Skip to main content
Log in

Exploring Great Lakes benthoscapes: can we visually delineate hypoxic habitats?

  • TRENDS IN AQUATIC ECOLOGY IV
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Benthic macroinvertebrate communities are useful indicators for biological assessment of environmental and anthropogenic stressors, but our ability to quantify benthic populations is constrained by small spatial scales of traditional grab sampling and labor-intensive processing. During the 2019 assessment of Lake Erie’s benthic community we studied lake benthoscapes by enhancing the traditional collection of grabs at 68 stations with underwater imagery, water quality, and sediment nutrients data. Four major habitats were identified from video data including Dreissena aggregations, Hexagenia burrows, and biogenic structures (“chimneys” and “tubes”). All four habitats differed in near-bottom dissolved oxygen (DO) concentration, with the highest DO found above dreissenids and the lowest in chimney habitats. DO, turbidity, and chlorophyll concentration provided the largest contribution to the MaxEnt model and predicted benthoscape distribution. There was a significant separation of benthic species by selected benthoscapes confirmed by independent cluster analysis. Suitable habitat for Dreissena was limited to normoxic areas, and Hexagenia habitats to the western basin. The central basin, subject to summer hypoxia, was mostly characterized by tube and chimney habitats. The agreement among biological, video, and abiotic data confirmed that video analysis can provide a novel, quick, and reliable method to detect benthic habitats affected by periodic hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets and video generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ackerman, J. D., M. R. Loewen & P. F. Hamblin, 2001. Benthic-pelagic coupling over a zebra mussel reef in western Lake Erie. Limnology and Oceanography 46: 892–904.

    Article  Google Scholar 

  • Angradi, T. R., 2018. A field observation of rotational feeding by Neogobius melanostomus. Fishes 3(1): 1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbiero, R. P. & M. L. Tuchman, 2004. Long-term dreissenid impacts on water clarity in Lake Erie. Journal of Great Lakes Research 30: 557–565.

    Article  Google Scholar 

  • Beeton, A. M., 1961. Environmental changes in Lake Erie. Transactions of the American Fisheries Society 90: 153–159.

    Article  Google Scholar 

  • Beisiegel, K., A. Darr, M. Gogina & M. L. Zettler, 2017. Benefits and shortcomings of non-destructive benthic imagery for monitoring hard-bottom habitats. Marine Pollution Bulletin 121: 5–15.

    Article  CAS  PubMed  Google Scholar 

  • Beletsky, D., N. Hawley, Y. R. Rao, H. A. Vanderploeg, R. Beletsky, D. J. Schwab & S. A. Ruberg, 2012. Summer thermal structure and anticyclonic circulation of Lake Erie. Geophysical Research Letters 39: L06605.

    Article  Google Scholar 

  • Berg, M. B., 1995. Larval food and feeding behaviour. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae Springer, Dordrecht: 136–168.

    Chapter  Google Scholar 

  • Bertram, P. E., 1993. Total phosphorus and dissolved oxygen trends in the central basin of Lake Erie, 1970–1991. Journal of Great Lakes Research 19: 224–236.

    Article  CAS  Google Scholar 

  • Bocaniov, S. A. & D. Scavia, 2016. Temporal and spatial dynamics of large lake hypoxia: integrating statistical and three-dimensional dynamic models to enhance lake management criteria. Water Resources Research 52: 4247–4263.

    Article  CAS  Google Scholar 

  • Borja, A. & M. Elliott, 2013. Marine monitoring during an economic crisis: The cure is worse than the disease. Marine Pollution Bulletin 68: 1–3.

    Article  CAS  PubMed  Google Scholar 

  • Boyce, F. M., F. Chiocchio, B. Eid, F. Penicka & F. Rosa, 1980. Hypolimnion flow between the central and eastern basins of Lake Erie during 1977. Journal of Great Lakes Research 6: 290–306.

    Article  Google Scholar 

  • Bray, J. R. & J. T. Curtis, 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27: 325–349.

    Article  Google Scholar 

  • Bridgeman, T. B., D. W. Schloesser & A. E. Krause, 2006. Recruitment of Hexagenia mayfly nymphs in western Lake Erie linked to environmental variability. Ecological Applications 16: 601–611.

    Article  PubMed  Google Scholar 

  • Britt, N. W., 1955. Hexagenia (Ephemeroptera) population recovery in western Lake Erie following the 1953 catastrophe. Ecology 36: 520–522.

    Article  Google Scholar 

  • Brown, C. J., S. J. Smith, P. Lawton & J. T. Anderson, 2011. Benthic habitat mapping: a review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuarine Coastal and Shelf Science 92: 502–520.

    Article  Google Scholar 

  • Burlakova, L. E., A. Y. Karatayev & V. A. Karatayev, 2012. Invasive mussels induce community changes by increasing habitat complexity. Hydrobiologia 685(1): 121–134.

    Article  Google Scholar 

  • Burlakova, L. E., A. Y. Karatayev, C. Pennuto & C. Mayer, 2014. Changes in Lake Erie benthos over the last 50 years: historical perspectives, current status, and main drivers. Journal of Great Lakes Research 40: 560–573.

    Article  Google Scholar 

  • Burlakova, L. E., K. E. Kovalenko, K. L. Schmude, R. P. Barbiero, A. Y. Karatayev & B. M. Lesht, 2018a. Development of new indices of Great Lakes water quality based on profundal benthic communities. Journal of the Great Lakes Research 44(4): 618–628.

    Article  CAS  Google Scholar 

  • Burlakova, L. E., R. P. Barbiero, A. Y. Karatayev, S. E. Daniel, E. K. Hinchey & G. J. Warren, 2018b. The benthic community of the Laurentian Great Lakes: analysis of spatial gradients and temporal trends from 1998 to 2014. Journal of the Great Lakes Research 44: 600–617.

    Article  Google Scholar 

  • Carr, J. F. & J. K. Hiltunen, 1965. Changes in the bottom fauna of western Lake Erie from 1930 to 1961. Limnology and Oceanography 10: 551–569.

    Article  Google Scholar 

  • Chun, Y., H. Koo & D. A. Griffith, 2016. A comparison of optimal map classification methods incorporating uncertainty information. In Proceedings of the Spatial Accuracy, 20–22 April 2016, Avignon, France: 177–181.

  • Chapin, F. S. & A. M. Starfield, 1997. Time lags and novel ecosystems in response to transient climatic change in arctic Alaska. Climatic Change 35: 449–461.

    Article  Google Scholar 

  • Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.

    Article  Google Scholar 

  • Clarke, K. R. & R. H. Green, 1988. Statistical design and analysis for a “biological effects” study. Marine Ecology Progress Series 46: 213–226.

    Article  Google Scholar 

  • Clarke, K. R. & M. A. Ainsworth, 1993. Method of linking multivariate community structure to environmental variables. Marine Ecology Progress Series. 92: 205–219.

    Article  Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6 User Manual/Tutorial (Plymouth Routines in Multivariate Ecological Research), PRIMER-E, Plymouth:

    Google Scholar 

  • Clarke, K. R., J. R. Tweedley & F. J. Valesini, 2014a. Simple shade plots aid better long-term choices of data pre-treatment in multivariate assemblage studies. Journal of the Marine Biological Association UK 94: 1–16.

    Article  Google Scholar 

  • Clarke, K. R., R. N. Gorley, P. J. Somerfiled & R. M. Warwick, 2014b. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 3rd ed. Primer-E Ltd, Plymouth:

    Google Scholar 

  • Cook, D. G. & M. G. Johnson, 1974. Benthic macroinvertebrates of the St. Lawrence Great Lakes. Journal of the Fisheries Research Board of Canada 31: 763–782.

    Article  Google Scholar 

  • Custer, C. M. & T. W. Custer, 1997. Occurrence of zebra mussels in nearshore areas of western Lake Erie. Journal of Great Lakes Research 23: 108–115.

    Article  CAS  Google Scholar 

  • Dauer, D. M., A. J. Rodi Jr. & J. A. Ranasinghe, 1992. Effects of low dissolved oxygen events on the macrobenthos of the Lower Chesapeake Bay. Estuaries 15(3): 384–391.

    Article  CAS  Google Scholar 

  • Delorme, L. D., 1982. Lake Erie oxygen: the prehistoric record. Canadian Journal of Fisheries and Aquatic Sciences 39: 1021–1029.

    Article  CAS  Google Scholar 

  • Dermott, R., O. Johannsson, M. Munawar, R. Bonnell, K. Bowen, M. Burley, M. Fitzpatrick, J. Gerlofsma & N. Niblock, 2007. Assessment of lower food web in Hamilton Harbour, Lake Ontario, 2002 - 2004. Canadian Technical Report of Fisheries and Aquatic Sciences 2729.

  • Diaz, R. J. & R. Rosenberg, 2008. Spreading dead zones and consequences for marine ecosystems. Science 321: 926–929.

    Article  CAS  PubMed  Google Scholar 

  • Eldridge, P. M. & D. L. Roelke, 2011. Hypoxia in waters of the coastal zone: causes, effects, and modeling approaches. In Wolanski, E. & D. S. McLusky DS, (eds), Treatise on Estuarine and Coastal Science Academic Press, Waltham: 193–215.

    Chapter  Google Scholar 

  • Famme, P. & J. Knudsen, 1985. Aerotaxis by the freshwater Oligochaete Tubifex sp. Oecologia 65: 599–601.

    Article  CAS  PubMed  Google Scholar 

  • FGDC, 2012. Coastal and marine ecological classification standard. Marine and coastal spatial data subcommittee: FGDC-STD-018-2012.

  • Friedrich, J., F. Janssen, D. Aleynik, H. W. Bange, N. Boltacheva, M. N. Çagatay, A. W. Dale, G. Etiope, Z. Erdem, M. Geraga, A. Gilli, M. T. Gomoiu, P. O. J. Hall, D. Hansson, Y. He, M. Holtappels, M. K. Kirf, M. Kononets, S. Konovalov, A. Lichtschlag, D. M. Livingstone, G. Marinaro, S. Mazlumyan, S. Naeher, R. P. North, G. Papatheodorou, O. Pfannkuche, R. Prien, G. Rehder, C. J. Schubert, T. Soltwedel, S. Sommer, H. Stahl, E. V. Stanev, A. Teaca, A. Tengberg, C. Waldmann, B. Wehrli & F. Wenzhöfer, 2014. Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon. Biogeosciences 11: 1215–1259.

    Article  Google Scholar 

  • Galic, N., T. Hawkins & V. E. Forbes, 2019. Adverse impacts of hypoxia on aquatic invertebrates: a meta-analysis. Science of the Total Environment 652: 736–743.

    Article  PubMed  Google Scholar 

  • Gutierrez, J. L., C. G. Jones, D. L. Strayer & O. O. Iribarne, 2003. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101: 79–90.

    Article  Google Scholar 

  • Halpern, M., A. Gasith, V. M. Bresler & M. Broza, 2002. The protective nature of Chironomus luridus larval tubes against copper sulfate. Journal of Insect Science (online) 2: 8.

    Article  CAS  PubMed  Google Scholar 

  • Hamidi, S. A., H. R. Bravo, J. V. Klump & J. T. Waples, 2015. The role of circulation and heat fluxes in the formation of stratification leading to hypoxia in Green Bay, Lake Michigan. Journal of Great Lakes Research 41: 1024–1036.

    Article  CAS  Google Scholar 

  • Harper, E. B., J. C. Stella & A. K. Fremier, 2011. Global sensitivity analysis for complex ecological models: a case study of riparian cottonwood population dynamics. Ecological Applications 21(4): 1225–1240.

    Article  PubMed  Google Scholar 

  • Hershey, A. E., 1987. Tubes and foraging behavior in larval Chironomidae: implication for predator avoidance. Oecologia 73: 236–241.

    Article  CAS  PubMed  Google Scholar 

  • Hilsenhoff, W. L., 1988. Rapid field assessment of organic pollution with a family-level biotic index. Journal of the North American Benthological Society 7: 65–68.

    Article  Google Scholar 

  • Hinchey, E. K., M. C. Nicholson, R. N. Zajac & E. A. Irlandi, 2008. Preface: marine and coastal applications in landscape ecology. Landscape Ecology 23: 1–5.

    Article  Google Scholar 

  • Howmiller, R. P. & M. A. Scott, 1977. An environmental index based on relative abundance of oligochaete species. Journal Water Pollution Control Federation 46: 809–815.

    Google Scholar 

  • Hrycik, A. R., L. Z. Almeida & T. O. Höök, 2017. Sub-lethal effects on fish provide insight into a biologically-relevant threshold of hypoxia. Oikos 126: 307–317.

    Article  CAS  Google Scholar 

  • Karatayev, A. Y., L. E. Burlakova & D. K. Padilla, 1998. Physical factors that limit the distribution and abundance of Dreissena polymorpha (Pall.). Journal of Shellfish Research 17(4): 1219–1235.

    Google Scholar 

  • Karatayev, A. Y., L. E. Burlakova & D. K. Padilla, 2002. Impacts of zebra mussels on aquatic communities and their role as ecosystem engineers. In Leppakoski, E., S. Gollach & S. Olenin (eds), Invasive Aquatic Species of Europe: Distribution, Impacts and Management Kluwer Academic Publishers, Dordreicht: 433–446.

    Chapter  Google Scholar 

  • Karatayev, A. Y., L. E. Burlakova & D. K. Padilla, 2006. Growth rate and longevity of Dreissena polymorpha (Pallas): a review and recommendations for future study. Journal of Shellfish Research 25: 23–32.

    Article  Google Scholar 

  • Karatayev, A. Y., D. Boltovskoy, D. K. Padilla & L. E. Burlakova, 2007. The invasive bivalves Dreissena polymorpha and Limnoperna fortunei: parallels, contrasts, potential spread and invasion impacts. Journal of Shellfish Research 26: 205–213.

    Article  Google Scholar 

  • Karatayev, A. Y., L. E. Burlakova, J. Vander Zanden, R. C. Lathrop & D. K. Padilla, 2013. Change in a lake benthic community over a century: evidence for alternative community states. Hydrobiologia 700: 287–300.

    Article  Google Scholar 

  • Karatayev, A., D. Boltovskoy, L. Burlakova & D. Padilla, 2015. Parallels and contrasts between Limnoperna Fortunei and Dreissena species. In Boltovskoy, D. (ed.), Limnoperna fortunei. Invading Nature – Springer Series in Invasion Ecology, New York, 261–297.

    Chapter  Google Scholar 

  • Karatayev, A. Y., L. E. Burlakova, K. Mehler, S. A. Bocaniov, P. D. Collingsworth, G. Warren, R. T. Kraus & E. K. Hinchey, 2018a. Biomonitoring using invasive species in a large lake: Dreissena distribution maps hypoxic zones. Journal of Great Lakes Research 44: 639–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karatayev, A. Y., L. E. Burlakova, K. Mehler, E. K. Hinchey & G. Warren, 2018b. Benthic video image analysis facilitates monitoring of Dreissena populations across spatial scales. Journal of Great Lakes Research 44: 629–638.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karatayev, A. Y., V. A. Karatayev, L. E. Burlakova, K. Mehler, M. D. Rowe, A. K. Elgin & T. Nalepa, 2021a. Lake morphometry determines Dreissena invasion dynamics. Biological Invasions. 23: 248–2514.

    Article  Google Scholar 

  • Karatayev, A. Y., L. E. Burlakova, K. Mehler, E. K. Hinchey, M. Wick, M. Bakowska & N. Mrozinska, 2021b. Rapid assessment of Dreissena population in Lake Erie using underwater videography. Hydrobiologia 848: 2421–2436.

    Article  Google Scholar 

  • Karatayev, A. Y., L. E. Burlakova, K. Mehler, A. K. Elgin, L. G. Rudstam, J. M. Watkins & M. Wick, 2022. Dreissena in Lake Ontario 30 years post-invasion. Journal of Great Lakes Research.

    Article  PubMed  Google Scholar 

  • Kemp, A. L. W., G. A. MacInnis & N. S. Harper, 1977. Sedimentation rates and a revised sediment budget for Lake Erie. Journal of Great Lakes Research 3: 221–233.

    Article  Google Scholar 

  • Kingston, P. F. & M. J. Riddle, 1989. Cost effectiveness of benthic faunal monitoring. Marine Pollution Bulletin 20: 490–496.

    Article  Google Scholar 

  • Kon, M. & T. Hidaka, 1983. Chimney projecting behaviour of chironomid larvae (Chironomus yoshimatsui; Diptera, Chironomidae). Journal of Ethology 1–2: 111–113.

    Article  Google Scholar 

  • Konstantinov, A. S., 1971. Ecological factors affecting respiration in chironomid larvae. Limnologica 8: 27–34.

    Google Scholar 

  • Kraus, R. T., C. T. Knight, T. M. Farmer, A. M. Gorman, P. D. Collingsworth, G. J. Warren, P. M. Kocovsky & J. D. Conroy, 2015. Dynamic hypoxic zones in Lake Erie compress fish habitat, altering vulnerability to fishing gears. Canadian Journal of Fisheries and Aquatic Sciences 72: 797–806.

    Article  CAS  Google Scholar 

  • Krieger, K. A., 1985. Snail distributions in Lake Erie - the influence of anoxia in the southern central basin nearshore zone. Ohio Journal of Science 85: 230–243.

    Google Scholar 

  • Lesht, B. M., R. P. Barbiero & G. J. Warren, 2016. Verification of a simple band ratio algorithm for retrieving Great Lakes open water surface chlorophyll concentrations from satellite observations. Journal of Great Lakes Research 42: 448–454.

    Article  CAS  Google Scholar 

  • Lietz, J. E., J. R. Kelly, J. V. Scharold & P. M. Yurista, 2015. Can a rapid underwater video approach enhance the benthic assessment capability of the national coastal condition assessment in the Great Lakes? Environmental Management 55: 1446–1456.

    Article  PubMed  Google Scholar 

  • Mackey, S. D. & D. L. Liebenthal, 2005. Mapping changes in Great Lakes nearshore substrate distributions. Journal of Great Lakes Research Supplement 31(1): 75–89.

    Article  Google Scholar 

  • Makarewicz, J. C. & P. Bertram, 1991. Evidence for the restoration of the Lake Erie Ecosystem. Bioscience 41(4): 216–223.

    Article  Google Scholar 

  • McMahon, R. F. & A. E. Bogan, 2001. Mollusca: Bivalvia. In Thorpe, J. H. & A. P. Covich (eds), Ecology and Classification of North American Freshwater Invertebrates 2nd ed. Academic Press, Cambridge.

    Google Scholar 

  • Meadows, G. A., 2013. A review of low cost underwater acoustic remote sensing for large freshwater systems. Journal of Great Lakes Research 39(1): 173–182.

    Article  Google Scholar 

  • Mehler, K., L. E. Burlakova, A. Y. Karatayev, Z. Biesinger, E. Bruestle, A. Valle-Levinson, C. Castiglione & D. Gorsky, 2017. Integrating remote sensing and species distribution modelling to predict benthic communities in a Great Lakes connecting channel. River Research and Applications 33(8): 1336–1344.

    Article  Google Scholar 

  • Mérillet, L., M. Robert, M. Salaün, L. Schuck, M. Mouchet & D. Kopp, 2018. Underwater video offers new insights into community structure in the Grande Vasière (Bay of Biscay). Journal of Sea Research 139: 1–9.

    Article  Google Scholar 

  • Merritt, R. W., K. W. Cummins & M. B. Berg, 2008. An Introduction to the Aquatic Insects of North America, 4th ed. Kendall/Hunt Publishing Company, Dubuque: 1158.

    Google Scholar 

  • Michalak, A. M., E. Anderson, D. Beletsky, S. Boland, N. S. Bosch, T. B. Bridgeman, J. D. Chaffin, K. H. Cho, R. Confesor, I. Daloğlu, J. DePinto, M. A. Evans, G. L. Fahnenstiel, L. He, J. C. Ho, L. Jenkins, T. Johengen, K. C. Kuo, E. Laporte, X. Liu Wright, M. McWilliams, M. R. Moore, D. J. Posselt, R. P. Richards, D. Scavia, A. L. Steiner, E. Verhamme & D. M. M. A. Zagorski, 2013. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proceedings of the National Academy of Sciences 110: 6448–6452.

    Article  CAS  Google Scholar 

  • Milbrink, G., 1973. Communities of Oligochaeta as indicators of the water quality in Lake Hjälmaren. ZOON 1: 77–88.

    Google Scholar 

  • Mittermayr, A., B. Legare & M. Borrelli, 2020. Applications of the Coastal and Marine Ecological Classification Standard (CMECS) in a partially restored New England salt marsh lagoon. Estuaries and Coasts.

    Article  Google Scholar 

  • Montagna, P. A. & J. Froeschke, 2009. Long-term biological effects of coastal hypoxia in Corpus Christi Bay Texas, USA. Journal of Experimental Marine Biology and Ecology 381: S21–S30.

    Article  Google Scholar 

  • Morse, N. B., P. A. Pellissier, E. N. Cianciola, R. L. Brereton, M. M. Sullivan, N. K. Shonka, T. B. Wheeler & W. H. McDowell, 2014. Novel ecosystems in the Anthropocene: a revision of the novel ecosystem concept for pragmatic applications. Ecology and Society 19: 12.

    Article  Google Scholar 

  • Mortimer, C., 1987. Fifty years of physical investigations and related limnological studies on Lake Erie, 1928–1977. Journal of Great Lakes Research 13(4): 407–435.

    Article  CAS  Google Scholar 

  • Moss, B., 1980. Ecology of Fresh Waters, Blackwell Sci. PUN, Oxford:, 332.

    Google Scholar 

  • Musco, M., A. Cuttitta, E. Bicchi, E. M. Quinci, M. Sprovieri, G. Tranchida, L. Giaramita, A. Traina, D. Salvagio Manta, S. Gherardi, P. Mercurio, A. Siragusa & S. Mazzola, 2017. Benthic Foraminifera as bio-indicators of anthropogenic impacts in coastal environments: Acqua dei Corsari area case study (Palermo, Italy). Marine Pollution Bulletin 117: 75–87.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, H. C. & R. Rosenberg, 2000. Succession in marine benthic habitats and fauna in response to oxygen deficiency analysed by sediment profile-imaging and by grab samples. Marine Ecology Progress Series 197: 139–149.

    Article  Google Scholar 

  • Ozersky, T., S. Y. Malkin, D. R. Barton & R. E. Hecky, 2009. Dreissenid phosphorus excretion can sustain C. glomerata growth along a portion of Lake Ontario Shoreline. Journal of Great Lakes Research 35: 321–328.

    Article  CAS  Google Scholar 

  • Ozersky, T., D. R. Barton, D. C. Depew, R. E. Hecky & S. J. Guildford, 2011. Effects of water movement on the distribution of invasive dreissenids mussels in Lake Simcoe, Ontario. Journal of Great Lakes Research 37: 46–54.

    Article  Google Scholar 

  • Pearson, T. H. & R. Rosenberg, 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology 16: 229–311.

    Google Scholar 

  • Pinder, L. C. V., 1986. Biology of fresh-water chironomidae. Annual Review of Entomology 31: 1–23.

    Article  Google Scholar 

  • Pinder, L. C. & P. S. Cranston, 2012. The Chironomidae. Biology and Ecology of Non-biting Midges. In L. C. Pinder, P. D. Armitage & P. S. Cranston (eds), Springer, Dordrecht: 572 pp.

  • Phillips, S. J., R. P. Anderson & R. E. Schapire, 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259.

    Article  Google Scholar 

  • Reiss, H., S. Cunze, K. Koenig, H. Neumann & I. Kroencke, 2011. Species distribution modelling of marine benthos: a North Sea case study. Marine Ecology Progress Series.

    Article  Google Scholar 

  • Resh, V. H., R. H. Norris & M. T. Barbour, 1995. Design and implementation of rapid assessment approaches for water resource monitoring using benthic macroinvertebrates. Australian Journal of Ecology 20(1): 108–121.

    Article  Google Scholar 

  • Richards, R. P., D. B. Baker, J. P. Crumrine & A. M. Stearns, 2010. Unusually large loads in 2007 from the Maumee and Sandusky Rivers, tributaries to Lake Erie. Journal of Soil and Water Conservation 65: 450–462.

    Article  Google Scholar 

  • Rowe, M. D., E. J. Anderson, D. Beletsky, C. A. Stow, S. D. Moegling, J. D. Chaffin, J. C. May, P. D. Collingsworth, A. Jabbari & J. D. Ackerman, 2019. Coastal upwelling influences hypoxia spatial patterns and nearshore dynamics in Lake Erie. Journal of Geophysical Research: Oceans. https://doi.org/10.1029/2019JC015192.

    Article  Google Scholar 

  • Scavia, D., J. D. Allan, K. K. Arend, S. Bartell, D. Beletsky, N. S. Bosch, S. B. Brandt, R. D. Briland, I. Daloglu, J. V. DePinto, D. M. Dolan, M. A. Evans, T. M. Farner, D. Goto, H. Han, T. O. Hook, R. Knight, S. A. Ludsin, D. M. Mason, A. M. Michalak, R. P. Richards, J. J. Roberts, D. K. Rucinski, E. S. Rutherford, D. J. Schwab, T. Sesterhenn, H. Zhang & Y. Zhou, 2014. Assessing and addressing the re-eutrophication of Lake Erie: Central basin hypoxia. Journal of Great Lakes Research 40: 226–246.

    Article  CAS  Google Scholar 

  • Schaffner, L. C., T. M. Dellapenna, E. K. Hinchey, C. T. Friedrichs, M. Thompson Neubauer, M. E. Smith & S. A. Kuehl, 2001. Physical energy regimes, sea-bed dynamics and organism-sediment interactions along an estuarine gradient. In Aller, J. Y., S. A. Woodin & R. C. Aller (eds), Organism-Sediment Interactions University of South Carolina Press, Columbia: 161–182.

    Google Scholar 

  • Schloesser, D. W., K. A. Krieger, J. J. H. Ciborowski & L. D. Corkum, 2000. Recolonization and possible recovery of burrowing mayflies (Ephemeroptera: Ephemeridae: Hexagenia spp.) in Lake Erie of the Laurentian Great Lakes. Journal of Aquatic Ecosystem Stress and Recovery 8: 125–141.

    Article  Google Scholar 

  • Shelford, V. E. & M. W. Boesel, 1942. Bottom animal communities of the island area of western Lake Erie in the summer of 1937. Ohio Journal of Science 42: 179–190.

    Google Scholar 

  • Tellier, J. M., N. I. Kalejs, B. S. Leonhardt, D. Cannon, T. O. Hӧӧk & P. D. Collingsworth. 2022. Widespread prevalence of hypoxia and the classification of hypoxic conditions in the Laurentian Great Lakes. Journal of Great Lakes Research 48: 13–23.

  • Turner, M. G. & R. H. Gardner, 2015. Causes of landscape pattern. Chapter 2. In Turner, M., R. V. O’Neill & R. H. Gardner (eds), Landscape Ecology in Theory and Practice: Pattern and Process 2nd ed. Springer-Verlag, New York: 33–62.

    Chapter  Google Scholar 

  • U.S. EPA, 2004a. SOP LG600, Standard Operating Procedure for Total Phosphorous in Sediments by Persulfate Oxidation Digestion (Lachat Method). Revision 03, August 2004a. Great Lakes National Program Office, U.S. Environmental Protection Agency, Chicago.

  • U.S. EPA, 2004b. SOP LG602, Standard Operating Procedure for Total Nitrogen in Sediments by Alkaline Persulfate Oxidation Digestion (Lachat Method). Revision 04, August 2004b. Great Lakes National Program Office, U.S. Environmental Protection Agency, Chicago.

  • U.S. EPA, 2005. SOP LG601, Standard Operating Procedure for Analysis of Total Organic Carbon in Sediments (Dry Combustion, IR Detection). Revision 04, March 2005. Great Lakes National Program Office, U.S. Environmental Protection Agency, Chicago.

  • U.S. EPA, 2014. SOP LG100, Standard Operating Procedure for General Shipboard Scientific Operation, Revision 05, March 2014. Great Lakes National Program Office, U.S. Environmental Protection Agency, Chicago.

  • U.S. EPA, 2015. SOP LG407, Standard Operating Procedure for Benthic Invertebrate Laboratory Analysis, Revision 09, April 2015. Great Lakes National Program Office, U.S. Environmental Protection Agency, Chicago.

  • U.S. EPA, 2018. SOP LG406, Standard Operating Procedure for Benthic Invertebrate Field Sampling, Revision 12, March 2018. Great Lakes National Program Office, U.S. Environmental Protection Agency, Chicago.

  • U.S. EPA, 2019. SOP LG410, Standard Operating Procedure for Collection and Processing of Drop-Down Camera Images for Dreissena spp. and round goby (Neogobius melanostomus) monitoring, Revision 0, July 2019. Great Lakes National Program Office, U.S. Environmental Protection Agency, Chicago.

  • Vanderploeg, H. A., T. F. Nalepa, D. J. Jude, E. L. Mills, K. T. Holeck, J. R. Liebig, I. A. Grigorovich & H. Ojaveer, 2002. Dispersal and emerging ecological impacts of Ponto-Caspian species in the Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 59: 1209–1228.

    Article  Google Scholar 

  • Vanderploeg, H. A., S. A. Ludsin, S. A. Ruberg, T. O. Höök, S. A. Pothoven, S. B. Brandt, G. A. Lang, J. R. Liebig & J. F. Cavaletto, 2009. Hypoxia affects spatial distributions and overlap of pelagic fish, zooplankton, and phytoplankton in Lake Erie. Journal of Experimental Marine Biology and Ecology 381: S92–S107.

    Article  Google Scholar 

  • Villnäs, A., J. Norkko, K. Lukkari, J. Hewitt & A. Norkko, 2012. Consequences of increasing hypoxic disturbance on benthic communities and ecosystem functioning. PLoS ONE 7(10): e44920. https://doi.org/10.1371/journal.pone.0044920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walshe, B. M., 1951. The feeding habits of certain Chironomid larvae (subfamily Tendipedinae). Proceedings of the Zoological Society of London 121: 63–79.

    Article  Google Scholar 

  • Wick, M. J., T. R. Angradi, M. B. Pawlowski, D. Bolgrien, R. Debbout, J. Launspach & M. Nord, 2020. Deep lake explorer: a web application for crowdsourcing the classification of benthic underwater video from the Laurentian Great Lakes. Journal of Great Lakes Research 46: 1469–1478.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiederholm, T., 1980. Use of benthos in lake monitoring. Journal of the Water Pollution Control Federation 52: 537–547.

    CAS  Google Scholar 

  • Wright, D. J. & W. D. Heyman, 2008. Introduction to the special issue: marine and coastal GIS for geomorphology, habitat mapping, and marine reserves. Marine Geodesy 31(4): 223–230.

    Article  Google Scholar 

  • Zajac, R. N., 2008. Challenges in marine, soft-sediment benthoscape ecology. Landscape Ecology 23: 7–18.

    Article  Google Scholar 

  • Zajac, R. N., L. M. Stefaniak, I. Babb, C. W. Conroy, S. Penna, D. Chadi & P. J. Auster, 2020. Chapter 10—an integrated seafloor habitat map to inform marine spatial planning and management: a case study from Long Island Sound (Northwest Atlantic). In Harris, P. T. & E. Baker (eds), Seafloor Geomorphology as Benthic Habitat (2nd edn). Elsevier, Amsterdam: 199–217.

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was supported by the Great Lakes Restoration Initiative via a cooperative agreement with Cornell University, Department of Natural Resources under Prime Agreement Award GL 00E02259-2 from the U.S. EPA “Great Lakes Long-Term Biological Monitoring Program 2017–2022” (PI L. Rudstam, Co-PIs Burlakova & Karatayev). The authors would like to thank senior taxonomist S. Daniel, technicians E. Hartnett, K. Hastings, and B. Tulumello (Great Lakes Center, GLC), SUNY Buffalo State graduate and undergraduate students E. Burch, M. Kocher, C. Perry, J. Powell, B.Z. Szczygiel, and A. Mathew for sample processing and identification. We also would like to thank V. Karatayev (Guelph University) for help with data analysis and Administrative Assistant S. Dickinson (GLC) for proofreading the manuscript. We acknowledge the Captain, crew, and scientists aboard the U.S. EPA R/V Lake Guardian who helped to collect and produce the data presented here including marine technicians M. Morgan, K. Johncock, A. Hamm, and H. Reed, scientists M. Wick and M. Pawlowski (Oak Ridge Institute for Science and Education), M. Bakowska, and N. Mrozinska (Kazimierz Wielki University in Bydgoszcz, Poland), S. Shivarudrappa (GLC), L. Katona (Wright State University), J. Connolly (Cornell University), and P. Glyshaw (NOAA). We thank A. Elgin and colleagues (NOAA) who collected samples from three benthic stations in western basin. We are grateful to the Editor and two anonymous reviewers whose thorough comments and suggestions helped improve and clarify this manuscript. The views expressed in this publication are those of the authors and do not necessarily represent the views or policies of the U.S. EPA. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. EPA.

Funding

This research was supported by the Great Lakes Restoration Initiative via a cooperative agreement with Cornell University, Department of Natural Resources under Prime Agreement Award GL 00E02259-2 from the U.S. EPA “Great Lakes Long-Term Biological Monitoring Program 2017-2022” (PI L. Rudstam, Co-PIs Burlakova & Karatayev).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyubov E. Burlakova.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest and no competing interests to declare regarding the publication of this article, as well as no relevant financial or non-financial interests to disclose. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Koen Martens, Sidinei M. Thomaz, Diego Fontaneto & Luigi Naselli-Flores / Emerging Trends in Aquatic Ecology IV.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burlakova, L.E., Karatayev, A.Y., Mehler, K. et al. Exploring Great Lakes benthoscapes: can we visually delineate hypoxic habitats?. Hydrobiologia 850, 1331–1353 (2023). https://doi.org/10.1007/s10750-022-04821-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04821-z

Keywords

Navigation