Skip to main content

Advertisement

Log in

Do environmental conditions modulated by land use drive fish functional diversity in streams?

  • NEOTROPICAL STREAMS IN CHANGING LANDSCAPES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Functional diversity metrics have been suggested as important indicators of ecosystem functioning. We investigated the effects of land use mediated by local environmental variables on the fish assemblages’ functional structure in 18 headwater streams distributed in the Upper Paraná and Iguaçu ecoregions. The species were characterized according to habitat use, food resource use, life history, and hypoxia tolerance. We calculated functional diversity indices [richness (FRic), evenness (FEve), divergence (FDiv), dispersion (FDis), diversity (RaoQ)] and functional rarity indices [distinctiveness (Disti), uniqueness (Uni)], and evaluated the effects of regional and local variables on these indices using generalized linear models. The results highlighted the occurrence of the most functionally distinct and unique species in the forested streams. Moreover, we observed higher FRic in streams sampled in argisol, with a high ammonia load and low habitat diversity. Forested and agricultural covers positively affected FDis and RaoQ. Urban cover had a negative effect on FDis and RaoQ, mainly due to the increase in generalist functional groups in urban streams. Our findings emphasize the importance of forested cover in maintaining specialized species in fish assemblages of streams and preserving functional diversity and ecosystem functioning. Furthermore, these results contribute to direct conservation and recovery measures in freshwater environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abell, R., M. L. Thieme, C. Revenga, M. Bryer, M. Kottelat, N. Bogutskaya, B. Coad, N. Mandrak, S. C. Balderas, W. Bussing, M. L. J. Stiassny, P. Skelton, G. R. Allen, P. Unmack, A. Naseka, R. Ng, N. Sindorf, J. Robertson, E. Armijo, J. V. Higgins, T. J. Heibel, E. Wikramanayake, D. Olson, H. L. López, R. E. Reis, J. G. Lundberg, M. H. Sabaj Pérez & P. Petry, 2008. Freshwater ecoregions of the World: a new map of biogeo-graphic units for freshwater biodiversity conservation. BioScience 58: 403–414.

    Article  Google Scholar 

  • Akaike, H., 1973. Information theory as an extension of the maximum likelihood principle. In Petrov, B. N. & F. Csaki (eds), Second International Symposium on Information Theory Akademiai Kiado, Budapest: 267–281.

    Google Scholar 

  • Allan, J. D., 2004. The influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics 35: 257–284.

    Article  Google Scholar 

  • Alvares, C. A., J. L. Stape, P. C. Sentelhas, J. L. De Moraes Gonçalves & G. Sparovek, 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711–728.

    Article  Google Scholar 

  • Azevedo, M. C. C., R. de Sousa Gomes-Gonçalves, T. M. Mattos, W. Uehara, G. H. S. Guedes & F. G. Araújo, 2017. Taxonomic and functional distinctness of the fish assemblages in three coastal environments (bays, coastal lagoons and oceanic beaches) in Southeastern Brazil. Marine Environmental Research 129: 180–188.

    Article  CAS  PubMed  Google Scholar 

  • Bailly, D., F. A. S. Cassemiro, K. O. Winemiller, J. A. F. Diniz-Filho & A. A. Agostinho, 2016. Diversity gradients of Neotropical freshwater fish: evidence of multiple underlying factors in human-modified systems. Journal of Biogeography 43: 1679–1689.

    Article  Google Scholar 

  • Baldasso, M. C., L. L. Wolff, M. P. Neves & R. L. Delariva, 2019. Ecomorphological variations and food supply drive trophic relationships in the fish fauna of a pristine neotropical stream. Environmental Biology of Fishes 102: 783–800.

    Article  Google Scholar 

  • Balon, K. E., 1975. Reproductive guilds of fishes: a proposal and definition. Journal of the Fisheries Research Board of Canada 32: 821–864.

    Article  Google Scholar 

  • Balon, E. K., 1981. Additions and amendments to the classification of reproductive styles in fishes. Environmental Biology of Fishes 6: 377–389.

    Article  Google Scholar 

  • Barbosa, A. S., M. M. Pires & U. H. Schulz, 2020. Influence of land-use classes on the functional structure of fish communities in Southern Brazilian headwater streams. Environmental Management 65: 618–629.

    Article  PubMed  Google Scholar 

  • Bartoń, K., 2019. MuMIn: multi-model inference. R Package Version 1(43): 10.

    Google Scholar 

  • Baumgartner, G., C. S. Pavanelli, D. Baumgartner, A. G. Bifi, T. Debona & V. A. Frana, 2012. Peixes do Baixo Rio Iguaçu, Eduem, Maringá:

    Book  Google Scholar 

  • Bicudo, C. E. M. & R. M. T. Bicudo, 1970. Algas de águas continentais brasileiras chave ilustrada para identificação de gêneros, Fundação Brasileira para o Desenvolvimento do Ensino de Ciências, São Paulo:

    Google Scholar 

  • Bisson, P. A., D. R. Montgomery & J. M. Buffington, 2006. Valley segments, stream reaches, and channel units. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology Academic Press, London: 21–47.

    Google Scholar 

  • Bonato, K. O., E. D. Burress & C. B. Fialho, 2017. Dietary differentiation in relation to mouth and tooth morphology of a neotropical characid fish community. Zoologischer Anzeiger 267: 31–40.

    Article  Google Scholar 

  • Brasil, 2014. Ministério do Meio Ambiente, Portaria MMA No 445, de 17 de dezembro de 2014. https://www.icmbio.gov.br/portal/images/stories/docs-plano-de-acao-ARQUIVO/00-saiba-mais/05_-_PORTARIA_MMA_N%C2%BA_445_DE_17_DE_DEZ_DE_2014.pdf

  • Brodie, J. E. & A. W. Mitchell, 2005. Nutrients in Australian tropical rivers: changes with agricultural development and implications for receiving environments. Marine and Freshwater Research 56: 279–302.

    Article  CAS  Google Scholar 

  • Brown, J. H., 2014. Why are there so many species in the tropics? Journal of Biogeography 41: 8–22.

    Article  PubMed  Google Scholar 

  • Callisto, M., W. R. Ferreira, P. Moreno, M. Goulart & M. Petrucio, 2002. Aplicação de um protocolo de avaliação rápida da diversidade de habitats em atividades de ensino e pesquisa (MG-RJ). Acta Limnologica Brasiliensia 14: 91–98.

    Google Scholar 

  • Carvalho, R. A. & F. L. Tejerina-Garro, 2015. Environmental and spatial processes: what controls the functional structure of fish assemblages in tropical rivers and headwater streams? Ecology of Freshwater Fish 24: 317–328.

    Article  Google Scholar 

  • Casatti, L., 2003. Biology of a catfish, Trichomycterus sp. (Pisces, Siluriformes), in a pristine stream in the Morro do Diabo State Park, southeastern Brazil. Studies on Neotropical Fauna and Environment 38: 105–110.

    Article  Google Scholar 

  • Casatti, L. & R. Castro, 2006. Testing the ecomorphological hypothesis in a headwater riffles fish assemblage of the rio São Francisco, southeastern Brazil. Neotropical Ichthyology 4: 203–214.

    Article  Google Scholar 

  • Casatti, L., F. Langeani & R. M. Castro, 2001. Peixes de riacho do Parque Estadual Morro do Diabo, bacia do alto rio Paraná, SP. Biota Neotropica 1: 1–15.

    Article  Google Scholar 

  • Casatti, L., F. Langeani, A. M. Silva & R. M. C. Castro, 2006. Stream fish, water and habitat quality in a pasture dominated basin, southeastern Brazil. Brazilian Journal of Biology 66: 681–696.

    Article  CAS  Google Scholar 

  • Celestino, E. F., L. F. Celestino, J. F. M. da Silva, E. A. L. Kashiwaqui, M. C. Makrakis & S. Makrakis, 2019. Environmental assessment in neotropical watersheds: a multi-factorial approach. Sustainability (switzerland) 11: 1–17.

    Google Scholar 

  • Chen, K., A. R. Rajper, R. M. Hughes, J. R. Olson, H. Wei & B. Wang, 2019. Incorporating functional traits to enhance multimetric index performance and assess land use gradients. Science of the Total Environment 691: 1005–1015.

    Article  CAS  PubMed  Google Scholar 

  • Clavel, J., R. Julliard & V. Devictor, 2011. Worldwide decline of specialist species: toward a global functional homogenization? Frontiers in Ecology and the Environment 9: 222–228.

    Article  Google Scholar 

  • Costa, I. D. D. & V. M. D. Rocha, 2017. Feeding ecology of Serrapinnus notomelas (Characiformes: Cheirodontinae) in small forest streams in the Machado River basin, Rondônia, Brazil. Acta Amazonica 47: 19–28.

    Article  Google Scholar 

  • Costa, D. S., F. Gerschlauer, H. Pabst, A. Kühnel, B. Huwe, R. Kiese, Y. Kuzyakov & M. Kleyer, 2017. Community-weighted means and functional dispersion of plant functional traits along environmental gradients on Mount Kilimanjaro. Journal of Vegetation Science 28: 684–695.

    Article  Google Scholar 

  • Cunico, A. M., E. A. Ferreira, A. A. Agostinho, A. C. Beaumord & R. Fernandes, 2012. The effects of local and regional environmental factors on the structure of fish assemblages in the Pirapó Basin, Southern Brazil. Landscape and Urban Planning 105: 336–344.

    Article  Google Scholar 

  • Daga, V. S., É. A. Gubiani, A. M. Cunico & G. Baumgartner, 2012. Effects of abiotic variables on the distribution of fish assemblages in streams with different anthropogenic activities in southern Brazil. Neotropical Ichthyology 10: 643–652.

    Article  Google Scholar 

  • Daga, V. S., T. Debona, V. Abilhoa, É. A. Gubiani & J. R. S. Vitule, 2016. Non-native fish invasions of a Neotropical ecoregion with high endemism: a review of the Iguaçu River. Aquatic Invasions 11: 209–223.

    Article  Google Scholar 

  • Dolédec, S., N. Phillips & C. Townsend, 2011. Invertebrate community responses to land use at a broad spatial scale: trait and taxonomic measures compared in New Zealand rivers. Freshwater Biology 56: 1670–1688.

    Article  Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A. H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society 81: 163–182.

    Article  PubMed  Google Scholar 

  • Edge, C. B., M. J. Fortin, D. A. Jackson, D. Lawrie, L. Stanfield & N. Shrestha, 2017. Habitat alteration and habitat fragmentation differentially affect beta diversity of stream fish communities. Landscape Ecology 32: 647–662.

    Article  Google Scholar 

  • Embrapa, 2019. Classificação dos solos. https://www.embrapa.br/solos/sibcs/classificacao-de-solos

  • EPA, Environmental Protection Agency, 1997. Stream flow. In: Environmental Protection Agency. Volunteer stream monitoring: a methods manual. EPA, Washington: 134–139.

  • Fischer, J. M., T. M. Frost & A. R. Ives, 2001. Compensatory dynamics in zooplankton community responses to acidification: measurement and mechanisms. Ecological Applications 11: 1060–1072.

    Article  Google Scholar 

  • Frank, E. & Harrell Jr, 2019. Hmisc: Harrell Miscellaneous, R package version 4.2–0. https://CRAN.R-project.org/package=Hmisc

  • Frimpong, E. A. & P. L. Angermeier, 2010. Trait-based approaches in the analysis of stream fish communities, Community Ecology of Stream Fishes: Concepts, Approaches, and Techniques American Fisheries Society, Symposium, Bethesda: 109–136.

    Google Scholar 

  • Froese, R. & D. Pauly (eds), 2019. FishBase. World Wide Web electronic publication. www.fishbase.org, accessed 19 July 2019.

  • Frota, A., G. D. C. Deprá, L. M. Petenucci & W. J. D. Graça, 2016. Inventory of the fish fauna from Ivaí River basin, Paraná State, Brazil. Biota Neotropica 16.

  • Fuller, M. R., M. W. Doyle & D. L. Strayer, 2015. Causes and consequences of habitat fragmentation in river networks. Annals of the New York Academy of Sciences 1355: 31–51.

    Article  PubMed  Google Scholar 

  • Garcia, D. A. Z., A. D. A. Costa, F. S. D. Almeida, A. Bialetzki & M. L. Orsi, 2018. Spatial distribution and habitat use by early fish stages in a dammed river basin, Southern Brazil. Revista De Biología Tropical 66: 605–621.

    Article  Google Scholar 

  • Gardner, T. A., J. Ferreira, J. Barlow, A. C. Lees, L. Parry, I. C. Guimarães Vieira, E. Berenguer, R. Abramovay, A. Aleixo, C. Andretti, et al., 2013. A social and ecological assessment of tropical land uses at multiple scales: the sustainable Amazon Network. Philosophical Transactions of the Royal Society b: Biological Sciences 368: 20130307.

    Article  Google Scholar 

  • Gelman, A., 2008. Scaling regression inputs by dividing by two standard deviations. Statistics in Medicine 27: 2865–2873.

    Article  PubMed  Google Scholar 

  • Gerking, S. D., 1994. Feeding ecology of fish, Academic Press, San Diego:

    Google Scholar 

  • Gido, K. B., J. E. Whitney, J. S. Perkin & T. F. Turner, 2015. Fragmentation, connectivity and fish species persistence in freshwater ecosystems. Conservation of Freshwater Fishes. https://doi.org/10.1017/CBO9781139627085.011.

    Article  Google Scholar 

  • Golterman, H., R. Clymo & M. Ohndtad, 1978. Methods for the Physical and Chemical Examination of Freshwaters, Blackwell Scientific, Oxford:

    Google Scholar 

  • Gonzalez, A. & M. Loreau, 2009. The causes and consequences of compensatory dynamics in ecological communities. Annual Review of Ecology, Evolution, and Systematics 40: 393–414.

    Article  Google Scholar 

  • Gower, J. C., 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 325–338.

    Article  Google Scholar 

  • Gower, J. C., 1971. A general coefficient of similarity and some of its properties. Biometrics 27: 857–871.

    Article  Google Scholar 

  • Goyal, A. K., N. Saxena & V. Saini, 2014. A laboratory study on the effect of shelter availability on Clarias batrachus growth performance. International Journal of Pure and Applied Zoology 2: 228–230.

    Google Scholar 

  • Graça, W. J. & C. S. Pavanelli, 2007. Peixes da planície de inundação do alto rio Paraná e áreas adjacentes, Eduem, Maringá:

    Google Scholar 

  • Grenié, M., P. Denelle, C. M. Tucker, F. Munoz & C. Violle, 2017. funrar: an R package to characterize functional rarity. Diversity and Distributions 23: 1365–1371.

    Article  Google Scholar 

  • Grueber, C. E., S. Nakagawa, R. J. Laws & I. G. Jamieson, 2011. Multimodel inference in ecology and evolution: Challenges and solutions. Journal of Evolutionary Biology 24: 699–711.

    Article  CAS  PubMed  Google Scholar 

  • Hales, J. & P. Petry, 2019. Freshwater ecoregions of the world (FEOW). http://feow.org/ecoregions/details/

  • Hall, R. O., Jr., B. W. Taylor & A. S. Flecker, 2011. Detritivorous fish indirectly reduce insect secondary production in a tropical river. Ecosphere 2: 1–13.

    Article  Google Scholar 

  • Hellawell, J. M. & R. Abel, 1971. A rapid volumetric method for the analysis of the food of fishes. Journal of Fish Biology 3: 29–37.

    Article  Google Scholar 

  • Hermoso, V., M. Clavero, F. Blanco-Garrido & J. Prenda, 2011. Invasive species and habitat degradation in Iberian streams: an analysis of their role in freshwater fish diversity loss. Ecological Applications 21: 175–188.

    Article  PubMed  Google Scholar 

  • Hyslop, E. J., 1980. Stomach content analysis: a review of methods and their application. Journal of Fish Biology 17: 411–429.

    Article  Google Scholar 

  • IBGE, 2018. Instituto Brasileiro de Geografia e Estatística. https://www.ibge.gov.br/

  • Jackson, D. A., 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74: 2204–2214.

    Article  Google Scholar 

  • Kassambara, A. & F. Mundt, 2017. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.6. https://CRAN.R-project.org/package=factoextra.

  • Kelley, J. L., P. F. Grierson, S. P. Collin & P. M. Davies, 2018. Habitat disruption and the identification and management of functional trait changes. Fish and Fisheries 19: 716–728.

    Article  Google Scholar 

  • Kovalenko, K. E., S. M. Thomaz & D. M. Warfe, 2012. Habitat complexity: approaches and future directions. Hydrobiologia 685: 1–17.

    Article  Google Scholar 

  • Laliberté, E., Legendre, P. & B. Shipley, 2015. FD: Measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. Package 1.0–12. https://CRAN.R-project.org/package=FD

  • Laliberté, E. & P. Legendre, 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91: 299–305.

    Article  PubMed  Google Scholar 

  • Lamothe, K. A., K. M. Alofs, D. A. Jackson & K. M. Somers, 2018. Functional diversity and redundancy of freshwater fish communities across biogeographic and environmental gradients. Diversity and Distributions 24: 1612–1626.

    Article  Google Scholar 

  • Lawton, J. H. & V. K. Brown, 1993. Redundancy in ecosystems. In Schulze, E. D. & H. A. Mooney (eds), Biodiversity and Ecosystem Functioning Springer, New York: 255–270.

    Google Scholar 

  • Leal, C. G., P. S. Pompeu, T. A. Gardner, R. P. Leitão, R. M. Hughes, P. R. Kaufmann, J. Zuanon, F. R. de Paula, S. F. B. Ferraz, J. R. Thomson, R. Mac Nally, J. Ferreira & J. Barlow, 2016. Multi-scale assessment of human-induced changes to Amazonian instream habitats. Landscape Ecology 31: 1725–1745.

    Article  Google Scholar 

  • Leitão, R. P., J. Zuanon, S. Villéger, S. E. Williams, C. Baraloto, C. Fortunel, F. P. Mendonça & D. Mouillot, 2016. Rare species contribute disproportionately to the functional structure of species assemblages. Proceedings of the Royal Society b: Biological Sciences 283: 20160084.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leitão, R. P., J. Zuanon, D. Mouillot, G. Leal, R. M. Hughes, P. R. Kaufmann, S. Villéger, P. S. Pompeu, D. Kasper, F. R. De Paula, S. F. B. Ferraz & T. A. Gardner, 2018. Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. Ecography 41: 219–232.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorion, C. M. & B. P. Kennedy, 2009. Riparian forest buffers mitigate the effects of deforestation on fish assemblages in tropical headwater streams. Ecological Applications 19: 468–479.

    Article  PubMed  Google Scholar 

  • Mackereth, F. Y. H., J. Heron & J. F. Talling, 1978. Water analysis: some revised methods for limnologists. Freshwater Biologymack 36: 1–120.

    Google Scholar 

  • Maire, E., G. Grenouillet, S. Brosse & S. Villéger, 2015. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Global Ecology and Biogeography 24: 728–740.

    Article  Google Scholar 

  • Markovic, D., S. F. Carrizo, O. Kärcher, A. Walz & J. N. W. David, 2017. Vulnerability of European freshwater catchments to climate change. Global Change Biology 23: 3567–3580.

    Article  PubMed  Google Scholar 

  • Mason, N. W., D. Mouillot, W. G. Lee & J. B. Wilson, 2005. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111: 112–118.

    Article  Google Scholar 

  • Matsuzaki, S. I. S., M. Sakamoto, K. Kawabe & N. Takamura, 2012. A laboratory study of the effects of shelter availability and invasive crayfish on the growth of native stream fish. Freshwater Biology 57: 874–882.

    Article  Google Scholar 

  • Mazzoni, R., V. C. Novaes & R. Iglesias-Rios, 2011. Microhabitat use by Phalloceros harpagos Lucinda (Cyprinodontiformes: Poeciliidae) from a coastal stream from Southeast Brazil. Neotropical Ichthyology 9: 665–672.

    Article  Google Scholar 

  • McCullagh, P. & J. Nelder, 1989. Generalized Linear Models II, Chapman & Hall, London:

    Book  Google Scholar 

  • Miserendino, M. L., C. Brand, L. B. Epele, C. Y. Di Prinzio, G. H. Omad, M. Archangelsky, O. Martínez & A. M. Kutschker, 2018. Biotic diversity of benthic macroinvertebrates at contrasting glacier-fed systems in Patagonia Mountains: the role of environmental heterogeneity facing global warming. Science of the Total Environment 622–623: 152–163.

    Article  PubMed  Google Scholar 

  • Moerke, A. H. & G. A. Lamberti, 2006. Scale-dependent influences on water quality, habitat, and fish communities in streams of the Kalamazoo River Basin, Michigan (USA). Aquatic Sciences 68: 193–205.

    Article  Google Scholar 

  • Mouillot, D., N. A. J. Graham, S. Villéger, N. W. H. Mason & D. R. Bellwood, 2013. A functional approach reveals community responses to disturbances. Trends in Ecology and Evolution 28: 167–177.

    Article  PubMed  Google Scholar 

  • Mouillot, D., S. Villéger, V. Parravicini, M. Kulbicki, J. E. Arias-González, M. Bender, P. Chabanet, S. R. Floeter, A. Friedlander, L. Vigliola & D. R. Bellwood, 2014. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proceedings of the National Academy of Sciences 111: 13757–13762.

    Article  CAS  Google Scholar 

  • Mugnai, R., J. L. Nessimian & D. F. Baptista, 2010. Manual de identificação de macroinvertebrados aquáticos do estado do Rio de Janeiro, Technical Boocks, Rio de Janeiro:

    Google Scholar 

  • Naeem, S., J. E. Duffy & E. Zavaleta, 2012. The functions of biological diversity in an age of extinction. Science 336: 1401–1406.

    Article  CAS  PubMed  Google Scholar 

  • Nõges, P., C. Argillier, Á. Borja, J. M. Garmendia, J. Hanganu, V. Kodeš, F. Pletterbauer, A. Sagouis & S. Birk, 2016. Quantified biotic and abiotic responses to multiple stress in freshwater, marine and ground waters. Science of the Total Environment 540: 43–52.

    Article  PubMed  Google Scholar 

  • Oliveira, E. F., E. Goulart, L. Breda, C. V. Minte-Vera, L. Ricardo, D. S. Paiva & M. R. Vismara, 2010. Ecomorphological patterns of the fish assemblage in a tropical floodplain: effects of trophic, spatial and phylogenetic structures. Neotropical Ichthyology 8: 569–586.

    Article  Google Scholar 

  • Ota, R. R., GdeC. Deprá, W. J. da Graça & C. S. Pavanelli, 2018. Peixes da planície de inundação do alto rio Paraná e áreas adjacentes: revised, annotated and updated. Neotropical Ichthyology 16: 1–111.

    Article  Google Scholar 

  • Pagotto, J. P. A., E. Goulart, E. F. Oliveira & C. B. Yamamura, 2011. Trophic ecomorphology of Siluriformes (Pisces, Osteichthyes) from a tropical stream. Brazilian Journal of Biology 71: 469–479.

    Article  CAS  Google Scholar 

  • Parolin, M., C. V. Ribeiro & J. A. Leandrini, 2010. Abordagem ambiental interdisciplinar em bacias hidrográficas no Estado do Paraná, Editora Fecilcam, Campo Mourão:

    Google Scholar 

  • Pavanelli, C. S., 2006. New species of Apareiodon (Teleostei: Characiformes: Parodontidae) from the rio Piquiri, upper rio Paraná basin, Brazil. Copeia 1: 89–95.

    Article  Google Scholar 

  • Pease, A. A., A. A. Gonzalez-Días, R. Rodiles-Hernández & K. O. Winemiller, 2012. Functional diversity and trait-environment relationships of stream fish assemblages in a large tropical catchment. Freshwater Biology 57: 1060–1075.

    Article  Google Scholar 

  • Pereira, L. M., B. Dunck & E. Benedito, 2021. Human impacts alter the distribution of fish functional diversity in Neotropical stream system. Biotropica 53: 536–547.

    Article  Google Scholar 

  • Pereira, M. C. B. & J. L. Scroccaro, 2013. Série Histórica: Bacias Hidrográficas do Paraná. Curitiba, Paraná. https://www.meioambiente.pr.gov.br/arquivos/File/corh/serie_historica_bacias_hidrograficas_2013.pdf.

  • Peressin, A. & M. Cetra, 2014. Responses of the ichthyofauna to urbanization in two urban areas in Southeast Brazil. Urban Ecosystems 17: 675–690.

    Article  Google Scholar 

  • Petchey, O. L., 2003. Integrating methods that investigate how complementarity influences ecosystem functioning. Oikos 101: 323–330.

    Article  Google Scholar 

  • Petchey, O. L. & K. J. Gaston, 2006. Functional diversity: back to basics and looking forward. Ecology Letters 9: 741–758.

    Article  PubMed  Google Scholar 

  • Peterson, G., C. R. Allen & C. S. Holling, 1998. Ecological resilience, biodiversity, and scale. Ecosystems 1: 6–18.

    Article  Google Scholar 

  • Price, E. L., M. S. Perić, G. Q. Romero & P. Kratina, 2019. Land use alters trophic redundancy and resource flow through stream food webs. Journal of Animal Ecology 88: 677–689.

    Article  PubMed  Google Scholar 

  • QGIS, Equipe de Desenvolvimento do QGIS (2020). Sistema de Informações Geográficas do QGIS. Projeto Código Aberto Geospatial Foundation. http://qgis.osgeo.org

  • R Core Team, 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Ricotta, C., F. de Bello, M. Moretti, M. Caccianiga, B. E. Cerabolini & S. Pavoine, 2016. Measuring the functional redundancy of biological communities: a quantitative guide. Methods in Ecology and Evolution 7: 1386–1395.

    Article  Google Scholar 

  • Rincón, P. A., 1999. Uso do micro-habitat em peixes de riachos: métodos e perspectivas. In Caramaschi, E. P., R. Mazzoni & P. R. Peres (eds), Ecologia de Peixes de Riachos Série Oecologia Brasiliensis, Rio de Janeiro: 23–90.

    Google Scholar 

  • Roy, A. H., K. A. Capps, R. W. El-Sabaawi, K. L. Jones, T. B. Parr, A. Ramírez, R. F. Smith, C. J. Walsh & S. J. Wenger, 2016. Urbanization and stream ecology: diverse mechanisms of change. Freshwater Science 35: 272–277.

    Article  Google Scholar 

  • Ruaro, R., R. P. Mormul, É. A. Gubiani, P. A. Piana, A. M. Cunico & W. J. da Graça, 2018. Non-native fish species are related to the loss of ecological integrity in Neotropical streams: a multimetric approach. Hydrobiologia 817: 413–430.

    Article  Google Scholar 

  • Sagouis, A., F. Jabot & C. Argillier, 2016. Taxonomic versus functional diversity metrics: how do fish communities respond to anthropogenic stressors in reservoirs? Ecology of Freshwater Fish 26: 621–635.

    Article  Google Scholar 

  • Sakamoto, Y., M. Ishiguro & G. Kitagawa, 1986. Akaike Information Criterion Statistics, D Reidel Publishing Company, Dordrecht:

    Google Scholar 

  • Santos, F. B., F. C. Ferreira & K. E. Esteves, 2015. Assessing the importance of the riparian zone for stream fish communities in a sugarcane dominated landscape (Piracicaba River Basin, Southeast Brazil). Environmental Biology of Fishes 98: 1895–1912.

    Article  Google Scholar 

  • Strahler, A. N., 1957. Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union 38: 913–920.

    Article  Google Scholar 

  • Suguio, K., 1973. Introdução à sedimentologia, Edgard Blücher, São Paulo:

    Google Scholar 

  • Teichert, N., M. Lepage & J. Lobry, 2018. Beyond classic ecological assessment: the use of functional indices to indicate fish assemblages sensitivity to human disturbance in estuaries. Science of the Total Environment 639: 465–475.

    Article  CAS  PubMed  Google Scholar 

  • Teresa, F. B. & L. Casatti, 2012. Influence of forest cover and mesohabitat types on functional and taxonomic diversity of fish communities in Neotropical lowland streams. Ecology of Freshwater Fish 21: 433–442.

    Article  Google Scholar 

  • Teresa, F. B. & L. Casatti, 2017. Trait-based metrics as bioindicators: responses of stream fish assemblages to a gradient of environmental degradation. Ecological Indicators Elsevier Ltd 75: 249–258.

    Article  Google Scholar 

  • Teresa, F. B., L. Casatti & M. V. Cianciaruso, 2015. Functional differentiation between fish assemblages from forested and deforested streams. Neotropical Ichthyology 13: 361–370.

    Article  Google Scholar 

  • Tibúrcio, G. S., CdaS. Carvalho, F. C. Ferreira, R. Goitein & M. C. Ribeiro, 2016. Landscape effects on the occurrence of ichthyofauna in first-order streams of southeastern Brazil. Acta Limnologica Brasiliensia 28: e2.

    Article  Google Scholar 

  • Toussaint, A., N. Charpin, S. Brosse & S. Villéger, 2016. Global functional diversity of freshwater fish is concentrated in the Neotropics while functional vulnerability is widespread. Scientific Reports 6: 1–9.

    Article  Google Scholar 

  • Vazzoler, A. E. A. M., 1996. Biologia da reprodução de peixes teleósteos. Teoria e Prática, Eduem, Maringá:

    Google Scholar 

  • Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S, Springer, New York:

    Book  Google Scholar 

  • Villéger, S., N. W. Mason & D. Mouillot, 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89: 2290–2301.

    Article  PubMed  Google Scholar 

  • Violle, C., M. L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel & E. Garnier, 2007. Let the concept of trait be functional! Oikos 116: 882–892.

    Article  Google Scholar 

  • Violle, C., W. Thuiller, N. Mouquet, F. Munoz, N. J. B. Kraft, M. W. Cadotte, S. W. Livingstone & D. Mouillot, 2017. Functional rarity: the ecology of outliers. Trends in Ecology and Evolution 32: 356–367.

    Article  PubMed  Google Scholar 

  • Wentworth, C. K., 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology 30: 377–392.

    Article  Google Scholar 

  • Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis, Springer, New York:

    Book  Google Scholar 

  • Williams, P. H., 2001. Complementarity. In Levin, S. A. (ed), Encyclopedia of Biodiversity Academic Press, Boca Raton: 813–829.

    Google Scholar 

  • Winemiller, K. O., 1989. Patterns of variation in life history among South American fishes in seasonal environments. Oecologia 81: 225–241.

    Article  PubMed  Google Scholar 

  • Winemiller, K. O., 2005. Life history strategies, population regulation, and implications for fisheries management. Canadian Journal of Fisheries and Aquatic Sciences 62: 872–885.

    Article  Google Scholar 

  • Winemiller, K. O. & K. A. Rose, 1992. Patterns of life-history diversification in North American fishes: implications for population regulation. Canadian Journal of Fisheries and Aquatic Sciences 49: 2196–2218.

    Article  Google Scholar 

  • Winemiller, K. O., A. A. Agostinho & E. P. Caramaschi, 2011. Fish ecology in tropical streams. In Dudgeon, D. (ed), Tropical Stream Ecology Academic Press, Boca Raton: 107–146.

    Google Scholar 

  • Zbinden, Z. D. & W. J. Matthews, 2017. Beta diversity of stream fish assemblages: partitioning variation between spatial and environmental factors. Freshwater Biology 62: 1460–1471.

    Article  CAS  Google Scholar 

  • Zeni, J. O. & L. Casatti, 2014. The influence of habitat homogenization on the trophic structure of fish fauna in tropical streams. Hydrobiologia 726: 259–270.

    Article  Google Scholar 

  • Zeni, J. O., M. A. Pérez-Mayorga, C. A. Roa-Fuentes, G. L. Brejão & L. Casatti, 2019. How deforestation drives stream habitat changes and the functional structure of fish assemblages in different tropical regions. Aquatic Conservation: Marine and Freshwater Ecosystems 29: 1238–1252.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the scholarship, the Universidade Estadual do Oeste do Paraná (UNIOESTE) for the logistical support for the field collection, to the researchers of the Coleção Ictiológica do Nupélia (Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura) for confirming the identification of the species, and to Prof. Dr. Pitágoras Augusto Piana for his support during the statistical analysis. Carla Simone Pavanelli is partially financed by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Process # 308777/2019-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Crislei Larentis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: David J. Hoeinghaus, Jaquelini O. Zeni, Gabriel L. Brejão, Rafael P. Leitão & Renata G. Frederico / Neotropical Stream Fish Ecology in a Changing Landscape

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larentis, C., Pavanelli, C.S. & Delariva, R.L. Do environmental conditions modulated by land use drive fish functional diversity in streams?. Hydrobiologia 849, 4465–4483 (2022). https://doi.org/10.1007/s10750-021-04756-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04756-x

Keywords

Navigation