Skip to main content

Advertisement

Log in

Competitive dominance and broad environmental tolerance favour invasive success of Nile tilapia

Hydrobiologia Aims and scope Submit manuscript

Abstract

Invasive species cause substantial changes to the biodiversity of freshwater systems. The African Nile tilapia (Oreochromis niloticus) is now widely distributed in tropical freshwaters globally. Despite indications that feral populations can influence native species through competitive effects, direct evidence of competition between Nile tilapia and native species is rare. Moreover, it is not clear if environmental variables such as temperature and oxygen concentration modulate competition. Here, interactions between Nile tilapia and the native Mayan cichlid (Mayaheros urophthalmus) were studied in experimental mesocosms in south-eastern Mexico. We found that Nile tilapia was the more active and aggressive of the two species, and their movement was only weakly influenced by temperature and oxygen concentration. By contrast, movement of the Mayan cichlid was strongly predicted by the movement and aggression of Nile tilapia, and the Mayan cichlid showed a steep decline in behaviours with increased water temperature and reduced oxygen. Our results suggest that broad environmental tolerance of the intrinsically aggressive Nile tilapia provides it with an advantage over native species. Collectively these traits may help to exacerbate its invasive success as those environmental conditions become more commonplace in a changing world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

https://doi.org/10.5281/zenodo.5569202.

Code availability

https://doi.org/10.5281/zenodo.5569202.

References

  • Adams, A. J. & R. K. Wolfe, 2007. Occurrence and persistence of non-native Cichlasoma urophthalmus (family Cichlidae) in estuarine habitats of south-west Florida (USA): environmental controls and movement patterns. Marine and Freshwater Research 58: 921–930.

    Article  Google Scholar 

  • Bates, A. E., C. M. McKelvie, C. J. B. Sorte, S. A. Morley, N. A. R. Jones, J. A. Mondon, T. J. Bird & G. Quinn, 2013. Geographical range, heat tolerance and invasion success in aquatic species. Proceedings of the Royal Society of London B: Biological Sciences 280: 20131958.

    Google Scholar 

  • Bartoń, K. 2020. MuMIn: Multi-Model Inference. R package version 1.43.17 [available on internet at https://CRAN.R-project.org/package=MuMIn].

  • Burggren, W. W., J. C. Arriaga-Bernal, P. M. Méndez-Arzate & J. F. Méndez-Sánchez, 2019. Metabolic physiology of the Mayan cichlid fish (Mayaheros uropthalmus): re-examination of classification as an oxyconformer. Comparative Biochemistry and Physiology Part a: Molecular and Integrative Physiology 237: 110538.

    Article  CAS  Google Scholar 

  • Canonico, G. C., A. Arthington, J. K. McCrary & M. L. Thieme, 2005. The effects of introduced tilapias on native biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 463–483.

    Article  Google Scholar 

  • Carmona-Catot, G., K. Magellan & E. García-Berthou, 2013. Temperature-specific competition between invasive mosquitofish and an endangered cyprinodontid fish. PLoS ONE 8: e54734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo, C., 2019. Intent of increasing tilapia production in Chetumal. Novedades de Quintana Roo [available on internet at https://sipse.com/novedades/pretenden-aumentar-produccion-de-tilapia-342348.html].

  • Champneys, T., M. J. Genner & C. C. Ioannou, 2021. Invasive Nile tilapia dominates a threatened indigenous tilapia in competition over shelter. Hydrobiologia 848: 3747–3762.

    Article  Google Scholar 

  • Clark, T. D., E. Sandblom & F. Jutfelt, 2013. Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. Journal of Experimental Biology 216: 2771–2782.

    Article  Google Scholar 

  • Cuddington, K. & A. Hastings, 2004. Invasive engineers. Ecological Modelling 178: 335–347.

    Article  Google Scholar 

  • Duenas, M. A., D. J. Hemming, A. Roberts & H. Diaz-Soltero, 2021. The threat of invasive species to IUCN-listed critically endangered species: a systematic review. Global Ecology and Conservation 26: e01476.

    Article  Google Scholar 

  • Didham, R. K., J. M. Tylianakis, M. A. Hutchison, R. M. Ewers & N. J. Gemmell, 2005. Are invasive species the drivers of ecological change? Trends in Ecology and Evolution 20: 470–474.

    Article  PubMed  Google Scholar 

  • Doherty, T. S., A. S. Glen, D. G. Nimmo, E. G. Ritchie & C. R. Dickman, 2016. Invasive predators and global biodiversity loss. Proceedings of the National Academy of Sciences of the USA 113: 11261–11265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fick, S. E. & R. J. Hijmans, 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302–4315.

    Article  Google Scholar 

  • Ficke, A. D., C. A. Myrick & L. J. Hansen, 2007. Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries 17: 581–613.

    Article  Google Scholar 

  • Fox, J., & S. Weisberg, 2019. An {R} Companion to Applied Regression, 3rd edn. Sage, Thousand Oaks [available on internet at https://socialsciences.mcmaster.ca/jfox/Books/Companion/].

  • Friard, O. & M. Gamba, 2016. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods in Ecology and Evolution 7: 1325–1330.

    Article  Google Scholar 

  • García-Berthou, E., 2007. The characteristics of invasive fishes: what has been learned so far? Journal of Fish Biology 71(Supplement D): 33–55.

    Article  Google Scholar 

  • Gozlan, R. E., S. St-Hilaire, S. W. Feist, P. Martin & M. L. Kent, 2005. Disease threat to European fish. Nature 435: 1046.

    Article  CAS  PubMed  Google Scholar 

  • Gurevitch, J. & D. K. Padilla, 2004. Are invasive species a major cause of extinctions? Trends in Ecology and Evolution 19: 470–474.

    Article  PubMed  Google Scholar 

  • Hernández, M., E. Gasca-Leyva & A. Milstein, 2014. Polyculture of mixed-sex and male populations of Nile tilapia (Oreochromis niloticus) with the Mayan cichlid (Cichlasoma urophthalmus). Aquaculture 418: 26–31.

    Article  Google Scholar 

  • Hess, S., S. Fischer & B. Taborsky, 2016. Territorial aggression reduces vigilance but increases aggression towards predators in a cooperatively breeding fish. Behaviour 113: 229–235.

    Article  Google Scholar 

  • Hui, W., Z. Xiaowen, W. Haizhen, Q. Jun, X. Pao & L. Ruiwei, 2014. Joint effect of temperature, salinity and pH on the percentage fertilization and hatching of Nile tilapia (Oreochromis niloticus). Aquaculture Research 45: 259–269.

    Article  Google Scholar 

  • Jenny, J. P., P. Francus, A. Normandeau, F. Lapointe, M. E. Perga, A. Ojala, A. Schimmelmann & B. Zolitschka, 2016. Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Global Change Biology 22: 1481–1489.

    Article  PubMed  Google Scholar 

  • Kiesecker, J. M., A. R. Blaustein & C. L. Miller, 2001. Potential mechanisms underlying the displacement of native red-legged frogs by introduced bullfrogs. Ecology 82: 1964–1970.

    Article  Google Scholar 

  • Kolding, J., L. Haug & S. Stefansson, 2008. Effect of ambient oxygen on growth and reproduction in Nile tilapia (Oreochromis niloticus). Canadian Journal of Fisheries and Aquatic Sciences 65: 1413–1424.

    Article  CAS  Google Scholar 

  • Kuznetsova, A., P. B. Brockhoff & R. H. B. Christensen, 2017. lmerTest package: tests in linear mixed effects models. Journal of Statistical Software 82: 1–26.

    Article  Google Scholar 

  • LaManna, J. & P. Eason, 2007. Effects of predator presence on territorial establishment. Behaviour 144: 985–1001.

    Article  Google Scholar 

  • Lovell, S. J., S. F. Stone & L. Fernandez, 2006. The economic impacts of aquatic invasive species: a review of the literature. Agricultural and Resource Economics Review 35: 195–208.

    Article  Google Scholar 

  • Martin, C. W., M. M. Valentine & J. F. Valentine, 2010. Competitive interactions between invasive Nile tilapia and native fish: the potential for altered trophic exchange and modification of food webs. PLoS ONE 5: e14395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Palacios, C. A., C. Chavez-Sanchez, & M. A. Olvera-Novoa, 1993. The potential for culture of the American Cichlidae with emphasis on Cichlasoma urophthalmus. In Muir, J. F & R. J. Roberts (eds), Recent Advances in Aquaculture IV. Blackwell, Oxford: 193–232.

  • Mazerolle, M. J. 2020. AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R package version 2.3-1 [available on internet at https://cran.r-project.org/package=AICcmodavg].

  • McBryan, T. L., T. M. Healy, K. L. Haakons & P. M. Schulte, 2016. Warm acclimation improves hypoxia tolerance in Fundulus heteroclitus. Journal of Experimental Biology 219: 474–484.

    Article  Google Scholar 

  • Mexico Government, 2012. Acuerdo mediante el cual se aprueba la carta nacional acuicola. Diario Oficial de la Federacion, Mexico [available on internet at http://dof.gob.mx/nota_detalle.php?codigo=5313326&fecha=09/09/2013].

  • Njiru, M., J. B. Okeyo-Owuor, M. Muchiri & I. G. Cowx, 2004. Shifts in the food of Nile tilapia, Oreochromis niloticus (L.) in Lake Victoria, Kenya. African Journal of Ecology 42: 163–170.

    Article  Google Scholar 

  • Orr, J. A., R. D. Vinebrooke, M. C. Jackson, K. J. Kroeker, R. L. Kordas, C. Mantyka-Pringle, P. J. Van den Brink, F. De Laender, R. Stoks, M. Holmstrup, C. D. Matthaei, W. A. Monk, M. R. Penk, S. Leuzinger, R. B. Schäfer & J. J. Piggott, 2020. Towards a unified study of multiple stressors: divisions and common goals across research disciplines. Proceedings of the Royal Society b: Biological Sciences 287: 20200421.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oyugi, D. O., J. Cucherousset & J. R. Britton, 2012. Temperature-dependent feeding interactions between two invasive fishes competing through interference and exploitation. Reviews in Fish Biology and Fisheries 22: 499–508.

    Article  Google Scholar 

  • Payne, N. L., J. A. Smith, D. E. van der Meulen, M. D. Taylor, Y. Y. Watanabe, A. Takahashi, T. A. Marzullo, C. A. Gray, G. Cadiou & I. M. Suthers, 2016. Temperature dependence of fish performance in the wild: links with species biogeography and physiological thermal tolerance. Functional Ecology 30: 903–912.

    Article  Google Scholar 

  • Perkins, D. M., G. Yvon-Durocher, B. O. Demars, J. Reiss, D. E. Pichler, N. Friberg, M. Trimmer & G. Woodward, 2012. Consistent temperature dependence of respiration across ecosystems contrasting in thermal history. Global Change Biology 18: 1300–1311.

    Article  Google Scholar 

  • Pörtner, H. O. & R. Knust, 2007. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315: 95–97.

    Article  PubMed  Google Scholar 

  • R Core Team, 2019. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna:

    Google Scholar 

  • Rana, K. J., 1990. Influence of incubation temperature on Oreochromis niloticus (L.) eggs and fry. I. Gross embryology, temperature tolerance and rates of embryonic development. Aquaculture 87: 165–181.

    Article  Google Scholar 

  • Sanches, F. H. C., C. A. Miyai, T. M. Costa, R. A. Christofoletti, G. L. Volpato & R. E. Barreto, 2012. Aggressiveness overcomes body-size effects in fights staged between invasive and native fish species with overlapping niches. PLoS ONE 7: e29746.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmitter-Soto, J. J. & C. I. Caro, 1997. Distribution of tilapia, Oreochromis mossambicus (Perciformes: Cichlidae), and water body characteristics in Quintana Roo, Mexico. Revista De Biología Tropical 45: 1257–1261.

    Google Scholar 

  • Schofield, P. J., W. F. Loftus, R. M. Kobza, M. I. Cook & D. H. Slone, 2010. Tolerance of nonindigenous cichlid fishes (Cichlasoma urophthalmus, Hemichromis letourneuxi) to low temperature: laboratory and field experiments in south Florida. Biological Invasions 12: 2441–2457.

    Article  Google Scholar 

  • Schofield, P. J., W. F. Loftus & J. A. Fontaine, 2009. Salinity effects on behavioural response to hypoxia in the non-native Mayan cichlid Cichlasoma urophthalmus from Florida Everglades wetlands. Journal of Fish Biology 74: 1245–1258.

    Article  CAS  PubMed  Google Scholar 

  • Smith, J. E., N. N. Price, C. E. Nelson & A. F. Haas, 2013. Coupled changes in oxygen concentration and pH caused by metabolism of benthic coral reef organisms. Marine Biology 160: 2437–2447.

    Article  CAS  Google Scholar 

  • Stauffer, J. R. & S. E. Boltz, 1994. Effect of salinity on the temperature preference and tolerance of age-0 Mayan Cichlids. Transactions of the American Fisheries Society 123: 101–107.

    Article  Google Scholar 

  • Vitousek, P. M., C. M. D’antonio, L. L. Loope, M. Rejmanek & R. Westbrooks, 1997. Introduced species: a significant component of human-caused global change. New Zealand Journal of Ecology 21: 1–16.

    Google Scholar 

  • Webster, M. M., A. J. W. Ward & P. J. B. Hart, 2009. Individual boldness affects interspecific interactions in sticklebacks. Behavioral Ecology and Sociobiology 63: 511–520.

    Article  Google Scholar 

  • Wing, J. D. B., T. S. Champneys & C. C. Ioannou, 2021. The impact of turbidity on foraging and risk taking in the invasive Nile tilapia (Oreochromis niloticus) and a threatened native cichlid (Oreochromis amphimelas). Behavioral Ecology and Sociobiology 75: 49.

    Article  Google Scholar 

  • Whitney, K. D. & C. A. Gabler, 2008. Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Diversity and Distributions 14: 569–580.

    Article  Google Scholar 

  • Worthington, E. B. & R. Lowe-McConnell, 1994. African lakes reviewed: creation and destruction of biodiversity. Environmental Conservation 21: 199–213.

    Article  Google Scholar 

  • Xie, S., K. Zheng, J. Chen, Z. Zhang, X. Zhu & Y. Yang, 2011. Effect of water temperature on energy budget of Nile tilapia, Oreochromis niloticus. Aquaculture Nutrition 17: 683–690.

    Article  Google Scholar 

  • Zambrano, L., E. Martínez-Meyer, N. Menezes & A. T. Peterson, 2006. Invasive potential of common carp (Cyprinus carpio) and Nile tilapia (Oreochromis niloticus) in American freshwater systems. Canadian Journal of Fisheries and Aquatic Sciences 63: 1903–1910.

    Article  Google Scholar 

  • Zamora, J. 2018. Quintana Roo, the main producer of Tilapia in Mexico. Novedades de Quintana Roo [available on internet at https://sipse.com/novedades/produccion-tilapia-quintana-roo-calidad-superior-conapesca-mexico-pesca-exportacion-312516.html].

Download references

Acknowledgements

We thank Karlos Velazques for his support during the experimental trials. We are grateful to S. Mariani, M. Yallop, anonymous reviewers and the editors for useful comments.

Funding

CONACYT (Consejo Nacional de Ciencia y Tecnología) Studentship to CAGJ.

Author information

Authors and Affiliations

Authors

Contributions

CAGJ, CCI and MJG designed the experiment, CAGJ conducted the experiment and collected the data, CAGJ and MJG analysed the data, CAGJ and MJG wrote the first draft paper, CAGJ, CCI and MJG worked on subsequent drafts.

Corresponding author

Correspondence to Carlos A. Gracida-Juárez.

Ethics declarations

Conflict of interest

None.

Ethical approval

The experimental work was approved by the Animal Welfare and Ethics Review Board of the University of Bristol (UIN Code UB/17/055).

Additional information

Handling editor: Fernando M. Pelicice

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gracida-Juárez, C.A., Ioannou, C.C. & Genner, M.J. Competitive dominance and broad environmental tolerance favour invasive success of Nile tilapia. Hydrobiologia 849, 1161–1176 (2022). https://doi.org/10.1007/s10750-021-04778-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04778-5

Keywords

Navigation