Skip to main content

Advertisement

Log in

Effects of hydrology on the movements of a large-bodied predator in a managed freshwater marsh

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Wetlands are dynamic environments where aquatic organisms are affected by both predictable and unpredictable changes in hydrology. Understanding how abundant large-bodied predators respond to these changes is especially important in context of wetland restoration. We used satellite telemetry to investigate how individual (e.g., sex, size, body condition) and environmental factors influenced movement behaviors of American Alligators [Alligator mississippiensis (Daudin, 1801)] in a managed freshwater marsh ecosystem of the Florida Everglades. We quantified space use, movement activity, and habitat selection of animals (n = 18) across hydrological seasons and the breeding period and performed stable isotope analyses to infer seasonal dietary changes. Though individual animals did not change space use across seasons, movement activity was lower for some individuals and δ15 Nitrogen isotopic values were higher in the dry season possibly reflecting greater foraging opportunities when marsh dry down concentrates prey. Alligators may be using canals as foraging sites which have abundant prey year-round and shallow sawgrass habitats as spots for basking. Based on our findings, ongoing restoration of water inflow will likely change the distribution and movement behavior of alligators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Armitage, A. R., S. M. Jensen, J. E. Yoon & R. F. Ambrose, 2007. Wintering shorebird assemblages and behavior in restored tidal wetlands in southern California. Restoration Ecology 15(1): 139–148.

    Google Scholar 

  • Atkinson, C. L., K. A. Capps, A. T. Rugenski & M. J. Vanni, 2017. Consumer-driven nutrient dynamics in freshwater ecosystems: from individuals to ecosystems. Biological Reviews 92: 2003–2023.

    PubMed  Google Scholar 

  • Baines, C. B., S. J. McCauley & L. Rowe, 2015. Dispersal depends on body condition and predation risk in the semi-aquatic insect Notonecta undulata. Ecology and Evolution 5(12): 2307–2316.

    PubMed  PubMed Central  Google Scholar 

  • Beerens, J. M., J. C. Trexler & C. P. Catano, 2017. Predicting wading bird and aquatic faunal responses to ecosystem restoration scenarios. Restoration Ecology 25(51): S86–S98.

    Google Scholar 

  • Bivand, R. & N. Lewin-Koh. 2019. Maptools: tools for handling spatial objects. R package version 0.9-5. https://CRAN.R-project.org/package=maptools.

  • Brandt, L. A., J. S. Beauchamp, B. M. Jeffery, M. S. Cherkiss & F. J. Mazzotti, 2016. Fluctuating water depths affect American Alligator (Alligator mississippiensis) body condition in the Everglades, Florida, USA. Ecological Indicators 67: 441–450.

    Google Scholar 

  • Brien, M., G. Webb, C. Manolis, G. Lindner & D. Ottoway, 2010. A method for attaching tracking devices to crocodilians. Herpetological Review 41: 305–308.

    Google Scholar 

  • Bruland, G. L., S. Grunwalk, T. Z. Osborne, K. R. Reddy & S. Newman, 2006. Spatial distribution of soil properties in water conservation area 3 of the Everglades. Soil Science Society of America Journal 70: 1662–1676.

    CAS  Google Scholar 

  • Brusati, E. D., P. J. DuBowy & T. E. Lacher, 2001. Comparing ecological functions of natural and created wetlands for shorebirds in Texas. Waterbirds 24: 371–380.

    Google Scholar 

  • Burnham, K. & D. Anderson, 2002. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach, 2nd ed. Springer, New York:

    Google Scholar 

  • Byrne, M. E., J. C. McCoy, J. W. Hinton, M. J. Chamberlain & B. A. Collier, 2014. Using dynamic Brownian bridge movement modelling to measure temporal patterns of habitat selection. Journal of Animal Ecology 83: 1234–1243.

    PubMed  Google Scholar 

  • Chabreck, R. H., 1963. Methods of capturing, marking, and sexing alligators. Proceedings of the Southeastern Association of Game and Fish Commissioners 17: 47–50.

    Google Scholar 

  • Chick, J. H., C. R. Ruetz III. & J. C. Trexler, 2004. Spatial scale and abundance patterns of large fish communities in freshwater marshes of the Florida Everglades. Wetlands 24: 652–664.

    Google Scholar 

  • Dalrymple, G. H., 1996. Growth of American Alligators in the Shark Valley region of Everglades National Park. Copeia 1996: 212–216.

    Google Scholar 

  • DeAngelis, D. L., W. F. Loftus, J. C. Trexler & R. E. Ulanowicz, 1997. Modeling fish dynamics and effects of stress in a hydrologically pulsed ecosystem. Journal of Aquatic Ecosystem Stress and Recovery 6: 1–13.

    Google Scholar 

  • Delany, M. F. & C. Abercrombie, 1986. American Alligator food habits in northcentral Florida. Journal of Wildlife Management 50: 348–353.

    Google Scholar 

  • Duever, M. J., J. F. Meeder, L. C. Meeder & J. M. McCollom, 1994. The climate of South Florida and its role in shaping the Everglades ecosystem. In Davis, S. M. & J. C. Ogden (eds), Everglades: The Ecosystem and Its Restoration St. Lucie Press, Boca Raton, FL: 225–248.

    Google Scholar 

  • Erwin, K. L., 2009. Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecology and Management 17: 71–84.

    Google Scholar 

  • Estes, J. A., M. Heithaus, D. J. McCauley, D. B. Rasher & B. Worm, 2016. Megafaunal impacts on structure and function of ocean ecosystems. Annual Review of Environment and Resources 41: 83–116.

    Google Scholar 

  • Fieberg, J. & C. O. Kochanny, 2005. Quantifying home-range overlap: the importance of the utilization distribution. Journal of Wildlife Management 69(4): 1346–1359.

    Google Scholar 

  • Fujisaki, I., K. G. Rice, L. G. Pearlstine & F. J. Mazzotti, 2009. Relationship between body condition of American Alligators and water depth in the Everglades, Florida. Hydrobiologia 635: 329–338.

    Google Scholar 

  • Fujisaki, I., K. M. Hart, F. J. Mazzotti, M. S. Cherkiss, A. R. Sartain, B. M. Jeffery, J. S. Beauchamp & M. Denton, 2014. Home range and movements of American Alligators (Alligator mississippiensis) in an estuary habitat. Animal Biotelemetry 2: 1–10.

    Google Scholar 

  • Fujisaki, I., K. M. Hart, M. S. Cherkiss, F. J. Mazzotti, J. S. Beauchamp, B. M. Jeffery & L. A. Brandt, 2016. Spatial and temporal variability in estuary habitat use by American Alligators. Estuaries and Coasts 39: 1561–1569.

    CAS  Google Scholar 

  • Gawlik, D. E., 2006. The role of wildlife science in wetland ecosystem restoration: lessons from the Everglades. Ecological Engineering 26: 70–83.

    Google Scholar 

  • Goodwin, T. M. & W. R. Marion, 1979. Seasonal activity ranges and habitat preferences of adult alligators in a north-central Florida lake. Journal of Herpetology 13: 157–164.

    Google Scholar 

  • Goss, W. G., W. F. Loftus & J. C. Trexler, 2014. Seasonal fish dispersal in ephemeral wetlands of the Florida Everglades. Wetlands 34: S147–S157.

    Google Scholar 

  • Jetz, W., C. Carbone, J. Fulford & J. H. Brown, 2004. The scaling of animal space use. Science 306: 266–268.

    CAS  PubMed  Google Scholar 

  • Joanen, T. & L. McNease, 1970. A telemetric study of nesting female alligators on Rockefeller Refuge, Louisiana. Proceedings of the Southeastern Association of Game and Fish Commissioners 20: 175–193.

    Google Scholar 

  • Joanen, T. & L. McNease, 1972. A telemetric study of adult male alligators on Rockefeller Refuge, Louisiana. Proceedings of the Southeastern Association of Game and Fish Commissioners 26: 252–275.

    Google Scholar 

  • Johnson, C. R., 1973. Behaviour of the Australian crocodiles, Crocodylus johnstoni and C. porosus. Zoological Journal of Linneus Society 52: 315–336.

    Google Scholar 

  • Jordan, F., H. L. Jelks & W. M. Kitchens, 1997. Habitat structure and plant community composition in a northern Everglades wetland community. Wetlands 17: 275–283.

    Google Scholar 

  • Julian, P., 2013. Mercury hotspot identification in water conservation area 3, Florida, USA. Annals of GIS 19(2): 79–88.

    Google Scholar 

  • Kay, W. R., 2004. Movements and home ranges of radio-tracked Crocodylus porosus in the Cambridge Gulf region of Western Australia. Wildlife Research 31: 495–508.

    Google Scholar 

  • Kie, J. G., J. Matthiopoulos, J. Fieberg, R. A. Powell, F. Cagnacci, M. S. Mitchell, J. Gaillard & P. R. Moorcroft, 2010. The home range concept: are traditional estimators still relevant with modern telemetry technology? Philosophical Transactions of the Royal Society B 365: 2221–2231.

    Google Scholar 

  • Kranstauber, B., R. Kays, S. D. Lapoint, M. Wikelski & K. Safi, 2012. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. Journal of Animal Ecology 81: 738–746.

    PubMed  Google Scholar 

  • Kranstauber, B., M. Smolla & A. K. Scharf. 2019. Move: visualizing and analyzing animal track data. R package version 3.2.2. https://CRAN.R-project.org/package=move.

  • Kushlan, J. A., 1974. Observations on the role of the American Alligator in the Southern Flordia wetlands. Copeia 4: 993–996.

    Google Scholar 

  • Lance, V. A., 2003. Alligator physiology and life history: the importance of temperature. Experimental Gerontology 38(7): 801–805.

    PubMed  Google Scholar 

  • Lang, J. W., 1987. Crocodilian behaviour: implications for management. In Webb, G., S. C. Manolis & P. J. Whitehead (eds), Wildlife Management: Crocodiles and Alligators Surrey Beatty & Sons, Sydney, Australia: 273–293.

    Google Scholar 

  • Lindell, C. A., 2008. The value of animal behavior in evaluations of restoration success. Restoration Ecology 16(2): 197–203.

    Google Scholar 

  • Manly, B. F. J., L. L. McDonald, D. L. Thomas, T. L. McDonald & W. P. Erickson, 2002. Resource Selection by Animals—Statistical Design and Analysis for Field Studies, 2nd ed. Kluwer Academic Publishers, London:

    Google Scholar 

  • Mazzotti, F. J. & L. A. Brandt, 1994. Ecology of the American Alligator in a seasonally flucutating environment. In Davis, S. M. & W. A. Park (eds), Everglades: The Ecosystem and Its Restoration. St. Lucie Press, Boca Raton, FL.

    Google Scholar 

  • Mazzotti, F. J., F. R. Best, L. A. Brandt, M. S. Cherkiss, B. M. Jeffery & K. G. Rice, 2009. Alligators and crocodiles as indicators for restoration of Everglades ecosystems. Ecological Indicators 9(6): S137–S149.

    Google Scholar 

  • McClain, M. E., E. W. Boyer, C. L. Dent, S. E. Gergel, N. B. Grimm, P. M. Groffman, S. C. Hart, J. W. Harvey, C. A. Johnston, E. Mayorga, W. H. McDowell & G. Pinay, 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6: 301–312.

    CAS  Google Scholar 

  • McMahon, L. A., J. L. Rachlow, L. A. Shipley, J. S. Forbey & T. R. Johnson, 2017. Habitat selection differs across hierarchical behaviors: selection of patches and intensity of patch use. Ecosphere 8(11): e01993.

    Article  Google Scholar 

  • Mitsch, W. J. & J. G. Gosselink, 2015. Wetlands, 5th ed. Wiley, Hoboken, NJ:

    Google Scholar 

  • National Academies of Sciences, Engineering, and Medicine (NASEM), 2016. Progress Toward Restoring the Everglades: The Sixth Biennial Review—2016, The National Academies Press, Washington, DC: https://doi.org/10.17226/23672.

    Book  Google Scholar 

  • National Oceanic and Atmospheric Administration (NOAA). 2019. National Centers for Environmental Information. https://www.ncei.noaa.gov/. Accessed 20 July 2019.

  • Nifong, J. C. & B. R. Silliman, 2013. Impacts of a large-bodied, apex predator (Alligator mississippiensis) on salt marsh food webs. Journal of Experimental Marine Biology and Ecology 440: 185–191.

    Google Scholar 

  • Nifong, J. C., R. L. Nifong, B. R. Silliman, R. H. Lowers, L. J. Guillette Jr., J. M. Ferguson, M. Welsh, K. Aberbathy & G. Marshall, 2014. Animal-borne imaging reveals novel insights into the foraging behaviors and diel activity of a large-bodied apex predator, the American Alligator. PLoS ONE 9(1): e83953.

    PubMed  PubMed Central  Google Scholar 

  • Ofstad, E. G., I. Herfindal, E. J. Solberg & B. E. Sæther, 2016. Home ranges, habitat and body mass: simple correlates of home range size in ungulates. Proceedings of the Royal Society B 283: 20161234.

    PubMed  PubMed Central  Google Scholar 

  • Ontkos, A. T., 2018. Habitat use of three abundant predatory fish species in the freshwater Everglades. Florida International University, Master’s Thesis. 66 pp.

  • Parkos, J. J., C. R. Ruetz & J. C. Trexler, 2011. Disturbance regime and limits on benefits of refuge use for fishes in a fluctuating hydroscape. Oikos 120: 1519–1530.

    Google Scholar 

  • Parkos, J. J., L. F. Wolski, W. F. Loftus & J. C. Trexler, 2015. Dynamic movement patterns of Florida gar within a fluctuating hydroscape. Copeia 103(1): 132–140.

    Google Scholar 

  • Platt, S. G., T. R. Rainwater, J. B. Thorbjanarson, A. G. Finger, T. A. Anderson & S. T. McMurry, 2011. Size estimation, morphometrics, sex ratio, sexual size dimorphism, and biomass of Crocodylus acutus in the coastal zone of Belize. Salamandra 47: 179–192.

    Google Scholar 

  • Rehage, J. S. & J. C. Trexler, 2006. Assessing the net effect of anthropogenic disturbance on aquatic communities in wetlands: community structure relative to distance from canals. Hydrobiologia 569: 359–373.

    Google Scholar 

  • Rehage, J. S. & W. F. Loftus, 2007. Seasonal fish community variation in headwater mangrove creeks in the southwestern Everglades: an examination of their role as dry-down refuges. Bulletin of Marine Science 80: 625–645.

    Google Scholar 

  • Rosenblatt, A. E. & M. R. Heithaus, 2011. Does variation in movement tactics and trophic interactions among American Alligators create habitat linkages? The Journal of Animal Ecology 80: 786–798.

    PubMed  Google Scholar 

  • Rosenblatt, A. E. & M. R. Heithaus, 2013. Slow isotope turnover rates and low discrimination values in the American Alligator: implications for interpretation of ectotherm stable isotope data. Physiological and Biochemical Zoology 86: 137–148.

    CAS  PubMed  Google Scholar 

  • Rosenblatt, A. E., J. C. Nifong, M. R. Heithaus, F. J. Mazzotti, M. S. Cherkiss, B. M. Jeffery, R. M. Elsey, R. A. Decker, B. R. Silliman, L. J. Guillette, R. H. Lowers & J. C. Larson, 2015. Factors affecting individual foraging specialization and diet stability across the range of a large “generalist” apex predator. Oecologia 178: 5–16.

    PubMed  Google Scholar 

  • Said, S. & S. Servanty, 2005. The influence of landscape structure on female roe deer home-range size. Landscape Ecology 20: 1003–1012.

    Google Scholar 

  • Sklar, F. H., M. J. Chimney, S. Newman, P. McCormick, D. Gawlik, S. Miao, C. McVoy, W. Said, J. Newman, C. Coronado, G. Crozier, M. Korvela & K. Rutchey, 2005. The ecological–societal underpinnings of Everglades restoration. Frontiers in Ecology and the Environment 3: 161–169.

    Google Scholar 

  • South Florida Water Management District (SFWMD). 2019. 2014–2016 Land cover land use database. https://geo-sfwmd.hub.arcgis.com/datasets/sfwmd-land-cover-land-use-2014-2016. Accessed 30 October 2019.

  • Strickland, B. A., F. J. Vilella & J. L. Belant, 2016. Scale-dependent habitat selection and size-based dominance in adult male American Alligators. PLoS ONE 11: 1–16.

    Google Scholar 

  • Subalusky, A. L., L. A. Fitzgerald & L. L. Smith, 2009. Ontogenetic niche shifts in the American Alligator establish functional connectivity between aquatic systems. Biological Conservation 142: 1507–1514.

    Google Scholar 

  • Thieurnmel, B. & A. Elmarchraoui, 2019. suncalc: compute sun position, sunlight phases, moon position, and lunar phase. R package version 0.5.0. https://CRAN.R-project.org/package=suncalc.

  • Thomas, D. L. & E. J. Taylor, 1990. Study designs and tests for comparing resource use and availability. Journal of Wildlife Management 54: 322–330.

    Google Scholar 

  • Trent, T. T. & O. J. Rongstad, 1974. Home range and survival of cottontail rabbits in southwestern Wisconsin. The Journal of Wildlife Management 38(3): 459–472.

    Google Scholar 

  • Trexler, J. C., W. F. Loftus, F. Jordan, J. H. Chick, K. H. Kandl, T. C. McElroy & O. L. Bass Jr., 2002. Ecological scale and its implications for freshwater fishes in the Florida Everglades. In Porter, J. W. & K. G. Porter (eds), The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Source Book CRC Press, Boca Raton, FL: 153–181.

    Google Scholar 

  • Trexler, J. C., W. F. Loftus & S. Perry, 2005. Disturbance frequency and community structure in a twenty-five year intervention study. Oecologia 145: 140–152.

    PubMed  Google Scholar 

  • United States Geological Survey (USGS). 2019. Everglades Depth Estimation Network database. https://sofia.usgs.gov/eden/. Accessed 26 September 2019.

  • VanderMerwe, J., E. C. Hellgren & E. M. Schauber, 2016. Variation in metapopulation dynamics of a wetland mammal: the effect of hydrology. Ecosphere 7(3): e01275.

    Google Scholar 

  • Williams, A. J. & J. C. Trexler, 2006. A preliminary analysis of the correlation of food-web characteristics with hydrology and nutrient gradients in the southern Everglades. Hydrobiologia 569: 493–504.

    CAS  Google Scholar 

  • Wolfe, J., D. K. Bradshaw & R. H. Chabreck, 1987. Alligator feeding habitats: new data and a review. Northeast Gulf Science 9: 1–8.

    Google Scholar 

  • Zedler, J. B., 2000. Progress in wetland restoration ecology. Trends in Ecology and Evolution 15(10): 402–407.

    CAS  PubMed  Google Scholar 

  • Zuur, A., E. N. Ieno, N. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed Effects Models and Extensions in Ecology with R, Springer, New York:

    Google Scholar 

Download references

Acknowledgements

We are grateful to many field and lab volunteers that assisted with capture and sample processing. Adam Rosenblatt’s pioneering work directed the line of investigation for this project. Joel Trexler’s enthusiasm and input into the work was tremendously valuable. Mo van Zinnicq Bergmann provided draft R code that was helpful for initial analyses. Katherine Strickland provided graphic design assistance. This is a contribution from the Center for Coastal Oceans Research in the Institute for Water and Environment at Florida International University.

Funding

This work was supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Grant #DEB-1237517 and DEB-1832229. BAS was supported by the University Graduate School and Department of Biological Sciences assistantships at Florida International University as well as an Everglades Foundation fellowship. National Science Foundation, DEB-1237517, Michael R. Heithaus, DEB-1832229, Michael R. Heithaus.

Author information

Authors and Affiliations

Authors

Contributions

FJM, MRH, KG, and JSB: Study conception and data collection. BAS: Data analysis. BAS: First draft of manuscript. All authors commented on versions of the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Bradley A. Strickland.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Research and animal procedures were conducted under the auspices of protocol #IACUC-15–044-CR01 from the Institutional Animal Care and Use Committee of the University of Florida and in accordance with sampling permits #EVER-2013-SCI-0020 and #EVER-2015-SCI-0036 granted by Everglades National Park.

Additional information

Handling editor: Lee B. Kats

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 135 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strickland, B.A., Gastrich, K., Beauchamp, J.S. et al. Effects of hydrology on the movements of a large-bodied predator in a managed freshwater marsh. Hydrobiologia 849, 861–878 (2022). https://doi.org/10.1007/s10750-021-04764-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04764-x

Keywords

Navigation