 

  • Uemura, Y., S. Yoshimi & H. Hata, 2018. Hybridization between two bitterling fish species in their sympatric range and a river where one species is native and the other is introduced. PLoS ONE 13: e0203423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaughn, C. C. & C. C. Hakenkamp, 2001. The functional role of burrowing bivalves in freshwater ecosystems. Freshwater Biology 46: 1431–1446.

    Article  Google Scholar 

  • Venetis, C., I. Theologidis, E. Zouros & G. C. Rodakis, 2006. No evidence for presence of maternal mitochondrial DNA in the sperm of Mytilus galloprovincialis males. Proceedings of the Royal Society B: Biological Sciences 273: 2483–2489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wacker, S., F. Fossøy, B. M. Larsen, H. Brandsegg, R. Sivertsgård & S. Karlsson, 2019. Downstream transport and seasonal variation in freshwater pearl mussel (Margaritifera margaritifera) eDNA concentration. Environmental DNA 1: 64–73.

    Article  Google Scholar 

  • Wiepkema, P. R., 1961. An ethological analysis of the reproductive behaviour of the bitterling (Rhodeus amarus Bloch). Archives Néerlandaises De Zoologie 14: 103–199.

    Article  Google Scholar 

  • Ye, J., G. Coulouris, I. Zaretskaya, I. Cutcutache, S. Rozen & T. L. Madden, 2012. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13: 134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimura, C., T. Omura, H. Furumai & K. Tockner, 2005. Present state of rivers and streams in Japan. River Research and Applications 21: 93–112.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Jun-ichi Kitamura and Rintaro Taniguchi for supplying unionid specimens, Shoichiro Yamamoto and Atsushi Maruyama for eDNA assay instructions, Shin-ichi Kitamura and Kei Nakayama for letting us use StepOnePlus, Mikio Inoue and Yume Imada for their support in field and laboratory work, and Takaki Kondo and Manuel Lopes-Lima for taxonomic information on unionids. This research was supported by JSPS KAKENHI (18KK0208, 20K06814).

Funding

This study was funded by Japan Society for the Promotion of Science (Grant Nos.: 18KK0208, 20K06814)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Hata.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Handling editor: Xavier Pochon

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hata, H., Ogasawara, K. & Yamashita, N. Population decline of an endangered unionid, Pronodularia japanensis, in streams is revealed by eDNA and conventional monitoring approaches. Hydrobiologia 849, 2635–2646 (2022). https://doi.org/10.1007/s10750-022-04852-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04852-6

Keywords