Skip to main content
Log in

Can grazing and/or nutrient excretion by the native bivalve Diplodon parallelopipedon (Hyriidae) boost phytoplankton-cyanobacterial development?

  • ECOLOGY OF SHALLOW LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Harmful algal blooms (HABs) are common in freshwater ecosystems and promote poor water quality. Toxins released by cyanobacteria affect animals and humans. Eutrophication is assumed to be one of the causes for the increase of HABs. Alternatively, bivalves can directly control phytoplankton biomass through filtration and nutrients excretion. However, these interaction remains less known about different bivalve species. Diplodon parallelopipedon (native to South America) is capable of consuming a wide range of particles by filter feeding and release nutrients available for phytoplankton. The aim of this study was to understand the role of the native bivalve D. parallelopipedon in phytoplankton dynamics. First, we compared grazing of 2 different food sources: (i) laboratory culture of Cryptomonas spp. (C) and (ii) wild populations of Microcystis aeruginosa complex (MAC). Both food sources were mixed to create a gradient of relative abundance expressed in % of MAC:C treatments: (1) 100 MAC, (2) 75:25, (3) 50:50, (4) 25:75, and (5) 100 C. Second, we studied nitrogen and phosphorus excretion rates displayed by D. parallelopipedon. Our results supported the hypothesis that D. parallelopipedon might favor the occurrence of MAC blooms by three mechanisms. On one hand, not being able to consume it when it is forming scums. Moreover, D. parallelopipedon actively consumed potential competitors. Finally, Diplodon potentially boosts MAC growth by nutrient releasing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • APHA. 2005. Standard methods for the examination of wáter and wastewater. American public Health Association (APHA) Washington, DC, USA 21.

  • Atkinson, C. L., C. C. Vaughn, K. J. Forshay & J. T. Cooper, 2013. Aggregated filter-feeding consumers alter nutrient limitation: consequences for ecosystem and community dynamics. Ecology 94: 1359–1369.

    Article  PubMed  Google Scholar 

  • Azevedo, S., M. Carmichael, W. W. Jochimsen, E. M. Rinehart, K. L. Lau, S. Shaw & G. K. Eaglesham, 2002. Human intoxication by microcystins during renal dialysis treatment in Caruaru/Brazil. Toxicology 181(182): 441–446.

    Article  PubMed  Google Scholar 

  • Baker, S., M. Levintonr, J. S. Kurdziel & S. E. Shumway, 1998. Selective feeding and biodeposition by zebra mussels and their relation to changes in phytoplankton composition and seston load. Journal of Shellfish Research 17: 1207–1213.

    Google Scholar 

  • Bonilla, S., 1997. Composición fitoplanctónica de tres embalses del Río Negro, Uruguay. Iheringia, Série Botânica 49: 47–61.

    Google Scholar 

  • Bonilla, S., M. C. Pérez & L. De León, 1995. Cianofíceas Planctónicas del Lago Ton-Ton, Canelones, Uruguay. Hoehnea 21: 185–192.

    Google Scholar 

  • Bonilla, S., S. Haakonsson, A. Somma, A. Gravier, A. Britos, L. Vidal, L. De León, B. Brena, M. Pírez, M. Piccini, C. M. Escalera, G. Chalar, G. González-Piana, F. Martigani & L. Aubriot, 2015. Cianobacterias y cianotoxinas en ecosistemas límnicos de Uruguay. INNOTEC 10: 9–22.

    Google Scholar 

  • Bykova, O. A., V. Laursen, J. Bautista. Bostan & L. McCarthy, 2006. Do zebra mussels (Dreissena polymorpha) alter lake water chemistry in a way that favours Microcystis growth? Science of the Total Environment 371: 362–372.

    Article  CAS  PubMed  Google Scholar 

  • Caraco, N., J. Cole, P. Raymond, D. Strayer, M. Pace, S. Findlay & D. Fischer, 1997. Zebra mussel invasion in a large, turbid river: Phytoplankton response to increased grazing. Ecology 78: 588–602.

    Article  Google Scholar 

  • Carmichael, W. W., 1992. Cyanobacteria secondary metabolites-the cyanotoxins. Journal of Applied Microbiology 72: 445–459.

    CAS  Google Scholar 

  • Carmichael, W. W., 1994. The toxins of cyanobacteria. Scientific American 270(1): 78–86.

    Article  CAS  PubMed  Google Scholar 

  • Carmichael, W. W., 2001. Health effects of toxin-producing cyanobacterias: “The CyanoHABs.” Human and Ecological Risk Assessment 7: 1393–1407.

    Article  Google Scholar 

  • Cataldo, D., I. O’Farrell, E. Paolucci, F. Sylvester & D. Boltovskoy, 2012. Impact of the invasive golden mussel (Limnoperna fortunei) on phytoplankton and nutrient cycling. Aquatic Invasions 7: 91–100.

    Article  Google Scholar 

  • Chalar, G., 2009. The use of phytoplankton patterns of diversity for algal bloom management. Limnologica 39: 200–208.

    Article  CAS  Google Scholar 

  • Conroy, J., W. Edwards, R. Pontius, D. Kane, H. Zhang, J. Shea, J. Richey & D. Culver, 2005. Soluble nitrogen and phosphorus excretion of exotic freshwater mussels (Dreissena spp.): potential impacts for nutrient remineralization in western Lake Erie. Freshwater Biology 50: 1146–1162.

    Article  CAS  Google Scholar 

  • González-Madina, L., J. P. Pacheco, L. Yema, et al., 2019. Drivers of cyanobacteria dominance, composition and nitrogen fixing behavior in a shallow lake with alternative regimes in time and space, Laguna del Sauce (Maldonado, Uruguay). Hydrobiologia 829: 61–76. https://doi.org/10.1007/s10750-018-3628-6.

    Article  CAS  Google Scholar 

  • Cranford, P., 2001. Evaluating the “reliability” of filtration rate measurements in bivalves. Marine Ecology Progress Series 215: 303–305.

    Article  Google Scholar 

  • Dame, R., 2012. Ecology of Marine Bivalves: An Ecosystem Approach, 2nd ed. CRC Press, Boca Raton:

    Google Scholar 

  • Davis, W. R., A. D. Christian & D. J. Berg, 2000. Seasonal nitrogen and phosphorus cycling by three unionid bivalves (Unionidae: Bivalvia) in headwater streams. In Tankersley, R. S., D. O. Warmolts, G. T. Watters, B. J. Armitage, P. D. Johnson & R. S. Butler (eds), Freshwater Mollusk Symposium Proceedings Ohio Biological Survey, Columbus, OH: 1–10.

    Google Scholar 

  • De León, L. & J. S. Yunes, 2001. First report of a Microcystin containing bloom of the cyanobacterium Microcystis aeruginosa in the La Plata River, South America. Environmental Toxicology 16: 110–112.

    Article  PubMed  Google Scholar 

  • Dionisio Pires, L. M. & E. Van Donk, 2002. Comparing grazing by Dreissena polymorpha on phytoplankton in the presence of toxic and non-toxic cyanobacteria. Freshwater Biology 47: 1855–1865.

    Article  Google Scholar 

  • Dionisio Pires, L. M., R. R. Jonker, E. H. Van Donk & J. Laanbroek, 2004. Selective grazing by adults and larvae of the zebra mussel (Dreissena polymorpha (Pallas)): application of flow cytometry to natural seston. Freshwater Biology 49: 116–126.

    Article  Google Scholar 

  • Martinez de la Escalera, G., C. Kruk, A. M. Segura, L. Nogueira, I. Alcántara & C. Piccini, 2017. Dynamics of toxic genotypes of Microcystis aeruginosa complex (MAC) through a wide freshwater to marine environmental gradient. Harmful Algae 62: 73–83.

    Article  CAS  PubMed  Google Scholar 

  • Fristachi, A. & J. L. Sinclair, 2008. Occurrence of cyanobacterial harmful algal blooms workgroup report. In Hudnell, K. H. (ed), Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs Springer, New York: 45–103.

    Chapter  Google Scholar 

  • Hakenkamp, C. & M. Palmer, 1999. Introduced bivalves in freshwater ecosystems: the impact of corbicula on organic matter dynamics in a sandy stream. Oecologia 119: 445–451.

    Article  PubMed  Google Scholar 

  • Harada, K. I., M. Oshikata, H. Uchida, M. Suzuki, F. Kondo, K. Sato, Y. Ueno, S. Z. Yu & G. Chen, 1996. Detection and identification of microcystins in the drinking water of Haimen City, China. Natural Toxins 4: 277–283.

    Article  CAS  PubMed  Google Scholar 

  • Hawkins, A., J. Fang, P. Pascoe, J. Zhang, X. Zhang & M. Zhu, 2001. Modelling short-term responsive adjustments in particle clearance rate among bivalve suspension-feeders: separate unimodal effects of seston volume and composition in the scallop Chlamys farreri. Journal of Experimental Marine Biology and Ecology 262: 61–73.

    Article  Google Scholar 

  • Hillebrand, H., C. D. Durselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Holland, R. E., 1993. Changes in planktonic diatoms and water transparency in Hatchery Bay, Bass Island area, western Lake Erie since the establishment of the zebra mussel. Journal of Great Lakes Research 19: 617–624.

    Article  Google Scholar 

  • Huisman, J., G. A. Codd, H. W. Paerl, B. W. Ibelings, J. M. H. Verspagen & P. M. Visser, 2018. Cyanobacterial blooms. Nature Reviews Microbiology 16: 471–483.

    Article  CAS  PubMed  Google Scholar 

  • Komárek, J. & J. Komárková, 2002. Review of the European microcystis-morphospecies (Cyanoprokaryotes) from nature. Czech Phycology Olomouc 2: 1–24.

    Google Scholar 

  • Kruk, C. & L. De León, 2002. Asociaciones de fitoplancton en lagos y embalses del Uruguay: validación y aplicación a la gestión de sistemas acuáticos. El agua en Iberoamérica: de la limnología a la gestión en Sudamérica. A. Fernández-Cirelli and G. Chalar (Eds.) CYTED XVII and CETA: 143–155.

  • Kruk, C., A. Segura, L. Nogueira, C. Carballo, G. Escalera, D. Calliari, Ferrari, et al., 2015. Herramientas para el monitoreo y sistema de alerta de floraciones de cianobacterias nocivas: Río Uruguay y Río de la Plata. INNOTEC 10: 23–39.

    Google Scholar 

  • Kruk, C., A. Segura, L. Nogueira, I. Alcántara, D. Calliari, G. Martinez de la Escalera, C. Carballo, C. Cabrera, F. Sarthou, P. Scavone & C. Piccini, 2017. A multilevel trait-based approach to the ecological performance of Microcystis aeruginosa complex from headwaters to the ocean. Harmful Algae 70: 23–36.

    Article  PubMed  Google Scholar 

  • Kruk, C., A. Martínez, G. Escalera, R. Trinchin, G. Manta, A. Segura, C. Piccini, B. Brena, G. Fabiano, M. Pírez, L. Gabito, I. Alcántara & B. Yannicelli, 2019. Floración Excepcional De Cianobacterias Tóxicas En La Costa De Uruguay, Verano 2019. INNOTEC 18: 1–34.

    Google Scholar 

  • Lauritsen, D. D. & S. C. Mozley, 1989. Nutrient excretion by the Asiatic clam Corbicula uminea. Journal of the North American Benthological Society 8: 134–139.

    Article  Google Scholar 

  • Leflaive, J. & L. Ten-Hage, 2007. Algal and cyanobacterial secondary metabolites in freshwaters: A comparison of allelopathic compounds and toxins. Freshwater Biology 52: 199–214.

    Article  CAS  Google Scholar 

  • Liu, Y., P. Xie & X. P. Wu, 2009. Grazing on toxic and nontoxic Microcystis aeruginosa PCC7820 by Unio douglasiae and Corbicula fluminea. Limnology 10: 1–5.

    Article  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Marroni, S., C. Iglesias, N. Mazzeo, J. Clemente, F. de Mello & J. Pacheco, 2014. Alternative food sources of native and non-native bivalves in a subtropical eutrophic lake. Hydrobiologia 375: 263–276.

    Article  CAS  Google Scholar 

  • Marroni, S., N. Mazzeo & C. Iglesias, 2021. Effects of temperature and food availability on the filtration and excretion rates of Diplodon parallelopipedon (Hyriidae). International Review of Hydrobiology 106(5–6): 249–258. https://doi.org/10.1002/iroh.202002066.

    Article  Google Scholar 

  • Marroni, S., C. Iglesias, J. Pacheco, J. Clemente & N. Mazzeo, 2016. Interactions between bivalves and zooplankton. Competition or intraguild predation? Implications for biomanipulation in subtropical shallow lakes. Marine and Freshwater Research 67: 1–8.

    Google Scholar 

  • Mazzeo N.F., A. Garcia-Rodríguez, G. Rodríguez, C. Méndez, H. Iglesias, G. Inda, S. Goyenola, S. García, S. Marroni, C.L. Crisci, J.M. del Puerto, J.P. Clemente, C. Pacheco, A. Carballo, M. Kröger, M. Vianna, M. Meerhoff, J.J. Steffen, M. Lagomarsino, N. Masdeu, F. Vidal, I. Teixeira de Mello, I. González-Bergozoni & D. Larrea, 2010. Estado trófico de Laguna del Sauce y respuestas asociadas. Bases técnicas para el manejo integrado de Laguna del Sauce y su cuenca asociada. Steffen M. & H. Inda (eds): 32–55.

  • Merel, S., D. Walker, R. Chicana, S. Snyder, E. Baurès & O. Thomas, 2013. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environment International 59: 303–327.

    Article  CAS  PubMed  Google Scholar 

  • Nalepa, T., W. Gardner, & J. Malczyk. 1991. Phosphorus cycling by mussels (Unionidae: Bivalvia) in Lake St. Clair. Hydrobiologia 219: 239–250.

  • Newell, R., 2004. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. Journal of Shellfish Research 23: 51–61.

    Google Scholar 

  • Newell, R., W. Kemp, J. Hagy, C. Cerco, J.M. Testa & W. Boynton, 2007. Top-down control of phytoplankton by oysters in Chesapeake Bay, USA: Comment on Pomeroy et al. (2006). Marine Ecology Progress Series 341: 293–298.

  • Otsuka, S., S. Suda, R. Li, S. Matsumoto & M. M. Watanabe, 2000. Morphological variability of colonies of Microcystis morphospecies in culture. The Journal of General and Applied Microbiology 46: 39–50.

    Article  CAS  PubMed  Google Scholar 

  • Paerl, H. W. & T. G. Otten, 2013. Harmful cyanobacterial blooms: Causes, consequences and controls. Microbiology and Ecology 65: 995–1010.

    Article  CAS  Google Scholar 

  • Peharda, M., D. Ezgeta-Balic, J. Davenport, N. Bojanic, O. Vidjak & Z. Nincevic-Gladan, 2012. Differential ingestion of zooplankton by four species of bivalves (Mollusca) in the Mali Ston Bay, Croatia. Marine Biology 159: 881–895.

    Article  Google Scholar 

  • Peng, K., B. Qin, Y. Cai, Z. Gong & E. Jeppesen, 2020. Water column nutrient concentrations are related to excretion by benthic invertebrates in Lake Taihu, China. Environmetal Pollution 261: 114161. https://doi.org/10.1016/j.envpol.2020.114161.

    Article  CAS  Google Scholar 

  • Pestana, D., A. Ostrensky, W. Pereira Boeger & M. Pie, 2009. The effect of temperature and body size on filtration rates of Limnoperna fortunei (Bivalvia, Mytilidae) under laboratory conditions. The Journal Brazilian Archives of Biology and Technology 52: 135–144.

    Article  Google Scholar 

  • Prins, T. & V. Escaravage, 2005. Can bivalve suspension-feeders affect pelagic food web structure? The comparative roles of suspension-feeders in ecosystems. NATO Science Series IV: Earth and Environmental Series 47: 31–51.

    Google Scholar 

  • Raikow, D. F., O. Sarnelle, A. E. Wilson & S. K. Hamilton, 2004. Dominance of the noxious cyanobacterium Microcystis aeruginosa in low-nutrient lakes is associated with exotic zebra mussels. Limnology and Oceanography 49: 482–487.

    Article  Google Scholar 

  • Riisgård, H. 2001. On measurement of filtration rates in bivalves—the stony road to reliable data: review and interpretation. Marine Ecology Progress Series 211: 275–291.

  • Riisgård, H., C. Kittner & D. Seerup, 2003. Regulation of opening state and filtration rate in filter-feeding bivalves (Cardium edule, Mytilus edulis, Mya arenaria) in response to low algal concentration. Journal of Experimental Marine Biology and Ecology 284: 105–127.

    Article  Google Scholar 

  • Sabatini, S. E., I. Rocchetta, C. M. Luquet, M. I. Guido & M. Rios, 2011. Effects of sewage pollution and bacterial load on growth and oxidative balance in the freshwater mussel Diplodon chilensis. Limnologica 41: 356–362.

    Article  CAS  Google Scholar 

  • Sarnelle, O., A. E. Wilson, S. K. Hamilton, L. B. Knoll & D. F. Raikow, 2005. Complex interactions between the zebra mussel, Dreissena polymorpha, and the harmful phytoplankter, Microcystis aeruginosa. Limnology and Oceanography 50: 896–904.

    Article  Google Scholar 

  • Scheffer, M. & E. Jeppesen, 2007. Regime shifts in shallow lakes. Ecosystems 10: 1–3.

    Article  Google Scholar 

  • Spooner, D. E. & C. C. Vaughn, 2006. Context-dependent effects of freshwater mussels on stream benthic communities. Freshwater Biology 51: 1016–1024.

    Article  CAS  Google Scholar 

  • Spooner, F., J. N. Baker, A. A. Harris, L. Ahlgrim-Delzell & D. M. Browder, 2007. Effects of training in universal design for learning on lesson plan development. Remedial and Special Education 28: 108–116.

    Article  Google Scholar 

  • Strayer, D., 2008. Freshwater Mussel Ecology: A Multifactor Approach to Distribution and Abundance, University of California Press, Berkeley, CA:

    Book  Google Scholar 

  • Strayer, D., N. Caraco, J. Cole, S. Findlay & M. Pace, 1999. Transformation of freshwater ecosystem by bivalves. Bioscience 49: 19–27.

    Article  Google Scholar 

  • Vanderploeg, H. A., T. F. Nalepa, D. J. Jude, E. L. Mills, K. T. Holeck, J. R. Liebig, I. A. Grigorovich & H. Ojaveer, 2002. Dispersal and ecological impacts of Ponto-Caspian species in the Great Lakes. Canadian Journal of Fisheries and Aquatic Science 59: 1209–1228.

    Article  Google Scholar 

  • Vaughn, C. & C. Hakenkamp, 2001. The functional role of burrowing bivalves in freshwater ecosystems. Freshwater Biology 46: 1431–1446.

    Article  Google Scholar 

  • Vaughn, C. & T. Hoellein, 2018. Bivalve impacts in freshwater and marine ecosystems. The Annual Review of Ecology, Evolution, and Systematic 49: 183–208.

    Article  Google Scholar 

  • UNESCO, 2009. Cianobacterias Planctónicas del Uruguay. Manual para la identificación y medidas de gestión. S. Bonilla (editora). Documento Técnico PHI-LAC, N° 1.

  • Utermöhl, H., 1958. Zur Ver vollkommung der quantitativen phytoplankton-methodik. Mitteilung Internationale Vereinigung Fuer Theoretische Unde Amgewandte Limnologie 9: 39.

    Google Scholar 

  • Valderrama, J. 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry 10: 109–122.

  • White, J. D. & O. Sarnelle, 2014. Size-structured vulnerability of the colonial cyanobacterium, Microcystis aeruginosa, to grazing by zebra mussels (Dreissena polymorpha). Freshwater Biology 59: 514–525.

    Article  Google Scholar 

  • Widdows, J., 2001. Bivalve clearance rates: inaccurate measurements or inaccurate reviews and misrepresentation? Marine Ecology Progress Series 221: 303–305.

    Article  Google Scholar 

  • Williams, C. & R. McMahon, 1989. Annual variation of tissue biomass and carbon and nitrogen content in the freshwater bivalve Corbicula fluminea relative to downstream dispersal. Canadian Journal of Zoology 67: 82–90.

    Article  Google Scholar 

  • Wilson, A. E. & M. Chislock, 2013. Ecological control of cyanobacterial blooms in freshwater ecosystems. In A.D. S. Ferrão-Filho (ed.) Cyanobacteria: Ecology, Toxicology and Management. Laboratory of Evaluation and Promotion of Environmental Health, Institute Oswaldo Cruz, Rio de Janeiro, Brazil. ISBN: 978–1–62417–966–2.

  • Zaccaroni, A. & D. Scaravelli, 2008. Toxicity of sea algal toxins to humans and animals. In Evangelista, V., L. Barsanti, A. Frassanito, V. Passarelli & P. Gualtieri (eds), Algal Toxins: Nature, Occurrence, Effect and Detection Springer, Netherlands: 91–158.

    Chapter  Google Scholar 

  • Zhang, J., J. Fang & X. Liang, 2010. Variations in retention efficiency of bivalves to different concentrations and organic content of suspended particles. Chinese Journal of Oceanology and Limnology 28: 10–17.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soledad Marroni or Carlos Iglesias.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: José L. Attayde, Renata F. Panosso, Vanessa Becker, Juliana D. Dias & Erik Jeppesen / Advances in the Ecology of Shallow Lakes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marroni, S., Mazzeo, N. & Iglesias, C. Can grazing and/or nutrient excretion by the native bivalve Diplodon parallelopipedon (Hyriidae) boost phytoplankton-cyanobacterial development?. Hydrobiologia 849, 4029–4039 (2022). https://doi.org/10.1007/s10750-022-04834-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04834-8

Keywords

Navigation