Skip to main content
Log in

Size-dependent susceptibility of lake phytoplankton to light stress: an implication for succession of large green algae in a deep oligotrophic lake

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Field observations of the population dynamics and measurements of photophysiology in Lake Biwa were conducted by size class (< vs. > 30 μm) from early summer to autumn to investigate the relationships between susceptibility to light stress and cell size. Also, a nutrient bioassay was conducted to clarify whether the growth rate and photosystem II (PSII) photochemistry of small and large phytoplankton are limited by nutrient availability. Large phytoplankton, which have lower intracellular Chl-a concentrations, had higher maximum PSII photochemical efficiency (Fv/Fm) but lower non-photochemical quenching (NPQNSV) than small phytoplankton under both dark and increased light conditions. The nutrient bioassay revealed that the PSII photochemistry of small phytoplankton was restricted by N and P deficiency at the pelagic site even at the end of the stratification period, while that of large phytoplankton was not. These results suggest that large phytoplankton have lower susceptibility to PSII photodamage than small phytoplankton due to lower intracellular Chl-a concentrations. The size dependency of susceptibility to PSII photoinactivation may play a key role in large algal blooms in oligotrophic water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

reproduced from the website of the Geospatial Information Authority of Japan (https://www.gsi.go.jp) and supplemented with latitude and longitude lines. This map is licensed under the Government of Japan Standard Terms of Use (Ver. 2.0), which are compatible with the Creative Commons Attribution License 4.0 (CC BY 4.0)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in this published article.

Abbreviations

F :

Fluorescence yield under actinic light

F m :

Maximum PSII fluorescence yield in dark-adapted state

F m :

Maximum PSII fluorescence yield in light-adapted state

F O :

Minimum PSII fluorescence yield in dark-adapted state

F O :

Minimum PSII fluorescence yield in light-adapted state

F q :

Variable PSII fluorescence yield in light-adapted state (Fm − F)

F v :

Maximum variable PSII fluorescence yield in dark-adapted state (Fm − FO)

F v :

Variable PSII fluorescence yield under actinic light (Fm − FO)

F v /F m :

Maximum PSII photochemical efficiency in dark-adapted state

F q /F m :

Effective PSII photochemical efficiency in light-adapted state

NPQ NSV :

Normalized Stern–Volmer coefficient of quenching (FO/Fv)

References

  • Abonyi, A., É. Ács, A. Hidas, I. Grigorszky, G. Várbíró, G. Borics & K. T. Kiss, 2018. Functional diversity of phytoplankton highlights long-term gradual regime shift in the middle section of the Danube River due to global warming, human impacts and oligotrophication. Freshwater Biology 63: 456–472.

    Google Scholar 

  • Agustí, S., 1991. Light environment within dense algal populations: cell size influences on self-shading. Journal of Plankton Research Oxford Academic 13: 863–871.

    Google Scholar 

  • Agusti, S. & E. J. Phlips, 1992. Light absorption by cyanobacteria: implications of the colonial growth form. Limnology and Oceanography 37: 434–441.

    Google Scholar 

  • Alderkamp, A.-C., H. J. W. de Baar, R. J. W. Visser & K. R. Arrigo, 2010. Can photoinhibition control phytoplankton abundance in deeply mixed water columns of the Southern Ocean? Limnology and Oceanography 55: 1248–1264.

    CAS  Google Scholar 

  • Álvarez, E., X. Morán, Á. López-Urrutia & E. Nogueira, 2016. Size-dependent photoacclimation of the phytoplankton community in temperate shelf waters (southern Bay of Biscay). Marine Ecology Progress Series 543: 73–87.

    Google Scholar 

  • Banse, K., 1976. Rates of growth, respiration and photosynthesis of unicellular algae as related to cell size—a review1,2. Journal of Phycology 12: 135–140.

    Google Scholar 

  • Becker, B., 2007. Function and evolution of the vacuolar compartment in green algae and land plants (Viridiplantae). International Review of Cytology 264: 1–24.

    CAS  PubMed  Google Scholar 

  • Branco, P., M. Egas, S. R. Hall & J. Huisman, 2020. Why do phytoplankton evolve large size in response to grazing? American Naturalist 195: E20–E37.

    Google Scholar 

  • Bullejos, F. J., P. Carrillo, M. V. - Argaiz & J.M.M.-S. Ncheza, 2010. Roles of phosphorus and ultraviolet radiation in the strength of phytoplankton-zooplankton coupling in a Mediterranean high mountain lake. Limnology and Oceanography 55: 2549–2562.

    CAS  Google Scholar 

  • Campbell, D. A. & J. Serôdio, 2020. Photoinhibition of photosystem II in phytoplankton: processes and patterns. In Larkum, A. W. D., A. R. Grossman & J. A. Raven (eds), Photosynthesis in Algae: Biochemical and Physiological Mechanisms Springer, Cham: 329–365.

    Google Scholar 

  • Cermeño, P., P. Estévez-Blanco, E. Marañón & E. Fernóndez, 2005. Maximum photosynthetic efficiency of size-fractionated phytoplankton assessed by 14C uptake and fast repetition rate fluorometry. Limnology and Oceanography 50: 1438–1446.

    Google Scholar 

  • Cosgrove, J. & M. A. Borowitzka, 2010. Chlorophyll fluorescence terminology: an introduction. In Suggett, D. J., O. Prášil & M. A. Borowitzka (eds), Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications Springer, Dordrecht: 1–17.

    Google Scholar 

  • Duyens, L. N. M., 1956. The flattering of the absorption spectrum of suspensions, as compared to that of solutions. Biochimica Et Biophysica Acta 19: 1–12.

    Google Scholar 

  • Edwards, K. F., C. A. Klausmeier & E. Litchman, 2011. Evidence for a three-way trade-off between nitrogen and phosphorus competitive abilities and cell size in phytoplankton. Ecology 92: 2085–2095.

    PubMed  Google Scholar 

  • Falkowski, P. G. & M. J. Oliver, 2007. Mix and match: how climate selects phytoplankton. Nature Reviews Microbiology 5: 813–819.

    CAS  PubMed  Google Scholar 

  • Finkel, Z. V., 2001. Light absorption and size scaling of light-limited metabolism in marine diatoms. Limnology and Oceanography 46: 86–94.

    CAS  Google Scholar 

  • Finkel, Z. V., J. Beardall, K. J. Flynn, A. Quigg, T. A. V. Rees & J. A. Raven, 2010. Phytoplankton in a changing world: cell size and elemental stoichiometry. Journal of Plankton Research 32: 119–137.

    CAS  Google Scholar 

  • Finkel, Z. V., C. J. Vaillancourt, A. J. Irwin, E. D. Reavie & J. P. Smol, 2009. Environmental control of diatom community size structure varies across aquatic ecosystems. Proceedings of the Royal Society B: Biological Sciences 276: 1627–1634.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giannini, M. F. C. & Á. M. Ciotti, 2016. Parameterization of natural phytoplankton photo-physiology: effects of cell size and nutrient concentration. Limnology and Oceanography 61: 1495–1512.

    Google Scholar 

  • Helbling, E. W., P. Carrillo, J. M. Medina-Sánchez, C. Durán, G. Herrera, M. Villar-Argaiz & V. E. Villafañe, 2013. Interactive effects of vertical mixing, nutrients and ultraviolet radiation: in situ photosynthetic responses of phytoplankton from high mountain lakes in Southern Europe. Biogeosciences 10: 1037–1050.

    Google Scholar 

  • Hillebrand, H., C.-D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Google Scholar 

  • Hughes, D. J., D. Varkey, M. A. Doblin, T. Ingleton, A. Mcinnes, P. J. Ralph, V. van Dongen-Vogels & D. J. Suggett, 2018. Impact of nitrogen availability upon the electron requirement for carbon fixation in Australian coastal phytoplankton communities. Limnology and Oceanography 63: 1891–1910.

    CAS  Google Scholar 

  • Jin, P., K. Gao, V. E. Villafañe, D. A. Campbell & E. W. Helbling, 2013. Ocean acidification alters the photosynthetic responses of a coccolithophorid to fluctuating ultraviolet and visible radiation. Plant Physiology American Society of Plant Biologists 162: 2084–2094.

    CAS  Google Scholar 

  • Kagami, M. & J. Urabe, 2001. Phytoplankton growth rate as a function of cell size: an experimental test in Lake Biwa. Limnology 2: 111–117.

    Google Scholar 

  • Kawanabe, H., M. Nishino, & M. Maehata (eds), 2012. Lake Biwa: Interactions Between Nature and People. Springer, Dordrecht

  • Kazama, T., K. Hayakawa, V. S. Kuwahara, K. Shimotori, A. Imai & K. Komatsu, 2021. Development of photosynthetic carbon fixation model using multi-excitation wavelength fast repetition rate fluorometry in Lake Biwa. PLOS ONE 16: e0238013.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kazama, T., J. Urabe, M. Yamamichi, K. Tokita, X. Yin, I. Katano, H. Doi, T. Yoshida & N. G. Hairston, 2021b. A unified framework for herbivore-to-producer biomass ratio reveals the relative influence of four ecological factors. Communications Biology Nature Publishing Group 4: 1–9.

    Google Scholar 

  • Key, T., A. McCarthy, D. A. Campbell, C. Six, S. Roy & Z. V. Finkel, 2010. Cell size trade-offs govern light exploitation strategies in marine phytoplankton. Environmental Microbiology 12: 95–104.

    CAS  PubMed  Google Scholar 

  • Kirk, J. T., 1994. Light and Photosynthesis in Aquatic Ecosystems, Cambridge University Press:

    Google Scholar 

  • Kishimoto, N., S. Ichise, K. Suzuki & C. Yamamoto, 2013. Analysis of long-term variation in phytoplankton biovolume in the northern basin of Lake Biwa. Limnology 14: 117–128.

    Google Scholar 

  • Kolber, Z. & P. G. Falkowski, 1993. Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnology and Oceanography 38: 1646–1665.

    CAS  Google Scholar 

  • Kolber, Z. S., O. Prášil & P. G. Falkowski, 1998. Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochimica et Biophysica Acta (BBA)—Bioenergetics 1367: 88–106.

    CAS  Google Scholar 

  • Lampert, W., W. Fleckner, H. Rai & B. E. Taylor, 1986. Phytoplankton control by grazing zooplankton: A study on the spring clear-water phase1. Limnology and Oceanography 31: 478–490.

    Google Scholar 

  • Larkum, A. W. D., S. E. Douglas, & J. A. Raven, 2003. Photosynthesis in algae. Springer Netherlands, Dordrecht, https://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=3101397.

  • Law, T., W. Zhang, J. Zhao & G. B. Arhonditsis, 2009. Structural changes in lake functioning induced from nutrient loading and climate variability. Ecological Modelling 220: 979–997.

    CAS  Google Scholar 

  • Litchman, E., C. A. Klausmeier & K. Yoshiyama, 2009. Contrasting size evolution in marine and freshwater diatoms. Proceedings of the National Academy of Sciences National Academy of Sciences 106: 2665–2670.

    CAS  Google Scholar 

  • Litchman, E., P. J. Neale & A. T. Banaszak, 2002. Increased sensitivity to ultraviolet radiation in nitrogen-limited dinoflagellates: photoprotection and repair. Limnology and Oceanography 47: 86–94.

    CAS  Google Scholar 

  • Litchman, E., D. Steiner & P. Bossard, 2003. Photosynthetic and growth responses of three freshwater algae to phosphorus limitation and daylength. Freshwater Biology 48: 1241–1248.

    Google Scholar 

  • Marshall, H. L., R. J. Geider & K. J. Flynn, 2000. A mechanistic model of photoinhibition. New Phytologist 145: 347–359.

    Google Scholar 

  • McKew, B. A., P. Davey, S. J. Finch, J. Hopkins, S. C. Lefebvre, M. V. Metodiev, K. Oxborough, C. A. Raines, T. Lawson & R. J. Geider, 2013. The trade-off between the light-harvesting and photoprotective functions of fucoxanthin-chlorophyll proteins dominates light acclimation in Emiliania huxleyi (clone CCMP 1516). New Phytologist 200: 74–85.

    CAS  Google Scholar 

  • Mei, Z., Z. V. Finkel & A. J. Irwin, 2011. Phytoplankton growth allometry and size dependent C: N stoichiometry revealed by a variable quota model. Marine Ecology Progress Series 434: 29–43.

    CAS  Google Scholar 

  • Menden-Deuer, S. & E. J. Lessard, 2000. Carbon to volume relationships for dinoflagellates, diatoms and other protist plankton. Limnology and Oceanography 45: 569–579.

    CAS  Google Scholar 

  • Moore, C. M., M. I. Lucas, R. Sanders & R. Davidson, 2005. Basin-scale variability of phytoplankton bio-optical characteristics in relation to bloom state and community structure in the Northeast Atlantic. Deep Sea Research Part i: Oceanographic Research Papers 52: 401–419.

    CAS  Google Scholar 

  • Moore, C. M., M. M. Mills, R. Langlois, A. Milne, E. P. Achterberg, J. L. Roche & R. J. Geider, 2008. Relative influence of nitrogen and phosphorous availability on phytoplankton physiology and productivity in the oligotrophic sub-tropical North Atlantic Ocean. Limnology and Oceanography 53: 291–305.

    CAS  Google Scholar 

  • Morel, A. & A. Bricaud, 1981. Theoretical results concerning the optics of phytoplankton, with special reference to remote sensing applications. In Gower, J. F. R. (ed), Oceanography from Space Springer, Boston, MA: 313–327.

    Google Scholar 

  • Nishino, M., 2012. Ecological changes in lake Biwa. In Kawanabe, H., M. Nishino & M. Maehata (eds), Lake Biwa: Interactions Between Nature and People Springer, Dordrecht: 155–238.

    Google Scholar 

  • Nishiyama, Y. & N. Murata, 2014. Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Applied Microbiology and Biotechnology 98: 8777–8796.

    CAS  PubMed  Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, & H. Wagner, 2018. Package ‘vegan.’ https://cran.r-project.org/, https://github.com/vegandevs/vegan.

  • Olenina, I., S. Hajdu, L. Edler, A. Andersson, N. Wasmund, J. Göbel, M. Huttunen, A. Jaanus, I. Ledaine, & S. Huseby, 2006. Biovolumes and size-classes of phytoplankton in the Baltic Sea. Baltic Sea Environment Proceedings.

  • Pinckney, J. L., H. W. Paerl, P. Tester & T. L. Richardson, 2001. The role of nutrient loading and eutrophication in estuarine ecology. Environmental Health Perspectives 109: 699–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team, 2020. R: A Language and environment for statistical computing. Vienna, Austria, http//www.R-project.org/.

  • Raven, J. A., 2011. The cost of photoinhibition. Physiologia Plantarum 142: 87–104.

    CAS  PubMed  Google Scholar 

  • Raven, J. A., 2013. RNA function and phosphorus use by photosynthetic organisms. Frontiers in Plant Science Frontiers 4: 536.

    Google Scholar 

  • Ray, S., L. Berec, M. Straškraba & S. E. Jørgensen, 2001. Optimization of exergy and implications of body sizes of phytoplankton and zooplankton in an aquatic ecosystem model. Ecological Modelling 140: 219–234.

    Google Scholar 

  • Reynolds, C. S., 2006. The Ecology of Phytoplankton, Cambridge University Press, Cambridge:

    Google Scholar 

  • Ripley, B., W. Venables, D. Bates, K. Hormik, A. Gebhardt, & D. Firth, 2020. Package ‘MASS.’ , http://www.stats.ox.ac.uk/pub/MASS4/.

  • Robarts, R. D., M. J. Waiser, O. Hadas, T. Zohary & S. Maclntyre, 1998. Relaxation of phosphorus limitation due to typhoon-induced mixing in two morphologically distinct basins of Lake Biwa, Japan. Limnology and Oceanography 43: 1023–1036.

    CAS  Google Scholar 

  • Rugema, E., F. Darchambeau, H. Sarmento, M. Stoyneva-Gärtner, M. Leitao, W. Thiery, A. Latli & J.-P. Descy, 2019. Long-term change of phytoplankton in Lake Kivu: The rise of the greens. Freshwater Biology 64: 1940–1955.

    CAS  Google Scholar 

  • Schlesinger, D. A., L. A. Molot & B. J. Shuter, 1981. Specific growth rates of freshwater algae in relation to cell size and light intensity. Canadian Journal of Fisheries and Aquatic Sciences 38: 1052–1058.

    Google Scholar 

  • Shebanova, A., T. Ismagulova, A. Solovchenko, O. Baulina, E. Lobakova, A. Ivanova, A. Moiseenko, K. Shaitan, V. Polshakov, L. Nedbal & O. Gorelova, 2017. Versatility of the green microalga cell vacuole function as revealed by analytical transmission electron microscopy. Protoplasma 254: 1323–1340.

    CAS  PubMed  Google Scholar 

  • Shiga Prefecture, 2018. Environment of Shiga Prefecture 2018 (White Paper of Environment). Shiga Prefecture, Ostu, Japan, https://www.pref.shiga.lg.jp/file/attachment/4042980.pdf.

  • Sommer, U., R. Adrian, L. De Senerpont Domis, J. J. Elser, U. Gaedke, B. Ibelings, E. Jeppesen, M. Lürling, J. C. Molinero, W. M. Mooij, E. van Donk & M. Winder, 2012. Beyond the plankton ecology group (PEG) model: mechanisms driving plankton succession. Annual Review of Ecology, Evolution, and Systematics 43: 429–448.

    Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert, & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller) 106: 433–471.

  • Suggett, D. J., C. M. Moore, A. E. Hickman & R. J. Geider, 2009. Interpretation of fast repetition rate (FRR) fluorescence: signatures of phytoplankton community structure versus physiological state. Marine Ecology Progress Series 376: 1–19.

    Google Scholar 

  • Sunda, W. & D. Hardison, 2010. Evolutionary tradeoffs among nutrient acquisition, cell size, and grazing defense in marine phytoplankton promote ecosystem stability. Marine Ecology Progress Series 401: 63–76.

    CAS  Google Scholar 

  • Suttle, C. A., J. G. Stockner & P. J. Harrison, 1987. Effects of nutrient pulses on community structure and cell size of a freshwater phytoplankton assemblage in culture. Canadian Journal of Fisheries and Aquatic Sciences 44: 1768–1774.

    Google Scholar 

  • Suzuki, R. & T. Ishimaru, 1990. An improved method for the determination of phytoplankton chlorophyll using N, N-dimethylformamide. Journal of the Oceanographical Society of Japan 46: 190–194.

    CAS  Google Scholar 

  • Tozzi, S., O. Schofield & P. Falkowski, 2004. Historical climate change and ocean turbulence as selective agents for two key phytoplankton functional groups. Marine Ecology Progress Series 274: 123–132.

    Google Scholar 

  • Van de Waal, D. B. & E. Litchman, 2020. Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean. Philosophical Transactions of the Royal Society B: Biological Sciences Royal Society 375: 20190706.

    Google Scholar 

  • Winder, M., J. E. Reuter & S. G. Schladow, 2009. Lake warming favours small-sized planktonic diatom species. Proceedings of the Royal Society B: Biological Sciences Royal Society 276: 427–435.

    Google Scholar 

  • Wojtasiewicz, B. & J. Stoń-Egiert, 2016. Bio-optical characterization of selected cyanobacteria strains present in marine and freshwater ecosystems. Journal of Applied Phycology 28: 2299–2314.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, X., F. Kong & M. Zhang, 2011. Photoinhibition of colonial and unicellular Microcystis cells in a summer bloom in Lake Taihu. Limnology 12: 55–61.

    Google Scholar 

  • Yamada, K., H. Yamamoto, S. Hichiri, T. Okamoto & K. Hayakawa, 2021. First observation of incomplete vertical circulation in Lake Biwa. Limnology. https://doi.org/10.1007/s10201-021-00653-3.

    Article  Google Scholar 

  • Yarnold, J., I. L. Ross & B. Hankamer, 2016. Photoacclimation and productivity of Chlamydomonas reinhardtii grown in fluctuating light regimes which simulate outdoor algal culture conditions. Algal Research 13: 182–194.

    Google Scholar 

  • Yvon-Durocher, G., A. P. Allen, M. Cellamare, M. Dossena, K. J. Gaston, M. Leitao, J. M. Montoya, D. C. Reuman, G. Woodward & M. Trimmer, 2015. Five years of experimental warming increases the biodiversity and productivity of phytoplankton. PLOS Biology 13: e1002324.

    PubMed  PubMed Central  Google Scholar 

  • Zohary, T., G. Flaim & U. Sommer, 2020. Temperature and the size of freshwater phytoplankton. Hydrobiologia. https://doi.org/10.1007/s10750-020-04246-6.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Hirokazu Teraishi for assisting with the chemical analysis. This study was financially supported by the Collaborative Research Fund from Shiga Prefecture entitled ‘Study on water quality and lake-bottom environment for protection of the soundness of water environment’ under the Japanese Grant for Regional Revitalization and the Environment Research and Technology Development Fund (grant no. 5-1607) of the Ministry of the Environment, Japan (https://www.kantei.go.jp/jp/singi/tiiki/tiikisaisei/souseikoufukin.html).

Funding

This study was financially supported by the Collaborative Research Fund from Shiga Prefecture entitled ‘Study on water quality and lake-bottom environment for protection of the soundness of water environment’ under the Japanese Grant for Regional Revitalization and the Environment Research and Technology Development Fund (Grant No. 5-1607) of the Ministry of the Environment, Japan (https://www.kantei.go.jp/jp/singi/tiiki/tiikisaisei/souseikoufukin.html).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization (TK, KH), Methodology (TK, KH, KK), Resources (KH, TN), Investigation (TK, KH, TN, KS), Formal analysis (TK), Writing-original draft (TK), Writing-review & editing (TK, KH, TN, KS, AI, KK), Supervision (AI).

Corresponding author

Correspondence to Takehiro Kazama.

Ethics declarations

Conflict of interest

None declared.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Handling editor: Alex Elliott

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 364 KB)

Supplementary file2 (XLSX 324 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazama, T., Hayakawa, K., Nagata, T. et al. Size-dependent susceptibility of lake phytoplankton to light stress: an implication for succession of large green algae in a deep oligotrophic lake. Hydrobiologia 849, 1115–1130 (2022). https://doi.org/10.1007/s10750-021-04763-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04763-y

Keywords

Navigation