Skip to main content

Advertisement

Log in

Multifaceted assessment of stream fish alpha and beta diversity using spatial models

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Our understanding of the factors determining stream community assembly has mainly been built upon taxonomic diversity. Additionally, most investigations of factors governing assembly are limited in scope and use of spatial model testing. Therefore, we combine a sizeable environmental dataset (local and landscape level) with robust spatial analysis to model the factors determining multiple facets of stream fish diversity—across a region and within four drainages. We found that total dissimilarity was more explained by replacement than nestedness. Fish diversity was governed by spatial and environmental factors, although the degree depended on the diversity facet and drainage. Adjusted R2 for combined models (i.e., spatial plus environment) of fish beta diversity was as high as 0.65. Local instream habitat variables were the most explanatory factors. Spatial factors based on overland Euclidean distance and asymmetric (directional) distance revealed more explanatory power than symmetric hydrologic distance. The purely spatial variation was often as high as 33% explained. Multiple facets were strongly correlated and provided similar results—albeit some differences arose, especially within different drainages; these differences highlight how difficult it is to generalize the multifaceted approach. However, the importance of exploring spatial models for determining the role of spatial processes on community assembly cannot be overstated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data, material and code availability

All data and R code available at https://github.com/zdzbinden/OK_fish_diversity. Fish collections are housed at the Sam Noble Oklahoma Museum of Natural History, Norman, OK.

References

  • Anderson, M. J. & P. Legendre, 1999. An empirical comparison of permutation methods for tests of partial regression coefficients in a linear model. Journal of Statistical Computation and Simulation 62(3): 271–303.

    Article  Google Scholar 

  • Baselga, A., 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19(1): 134–143.

    Article  Google Scholar 

  • Baselga, A., 2013. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods in Ecology and Evolution 4(6): 552–557.

    Article  Google Scholar 

  • Baselga, A. & C. D. L. Orme, 2012. betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution 3(5): 808–812.

    Article  Google Scholar 

  • Bauman, D., T. Drouet, S. Dray & J. Vleminckx, 2018. Disentangling good from bad practices in the selection of spatial or phylogenetic eigenvectors. Ecography 41(10): 1638–1649.

    Article  Google Scholar 

  • Benone, N. L., C. G. Leal, L. L. dos Santos, T. P. Mendes, J. Heino & L. F. de Assis Montag, 2020. Unravelling patterns of taxonomic and functional diversity of Amazon stream fish. Aquatic Sciences 82(4): 1–11.

    Article  Google Scholar 

  • Blanchet, F. G., P. Legendre & D. Borcard, 2008a. Modelling directional spatial processes in ecological data. Ecological Modelling 215(4): 325–336.

    Article  Google Scholar 

  • Blanchet, F. G., P. Legendre & D. Borcard, 2008b. Forward selection of explanatory variables. Ecology 89(9): 2623–2632.

    Article  PubMed  Google Scholar 

  • Blanchet, F. G., P. Legendre, R. Maranger, D. Monti & P. Pepin, 2011. Modelling the effect of directional spatial ecological processes at different scales. Oecologia 166(2): 357–368.

    Article  PubMed  Google Scholar 

  • Blanchet, S., M. R. Helmus, S. Brosse & G. Grenouillet, 2014. Regional vs local drivers of phylogenetic and species diversity in stream fish communities. Freshwater Biology 59(3): 450–462.

    Article  Google Scholar 

  • Borcard, D. & P. Legendre, 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153(1–2): 51–68.

    Article  Google Scholar 

  • Boschilia, S. M., E. F. de Oliveira & A. Schwarzbold, 2016. Partitioning beta diversity of aquatic macrophyte assemblages in a large subtropical reservoir: prevalence of turnover or nestedness? Aquatic Sciences 78(3): 615–625.

    Article  Google Scholar 

  • Branco, C. C., P. C. Bispo, C. K. Peres, A. F. Tonetto, R. A. Krupek, M. Barfield & R. D. Holt, 2020. Partitioning multiple facets of beta diversity in a tropical stream macroalgal metacommunity. Journal of Biogeography 47(8): 1765–1780.

    Article  Google Scholar 

  • Brown, B. L., E. R. Sokol, J. Skelton & B. Tornwall, 2017. Making sense of metacommunities: dispelling the mythology of a metacommunity typology. Oecologia 183(3): 643–652.

    Article  PubMed  Google Scholar 

  • Burgad, A. A., G. L. Adams & R. Adams, 2019. Temporal and spatial dynamics of fish community structure during watershed alteration in two Ouachita River systems. Ecology of Freshwater Fish 28(3): 459–472.

    Article  Google Scholar 

  • Caetano, V., M. Camana, R. B. Dala-Corte & A. S. Melo, 2021. Scale-sensitive stream slope drives nested fish trait-based diversity. Aquatic Ecology 55(3): 1051–1063.

    Article  Google Scholar 

  • Cardoso, P., F. Rigal, J. C. Carvalho, M. Fortelius, P. A. Borges, J. Podani & D. Schmera, 2014. Partitioning taxon, phylogenetic and functional beta diversity into replacement and richness difference components. Journal of Biogeography 41(4): 749–761.

    Article  Google Scholar 

  • Carvalho, R. A. & F. L. Tejerina-Garro, 2015. Environmental and spatial processes: what controls the functional structure of fish assemblages in tropical rivers and headwater streams? Ecology of Freshwater Fish 24(2): 317–328.

    Article  Google Scholar 

  • Chang, J., D. L. Rabosky, S. A. Smith & M. E. Alfaro, 2019. An R package and online resource for macroevolutionary studies using the ray-finned fish tree of life. Methods in Ecology and Evolution 10(7): 1118–1124.

    Article  Google Scholar 

  • Chen, K. & J. D. Olden, 2020. Threshold responses of riverine fish communities to land use conversion across regions of the world. Global Change Biology 26(9): 4952–4965.

    Article  PubMed  Google Scholar 

  • Coombes, K. R., M. Wang & M. K. R. Coombes, 2019. Package 'PCDimension'. https://cran.r-project.org/package=PCDimension. Accessed 6 Dec 2021.

  • Cottenie, K., 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8(11): 1175–1182.

    Article  PubMed  Google Scholar 

  • Dray, S., P. Legendre & P. R. Peres-Neto, 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling 196(3–4): 483–493.

    Article  Google Scholar 

  • Dray, S., G. Blanchet, D. Borcard, G. Guenard, T. Jombart, P. Legendre & H. Wagner, 2018. Package 'adespatial': multivariate multiscale spatial analysis. https://cran.r-project.org/package=adespatial. Accessed 6 Dec 2021.

  • Faith, D. P., 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation 61(1): 1–10. https://doi.org/10.1016/0006-3207(92)91201-3.

    Article  Google Scholar 

  • Fetzner, J. W., Jr. & K. A. Crandall, 2003. Linear habitats and the nested clade analysis: an empirical evaluation of geographic versus river distances using an Ozark crayfish (Decapoda: Cambaridae). Evolution 57(9): 2101–2118.

    Article  CAS  PubMed  Google Scholar 

  • Finn, D. S., N. Bonada, C. Múrria & J. M. Hughes, 2011. Small but mighty: headwaters are vital to stream network biodiversity at two levels of organization. Journal of the North American Benthological Society 30(4): 963–980.

    Article  Google Scholar 

  • Fox, J. & G. Monette, 1992. Generalized collinearity diagnostics. Journal of the American Statistical Association 87(417): 178–183.

    Article  Google Scholar 

  • Frimpong, E. A. & P. L. Angermeier, 2009. Fish traits: a database of ecological and life-history traits of freshwater fishes of the United States. Fisheries 34(10): 487–495.

    Article  Google Scholar 

  • Geheber, A. D., 2019. Contemporary and historical species relationships reveal assembly mechanism intricacies among co-occurring darters (Percidae: Etheostomatinae). Copeia 107(3): 464–474.

    Article  Google Scholar 

  • Geheber, A. D. & P. K. Geheber, 2016. The effect of spatial scale on relative influences of assembly processes in temperate stream fish assemblages. Ecology 97(10): 2691–2704.

    Article  PubMed  Google Scholar 

  • Gianuca, A. T., S. A. Declerck, P. Lemmens & L. De Meester, 2017. Effects of dispersal and environmental heterogeneity on the replacement and nestedness components of β-diversity. Ecology 98(2): 525–533.

    Article  PubMed  Google Scholar 

  • Griffith, D. A. & P. R. Peres-Neto, 2006. Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87(10): 2603–2613.

    Article  PubMed  Google Scholar 

  • Grossman, G. D., P. B. Moyle & J. O. Whitaker Jr., 1982. Stochasticity in structural and functional characteristics of an Indiana stream fish assemblage: a test of community theory. The American Naturalist 120(4): 423–454.

    Article  Google Scholar 

  • Heino, J. & K. T. Tolonen, 2017. Ecological drivers of multiple facets of beta diversity in a lentic macroinvertebrate metacommunity. Limnology and Oceanography 62(6): 2431–2444.

    Article  Google Scholar 

  • Hill, M. J., J. Heino, J. C. White, D. B. Ryves & P. J. Wood, 2019. Environmental factors are primary determinants of different facets of pond macroinvertebrate alpha and beta diversity in a human-modified landscape. Biological Conservation 237: 348–357.

    Google Scholar 

  • Horváth, Z., C. F. Vad & R. Ptacnik, 2016. Wind dispersal results in a gradient of dispersal limitation and environmental match among discrete aquatic habitats. Ecography 39: 726–732.

    Article  PubMed  Google Scholar 

  • Huang, L., J. Huang, Z. Wu, Y. Mo, Q. Zou, E. Jeppesen & N. Wu, 2019. Beta diversity partitioning and drivers of variations in fish assemblages in a headwater stream: Lijiang River, China. Water 11(4): 680.

    Article  CAS  Google Scholar 

  • Jackson, D. A., 1995. PROTEST: a PROcrustean randomization TEST of community environment concordance. Ecoscience 2(3): 297–303.

    Article  Google Scholar 

  • Jackson, D. A., P. R. Peres-Neto & J. D. Olden, 2001. What controls who is where in freshwater fish communities the roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences 58(1): 157–170.

    Google Scholar 

  • Kanno, Y., W. T. Russ, C. J. Sutherland & S. B. Cook, 2012. Prioritizing aquatic conservation areas using spatial patterns and partitioning of fish community diversity in a near-natural temperate basin. Aquatic Conservation: Marine and Freshwater Ecosystems 22(6): 799–812.

    Article  Google Scholar 

  • Kembel, S. W., D. D. Ackerly, S. Blomberg, W. Cornwell, P. Cowan, M. Helmus, H. Morlon & C. Webb, 2010. R tools for integrating phylogenies and ecology. R Package' picante. https://cran.r-project.org/package=picante. Accessed 6 Dec 2021

  • Landeiro, V. L., W. E. Magnusson, A. S. Melo, H. M. Espirito-Santo & L. M. Bini, 2011. Spatial eigenfunction analyses in stream networks: do watercourse and overland distances produce different results? Freshwater Biology 56(6): 1184–1192.

    Article  Google Scholar 

  • Legendre, P., 2014. Interpreting the replacement and richness difference components of beta diversity. Global Ecology and Biogeography 23(11): 1324–1334.

    Article  Google Scholar 

  • Legendre, P. & L. Legendre, 2012. Numerical Ecology, Elsevier, Amsterdam:

    Google Scholar 

  • Legendre, P., D. Borcard & P. R. Peres-Neto, 2005. Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs 75(4): 435–450.

    Article  Google Scholar 

  • Leibold, M. A. & J. M. Chase, 2018. Metacommunity Ecology, Princeton University Press, Princeton:

    Book  Google Scholar 

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7(7): 601–613.

    Article  Google Scholar 

  • Leprieur, F., J. D. Olden, S. Lek & S. Brosse, 2009. Contrasting patterns and mechanisms of spatial turnover for native and exotic freshwater fish in Europe. Journal of Biogeography 36(10): 1899–1912.

    Article  Google Scholar 

  • Li, M., J. Liu, J. D. Tonkin, J. Shen, N. Xiao & J. Wang, 2020. The effects of abiotic and biotic factors on taxonomic and phylogenetic diversity of stream epilithic bacteria around Qiandao Lake. Aquatic Sciences 82(4): 1–12.

    Article  Google Scholar 

  • Linke, S., B. Lehner, C. O. Dallaire, J. Ariwi, G. Grill, M. Anand, P. Beames, V. Burchard-Levine, S. Maxwell, H. Moidu, F. Tan & M. Thieme, 2019. Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Scientific Data 6(1): 1–15.

    Article  Google Scholar 

  • López-Delgado, E. O., K. O. Winemiller & F. A. Villa-Navarro, 2019. Do metacommunity theories explain spatial variation in fish assemblage structure in a pristine tropical river? Freshwater Biology 64(2): 367–379.

    Google Scholar 

  • López-Delgado, E. O., K. O. Winemiller & F. A. Villa-Navarro, 2020. Local environmental factors influence beta-diversity patterns of tropical fish assemblages more than spatial factors. Ecology 101(2): e02940.

    Article  PubMed  Google Scholar 

  • Lowe, W. H. & G. E. Likens, 2005. Moving headwater streams to the head of the class. BioScience 55(3): 196–197.

    Article  Google Scholar 

  • Maasri, A., M. Pyron, E. R. Arsenault, J. H. Thorp, B. Mendsaikhan, F. Tromboni, et al., 2021. Valley-scale hydrogeomorphology drives river fish assemblage variation in Mongolia. Ecology and Evolution 11: 6527–6535.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mammola, S., C. P. Carmona, T. Guillerme & P. Cardoso, 2021. Concepts and applications in functional diversity. Functional Ecology 35: 1869–1885.

    Article  Google Scholar 

  • Marsh-Matthews, E. & W. J. Matthews, 2000. Geographic, terrestrial and aquatic factors: which most influence the structure of stream fish assemblages in the midwestern United States? Ecology of Freshwater Fish 9(1–2): 9–21.

    Article  Google Scholar 

  • Matthews, W. J., 1986. Fish faunal structure in an Ozark stream: stability, persistence and a catastrophic flood. Copeia. https://doi.org/10.2307/1444997.

    Article  Google Scholar 

  • Matthews, W. J. & E. Marsh-Matthews, 2017. Stream fish community dynamics, Johns Hopkins University Press, Baltimore:

    Google Scholar 

  • Mayfield, M. M. & J. M. Levine, 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters 13(9): 1085–1093.

    Article  PubMed  Google Scholar 

  • McArdle, B. H. & M. J. Anderson, 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82(1): 290–297.

    Article  Google Scholar 

  • McGarvey, D. J. & R. M. Hughes, 2008. Longitudinal zonation of Pacific Northwest (USA) fish assemblages and the species-discharge relationship. Copeia 2008(2): 311–321.

    Article  Google Scholar 

  • McNaughton, S. J., 1977. Diversity and stability of ecological communities: a comment on the role of empiricism in ecology. The American Naturalist 111(979): 515–525.

    Article  Google Scholar 

  • Meynard, C. N., V. Devictor, D. Mouillot, W. Thuiller, F. Jiguet & N. Mouquet, 2011. Beyond taxonomic diversity patterns: how do α, β and γ components of bird functional and phylogenetic diversity respond to environmental gradients across France? Global Ecology and Biogeography 20(6): 893–903.

    Article  Google Scholar 

  • Miller, R. J. & H. W. Robison, 2004. Fishes of Oklahoma, University of Oklahoma Press, Norman:

    Google Scholar 

  • Montaña, C. G. & K. O. Winemiller, 2010. Local-scale habitat influences morphological diversity of species assemblages of cichlid fishes in a tropical floodplain river. Ecology of Freshwater Fish 19(2): 216–227.

    Article  Google Scholar 

  • Morales-Castilla, I., T. J. Davies & M. Á. Rodríguez, 2020. Historical contingency, niche conservatism and the tendency for some taxa to be more diverse towards the poles. Journal of Biogeography 47(4): 783–794.

    Article  Google Scholar 

  • Mori, A. S., F. Isbell & R. Seidl, 2018. β-diversity, community assembly, and ecosystem functioning. Trends in Ecology & Evolution 33(7): 549–564.

    Article  Google Scholar 

  • Mozzaquattro, L. B., R. B. Dala-Corte, F. G. Becker & A. S. Melo, 2020. Effects of spatial distance, physical barriers, and habitat on a stream fish metacommunity. Hydrobiologia 847: 3039–3054.

    Article  Google Scholar 

  • Naimi, B., 2013. usdm: uncertainty analysis for species distribution models. https://cran.r-project.org/package=usdm. Accessed 6 Dec 2021

  • Nakamura, G., L. O. Gonçalves & L. D. S. Duarte, 2020. Revisiting the dimensionality of biological diversity. Ecography 43(4): 539–548.

    Article  Google Scholar 

  • Nunes, C. A., R. F. Braga, J. E. C. Figueira, F. D. S. Neves & G. W. Fernandes, 2016. Dung beetles along a tropical altitudinal gradient: environmental filtering on taxonomic and functional diversity. PLoS One 11(6): e0157442.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O'hara et al., 2016. Package 'vegan' Community ecology package. https://cran.r-project.org/package=vegan. Accessed 6 Dec 2021

  • Pavoine, S. & M. B. Bonsall, 2011. Measuring biodiversity to explain community assembly: a unified approach. Biological Reviews 86(4): 792–812.

    Article  CAS  PubMed  Google Scholar 

  • Pebesma, E., 2018. Package “sf” - Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal 10: 439–446.

    Article  Google Scholar 

  • Peres-Neto, P. R., D. A. Jackson & K. M. Somers, 2005. How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Computational Statistics & Data Analysis 49(4): 974–997.

    Article  Google Scholar 

  • Perez Rocha, M., L. M. Bini, S. Domisch, K. T. Tolonen, J. Jyrkänkallio-Mikkola, J. Soininen, et al., 2018. Local environment and space drive multiple facets of stream macroinvertebrate beta diversity. Journal of Biogeography 45(12): 2744–2754.

    Article  Google Scholar 

  • Peterson, E. E., J. M. Ver Hoef, D. J. Isaak, J. A. Falke, M. J. Fortin, C. E. Jordan, et al., 2013. Modelling dendritic ecological networks in space: an integrated network perspective. Ecology Letters 16(5): 707–719.

    Article  PubMed  Google Scholar 

  • Pigg, J., 1977. A survey of the fishes of the Muddy Boggy River in south central Oklahoma. Proceedings of the Oklahoma Academy of Science 57: 68–82.

    Google Scholar 

  • Poff, N. L., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16(2): 391–409.

    Article  Google Scholar 

  • Pollice, A., G. Jona-Lasinio, M. Gaglio, F. G. Blanchet & E. A. Fano, 2020. Modelling the effect of directional spatial ecological processes for a river network in Northern Italy. Ecological Indicators 112: 106144.

    Article  Google Scholar 

  • Pool, T. K., G. Grenouillet & S. Villéger, 2014. Species contribute differently to the taxonomic, functional, and phylogenetic alpha and beta diversity of freshwater fish communities. Diversity and Distributions 20(11): 1235–1244.

    Article  Google Scholar 

  • Poos, M. S. & D. A. Jackson, 2012. Addressing the removal of rare species in multivariate bioassessments: the impact of methodological choices. Ecological Indicators 18: 82–90.

    Article  Google Scholar 

  • Pracheil, B. M., P. B. McIntyre & J. D. Lyons, 2013. Enhancing conservation of large-river biodiversity by accounting for tributaries. Frontiers in Ecology and the Environment 11(3): 124–128.

    Article  Google Scholar 

  • Rabosky, D. L., J. Chang, P. O. Title, P. F. Cowman, L. Sallan, M. Friedman, et al., 2018. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559(7714): 392–395.

    Article  CAS  PubMed  Google Scholar 

  • Roa-Fuentes, C. A., J. Heino, M. V. Cianciaruso, S. Ferraz, J. O. Zeni & L. Casatti, 2019. Taxonomic, functional, and phylogenetic β-diversity patterns of stream fish assemblages in tropical agroecosystems. Freshwater Biology 64(3): 447–460. https://doi.org/10.1111/fwb.13233.

    Article  Google Scholar 

  • Robison, H. W. & T. M. Buchanan, 2020. Fishes of Arkansas, University of Arkansas Press, Fayetteville:

    Google Scholar 

  • Ross, S. T., W. J. Matthews & A. A. Echelle, 1985. Persistence of stream fish assemblages: effects of environmental change. The American Naturalist 126(1): 24–40.

    Article  Google Scholar 

  • Saito, V. S., T. Siqueira & A. A. Fonseca-Gessner, 2015. Should phylogenetic and functional diversity metrics compose macroinvertebrate multimetric indices for stream biomonitoring? Hydrobiologia 745(1): 167–179.

    Article  Google Scholar 

  • Shao, X., Y. Fang, J. W. Jawitz, J. Yan & B. Cui, 2019. River network connectivity and fish diversity. Science of the Total Environment 689: 21–30.

    Article  CAS  Google Scholar 

  • Si, X., A. Baselga, F. Leprieur, X. Song & P. Ding, 2016. Selective extinction drives taxonomic and functional alpha and beta diversities in island bird assemblages. Journal of Animal Ecology 85(2): 409–418.

    Article  Google Scholar 

  • Simonson, T. D., J. Lyons & P. D. Kanehl, 1993. Guidelines for evaluating fish habitat in Wisconsin streams. US Forest Service Technical Report NC-164. https://doi.org/10.2737/NC-GTR-164.

  • Soininen, J., J. Heino & J. Wang, 2018. A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Global Ecology and Biogeography 27: 96–109.

    Article  Google Scholar 

  • Stegmann, L. F., R. P. Leitão, J. Zuanon & W. E. Magnusson, 2019. Distance to large rivers affects fish diversity patterns in highly dynamic streams of Central Amazonia. PloS One 14(10): e0223880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens, R. D. & J. S. Tello, 2018. A latitudinal gradient in dimensionality of biodiversity. Ecography 41(12): 2016–2026.

    Article  Google Scholar 

  • Taylor, C. M. & P. W. Lienesch, 1996. Regional parapatry of the congeneric cyprinids Lythrurus snelsoni and L. umbratilis: species replacement along a complex environmental gradient. Copeia 1996(2): 493–497.

    Article  Google Scholar 

  • Taylor, C. M. & M. L. Warren Jr., 2001. Dynamics in species composition of stream fish assemblages: environmental variability and nested subsets. Ecology 82(8): 2320–2330.

    Article  Google Scholar 

  • Terui, A., S. Kim, C. L. Dolph, T. Kadoya & Y. Miyazaki, 2021. Emergent dual scaling of riverine biodiversity. Proceedings of the National Academy of Sciences 118(47): e2105574118. https://doi.org/10.1073/pnas.2105574118.

    Article  CAS  Google Scholar 

  • Tuomisto, H., L. Ruokolainen & K. Ruokolainen, 2012. Modelling niche and neutral dynamics: on the ecological interpretation of variation partitioning results. Ecography 35(11): 961–971.

    Article  Google Scholar 

  • Tyers, M., 2017. Riverdist: River Network Distance Computation and Applications. https://cran.r-project.org/package=riverdist. Accessed 6 Dec 2021.

  • Vellend, M., 2010. Conceptual synthesis in community ecology. The Quarterly Review of Biology 85(2): 183–206. https://doi.org/10.1086/652373.

    Article  PubMed  Google Scholar 

  • Ver Hoef, J. M. & E. E. Peterson, 2010. A moving average approach for spatial statistical models of stream networks. Journal of the American Statistical Association 105(489): 6–18.

    Article  CAS  Google Scholar 

  • Villéger, S., N. W. Mason & D. Mouillot, 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89(8): 2290–2301.

    Article  PubMed  Google Scholar 

  • Villéger, S., J. R. Miranda, D. F. Hernandez & D. Mouillot, 2012. Low functional β-diversity despite high taxonomic β-diversity among tropical estuarine fish communities. PloS One 7(7): e40679.

    Article  PubMed  PubMed Central  Google Scholar 

  • Villéger, S., G. Grenouillet & S. Brosse, 2013. Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in E uropean fish assemblages. Global Ecology and Biogeography 22(6): 671–681.

    Article  Google Scholar 

  • Webb, C. O., D. D. Ackerly, M. A. McPeek & M. J. Donoghue, 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33(1): 475–505.

    Article  Google Scholar 

  • Whittaker, R. H., 1960. Vegetation of the Siskiyou mountains, Oregon and California. Ecological Monographs 30(3): 279–338.

    Article  Google Scholar 

  • Zbinden, Z. D. & W. J. Matthews, 2017. Beta diversity of stream fish assemblages: partitioning variation between spatial and environmental factors. Freshwater Biology 62(8): 1460–1471.

    Article  CAS  Google Scholar 

  • Zbinden, Z. D., A. D. Geheber, W. J. Matthews & E. Marsh-Matthews, 2022. Fish communities, species of greatest conservation need, and protected areas in southeastern Oklahoma, 2014–2016. Proceedings of the Oklahoma Academy of Science 101: 14–32.

    Google Scholar 

  • Zeni, J. O., D. J. Hoeinghaus, C. A. Roa-Fuentes & L. Casatti, 2020. Stochastic species loss and dispersal limitation drive patterns of spatial and temporal beta diversity of fish assemblages in tropical agroecosystem streams. Hydrobiologia 847(18): 3829–3843.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this study was provided by the Oklahoma Department of Wildlife Conservation through State Wildlife Grant FI 3AF01213 (T-74-1) and the University of Oklahoma. We thank E. Marsh-Matthews for her numerous contributions to this project. We would like to acknowledge J. Cureton, D. Curtis, T. Shadid, and B. Tweedy for assistance in the field. Finally, we recognize S. Cartwright and the Sam Noble Oklahoma Museum of Natural History for archiving fish collections.

Funding

Financial support for this study was provided by the Oklahoma Department of Wildlife Conservation through State Wildlife Grant FI 3AF01213 (T-74-1) and the University of Oklahoma.

Author information

Authors and Affiliations

Authors

Contributions

WJM led the funding acquisition and project administration. WJM and ZDZ conceived the ideas; ZDZ, ADG, RJL, and WJM collected the data; ZDZ analyzed the data and wrote the manuscript; all authors edited the manuscript.

Corresponding author

Correspondence to Zachery D. Zbinden.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest or competing interests to disclose.

Ethical approval

Fish collections were approved by the Institutional Animal Care and Use Committee at the University of Oklahoma and permitted by the Oklahoma Department of Wildlife Conservation.

Additional information

Handling editor: Luis Mauricio Bini

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 317 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zbinden, Z.D., Geheber, A.D., Lehrter, R.J. et al. Multifaceted assessment of stream fish alpha and beta diversity using spatial models. Hydrobiologia 849, 1795–1820 (2022). https://doi.org/10.1007/s10750-022-04824-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04824-w

Keywords