Skip to main content

Salinity effects on the microbiome of a Neotropical water strider

Abstract

Salinization of coastal freshwaters (FWs) due to sea-level rise is a significant stressor for FW biodiversity. However, the effect of changes in salinity on the bacterial microbiome of Neotropical FW insects is less known. We combined field collections and common garden experiments to assess how changes in salinity may affect the microbiome associated with fresh and brackish populations of the water strider Telmatometra withei in Panama. The brackish water (BW) population had higher bacterial diversity and the total communities associated with T. withei were different at each site. Common garden experiments showed that both β diversity and the relative abundance of key taxa varied significantly with changes in salinity, but α diversity remained constant. The BW treatments also showed increased diversity of taxa known to be pathogenic to both insects and humans, including Mycobacterium, Spiroplasma, and Vibrio. Our findings suggest that the host environment is an essential driver of host–microbiome interactions in T. withei. Given the expected increases in sea-level rise, salinity-driven changes in the microbiomes of aquatic insects could trigger important ecological, evolutionary, and pathogenic changes, with consequences for both natural and human populations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

Raw sequence data and metadata are available at: https://figshare.com/articles/dataset/Salinity_effects_on_the_microbiome_of_a_Neotropical_water_strider/14676510. Raw sequence are available at: https://www.mg-rast.org/mgmain.html?mgpage=token&token=rxUJmwxaxo1J0pNV24Gw0VuP9JugUrnF1K.

References

  • Abbott, D. W. & A. B. Boraston, 2008. Structural biology of pectin degradation by Enterobacteriaceae. Microbiology and Molecular Biology Reviews 72: 301–316.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abdelaziz, M., M. D. Ibrahem, M. A. Ibrahim, N. M. Abu-Elala & D. A. Abdel-Moneam, 2017. Monitoring of different Vibrio species affecting marine fishes in Lake Qarun and Gulf of Suez: phenotypic and molecular characterization. Egyptian Journal of Aquatic Research 43: 141–146.

    Google Scholar 

  • Antwis, R. E., S. M. Griffiths, X. A. Harrison, P. Aranega-Bou, A. Arce, A. S. Bettridge, F. L. Brailsford, A. de Menezes, A. Devaynes, K. M. Forbes, E. L. Fry, I. Goodhead, E. Haskell, C. Heys, C. James, S. R. Johnston, G. R. Lewis, Z. Lewis, M. C. Macey, A. McCarthy, J. E. McDonald, N. L. Mejia-Florez, D. O’Brien, C. Orland, M. Pautasso, W. D. K. Reid, H. A. Robinson, K. Wilson & W. J. Sutherland, 2017. Fifty important research questions in microbial ecology. FEMS Microbiology Ecology 93: 1–10.

    Google Scholar 

  • Asmar, S., M. Sassi, M. Phelippeau & M. Drancourt, 2016. Inverse correlation between salt tolerance and host-adaptation in mycobacteria. BMC Research Notes 9: 1–9.

    Google Scholar 

  • Baldwin, D. S., G. N. Rees, A. M. Mitchell, G. Watson & J. Williams, 2006. The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland. Wetlands 26: 455–464.

    Google Scholar 

  • Berkey, C. D., N. Blow & P. I. Watnick, 2009. Genetic analysis of Drosophila melanogaster susceptibility to intestinal Vibrio cholerae infection. Cellular Microbiology 11: 461–474.

    CAS  PubMed  Google Scholar 

  • Blow, N. S., R. N. Salomon, K. Garrity, I. Reveillaud, A. Kopin, F. R. Jackson & P. I. Watnick, 2005. Vibrio cholerae infection of Drosophila melanogaster mimics the human disease cholera. PLoS Pathogens 1: 0092–0098.

    CAS  Google Scholar 

  • Bokulich, N. A., B. D. Kaehler, J. R. Rideout, M. Dillon, E. Bolyen, R. Knight, G. A. Huttley & J. Gregory Caporaso, 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6: 1–17.

    Google Scholar 

  • Callahan, B. J., P. J. McMurdie, M. J. Rosen, A. W. Han, A. A. Johnson & S. P. Holmes, 2016a. DADA2: high resolution sample inference from Illumina amplicon data. Nature Methods 13: 4–5.

    Google Scholar 

  • Callahan, B. J., K. Sankaran, J. A. Fukuyama, P. J. McMurdie & S. P. Holmes, 2016b. Bioconductor workflow for microbiome data analysis: from raw reads to community analyses [version 2; peer review: 3 approved]. F1000Research 5: 1492. https://doi.org/10.12688/f1000research.8986.2.

  • Cañedo-Argüelles, M., 2020. A review of recent advances and future challenges in freshwater salinization. Limnetica 39: 185–211.

    Google Scholar 

  • Cañedo-Argüelles, M., T. E. Grantham, I. Perrée, M. Rieradevall, R. Céspedes-Sánchez & N. Prat, 2012. Response of stream invertebrates to short-term salinization: a mesocosm approach. Environmental Pollution 166: 144–151.

    PubMed  Google Scholar 

  • Cañedo-Argüelles, M., B. J. Kefford, C. Piscart, N. Prat, R. B. Schäfer & C.-J. Schulz, 2013. Salinisation of rivers: an urgent ecological issue. Environmental Pollution 173: 157–167.

    PubMed  Google Scholar 

  • Caporaso, J. G., C. L. Lauber, W. A. Walters, D. Berg-lyons, C. A. Lozupone, P. J. Turnbaugh, N. Fierer & R. Knight, 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of USA 108: 4516–4522.

    CAS  Google Scholar 

  • Castillo, A. M. & L. F. De León, 2021. Evolutionary mismatch along salinity gradients in a Neotropical water strider. Ecology and Evolution 11(10): 1–14.

    Google Scholar 

  • Castillo, A. M., K. Saltonstall, C. F. Arias, K. A. Chavarria, L. A. Ramírez-Camejo, L. C. Mejía & L. F. De León, 2020. The microbiome of Neotropical water striders and its potential role in codiversification. Insects 11: 1–15.

    Google Scholar 

  • Castillo, A. M., M. T. Sharpe, C. K. Ghalambor & L. F. De León, 2017. Exploring the effects of salinization on trophic diversity in freshwater ecosystems: a quantitative review. Hydrobiologia 807: 1–17.

    Google Scholar 

  • Chen, S. J., F. Lu, J. A. Cheng, M. X. Jiang & M. O. Way, 2012. Identification and biological role of the endosymbionts Wolbachia in rice water Weevil (Coleoptera: Curculionidae). Environmental Entomology 41: 469–477.

    PubMed  Google Scholar 

  • Chong, J., P. Liu, G. Zhou & J. Xia, 2020. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nature Protocols 15: 799–821.

    CAS  PubMed  Google Scholar 

  • Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.

    Google Scholar 

  • Dhariwal, A., J. Chong, S. Habib, I. L. King, L. B. Agellon & J. Xia, 2017. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Research 45: W180–W188.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edmonds, J. W., N. B. Weston, S. B. Joye, X. Mou, & M. A. Moran, 2009. Microbial community response to seawater amendment in low-salinity tidal sediments. Microbial Ecology 58: 558–568.

    PubMed  Google Scholar 

  • Engel, P. & N. A. Moran, 2013. The gut microbiota of insects – diversity in structure and function. FEMS Microbiology Reviews 37: 699–735.

    CAS  PubMed  Google Scholar 

  • Esemu, S. N., X. Dong, A. J. Kfusi, C. S. Hartley, R. N. Ndip, L. M. Ndip, A. C. Darby, R. J. Post & B. L. Makepeace, 2019. Aquatic Hemiptera in southwest Cameroon: biodiversity of potential reservoirs of Mycobacterium ulcerans and multiple Wolbachia sequence types revealed by metagenomics. Diversity 11: 1–28.

    Google Scholar 

  • Gallardo, K., J. E. Candia, F. Remonsellez, L. V. Escudero & C. S. Demergasso, 2016. The ecological coherence of temperature and salinity tolerance interaction and pigmentation in a non-marine Vibrio isolated from Salar de Atacama. Frontiers in Microbiology 7: 1–10.

    Google Scholar 

  • Gomez-Mestre, I. & M. Tejedo, 2003. Local adaptation of an Anuran Amphibian to osmotically stressful environments. Evolution 57: 1889–1899.

  • Hansen, J., M. Sato, P. Hearty, R. Ruedy, M. Kelley, V. Masson-Delmotte, G. Russell, G. Tselioudis, J. Cao, E. Rignot, I. Velicogna, B. Tormey, B. Donovan, E. Kandiano, K. Von Schuckmann, P. Kharecha, A. N. Legrande & M. Bauer, 2016. Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous. Atmospheric Chemistry and Physics 16: 3761–3812.

    CAS  Google Scholar 

  • Hedges, L. M., J. C. Brownlie, S. L. O’Neill & K. N. Johnson, 2008. Wolbachia and virus protection in insects. Science 322: 702.

  • Heres, A., R. Redman & D. V. Lightner, 2011. Histopathology of Spiroplasma penaei systemic infection in experimentally infected Pacific white shrimp, Penaeus vannamei. Israeli Journal of Aquaculture Bamidgeh 63: 589.

  • Hooper, L. V., T. Midtvedt & J. I. Gordon, 2002. How host–microbial interactions shape the nutrient environment of the mammalian intestine. Annual Review of Nutrition 22: 283–307.

    CAS  PubMed  Google Scholar 

  • Hughes, J. M., D. J. Schmidt, A. McLean & A. Wheatley, 2008. Population genetic structure in stream insects what have we learned. In Population Genetic Structure.

  • IPCC, 2007. Cambio climático 2007: Informe de síntesis. Informe del Grupo Intergubernamental de Expertos sobre el Cambio Climático.

  • Izabella, O., B. Pawel, J. Piotr & S. don Lee, 2007. Diet of water striders (Gerris lacustris L. 1758) in a rice field near Seoul, Korea. Journal of Asia–Pacific Entomology 10: 85–88.

    Google Scholar 

  • Jackson, C. R., & S. C. Vallaire, 2009. Effects of salinity and nutrients on microbial assemblages in Louisiana Wetland Sediments. Wetlands 29: 277–287.

    Google Scholar 

  • Kefford, B. J., G. L. Hickey, A. Gasith, E. Ben-David, J. E. Dunlop, C. G. Palmer, K. Allan, S. C. Choy & C. Piscart, 2012. Global scale variation in the salinity sensitivity of riverine macroinvertebrates: eastern Australia, France, Israel and South Africa. PLoS ONE 7: e35224.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koch, H. & P. Schmid-Hempel, 2011. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proceedings of the National Academy of Sciences of USA 108: 19288–19292.

  • Levermann, A., P. U. Clark, B. Marzeion, G. A. Milne, D. Pollard, V. Radic & A. Robinson, 2013. The multimillennial sea-level commitment of global warming. Proceedings of the National Academy of Sciences of USA 110: 13745–13750.

  • Lozupone, C. A. & R. Knight, 2007. Global patterns in bacterial diversity. Proceedings of the National Academy of Sciences of the United States of America 104: 11436–11440.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merritt, R. W., K. W. Cummins & M. B. Berg, 2008. An Introduction to Aquatic Insects of North America, 4th ed. Kendall/Hunt Publishing Company, Dubuque:

    Google Scholar 

  • Merritt, R. W., K. W. Cummins, M. B. Berg, J. A. Novak, M. J. Higgins, K. J. Wessell & J. L. Lessard, 2002. Development and application of a macroinvertebrate functional-group approach in the bioassessment of remnant river oxbows in southwest Florida. Journal of the North American Benthological Society 21: 290–310.

    Google Scholar 

  • Merritt, R. W., J. R. Wallace, M. J. Higgins, M. K. Alexander, M. B. Berg, W. T. Morgan, K. W. Cummins & B. Vandeneeden, 1996. Procedures for the functional analysis of invertebrate communities in the Kissimmee River flood-plain ecosystem. Florida Scientist 59: 216–274.

    Google Scholar 

  • Mizrahi-Man, O., E. R. Davenport & Y. Gilad, 2013. Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: evaluation of effective study designs. PLoS ONE 8: 18–23.

    Google Scholar 

  • Molano, F., S. P. Mondragón-F & I. Morales, 2017. Nueva Especie y Nuevos Registros de Telmatometra (Hemiptera: Gerridae) en Colombia. Ciencia en Desarrollo 8: 93–98.

    Google Scholar 

  • Moran, N. A., J. P. McCutcheon & A. Nakabachi, 2008. Genomics and evolution of heritable bacterial symbionts. Annual Review of Genetics 42: 165–190.

  • Morrissey, E. M., R. B. Franklin & A. Kent, 2015. Evolutionary history influences the salinity preference of bacterial taxa in wetland soils. Frontiers in Microbiology 6: 1–12.

    Google Scholar 

  • Motta, E. V. S., K. Raymann & N. A. Moran, 2018. Glyphosate perturbs the gut microbiota of honey bees. Proceedings of the National Academy of Sciences of USA 115: 10305–10310.

    CAS  Google Scholar 

  • Neubauer, S. C. & C. B. Craft, 2009. Global change and tidal freshwater wetlands: scenarios and impacts. Tidal freshwater wetlands. Estuaries and Coasts 36: 491–507.

    Google Scholar 

  • Nougue, O., R. Gallet, L.-M. Chevin & T. Lenormand, 2015. Niche limits of symbiotic gut microbiota constrain the salinity tolerance of brine shrimp. American Naturalist 186: 390–403.

    Google Scholar 

  • Nowinski, B., C. B. Smith, C. M. Thomas, K. Esson, R. Marin, C. M. Preston, J. M. Birch, C. A. Scholin, M. Huntemann, A. Clum, B. Foster, B. Foster, S. Roux, K. Palaniappan, N. Varghese, S. Mukherjee, T. B. K. Reddy, C. Daum, A. Copeland, I.-M.A. Chen, N. N. Ivanova, N. C. Kyrpides, T. Glavina del Rio, W. B. Whitman, R. P. Kiene, E. A. Eloe-Fadrosh & M. A. Moran, 2019. Microbial metagenomes and metatranscriptomes during a coastal phytoplankton bloom. Scientific Data 6: 1–7.

    CAS  Google Scholar 

  • Nummelin, M., 1988. Waterstriders (Het: Gerridae) as predators of hatching mosquitoes. Bicovas 1: 121–125.

    Google Scholar 

  • Nunan, L. M., D. V. Lightner, M. A. Oduori & G. E. Gasparich, 2005. Spiroplasma penaei sp. nov., associated with mortalities in Penaeus vannamei, Pacific white shrimp. International Journal of Systematic and Evolutionary Microbiology 55: 2317–2322.

    CAS  PubMed  Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. Mcglinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. Henry, H. Stevens, E. Szoecs & H. W. Maintainer, 2017. Vegan: Community Ecology Package. R Package Version 2.0-10. 2.

  • Pacheco, B., 2012. Diversidad taxonómica y distribución de los chinches patinadores (Hemiptera: Gerridae) en Costa Rica.

  • Padilla-Gil, D. N., 2012. Los Hemípteros Acuáticos del Municipio de Tumaco (Nariño, Colombia) Guía Ilustrada.

  • Panayidou, S., E. Ioannidou & Y. Apidianakis, 2014. Human pathogenic bacteria, fungi, and viruses in Drosophila. Virulence 5: 253–269.

    PubMed  PubMed Central  Google Scholar 

  • Park, S. Y., Y. J. Heo, K. S. Kim & Y. H. Cho, 2005. Drosophila melanogaster is susceptible to Vibrio cholerae infection. Molecules and Cells 20: 409–415.

    CAS  PubMed  Google Scholar 

  • Pereira, C. S., I. Lopes, I. Abrantes, J. P. Sousa & S. Chelinho, 2019. Salinization effects on coastal ecosystems: a terrestrial model ecosystem approach. Philosophical Transactions of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rstb.2018.0251.

    Article  Google Scholar 

  • Philippot, L., S. G. E. Andersson, T. J. Battin, J. I. Prosser, J. P. Schimel, W. B. Whitman, & S. Hallin, 2010. The ecological coherence of high bacterial taxonomic ranks. Nature Reviews Microbiology 8: 523–529.

  • Poinsot, D., S. Charlat & H. Merçot, 2003. On the mechanism of Wolbachia-induced cytoplasmic incompatibility: confronting the models with the facts. BioEssays 25: 259–265.

    PubMed  Google Scholar 

  • Pruzzo, C., A. Huq, R. R. Colwell & G. Donelli, 2005. Pathogenic Vibrio species in the marine and estuarine environment. In Oceans and Health: Pathogens in the Marine Environment. Springer, Boston: 217–252.

  • R Development Core, 2008. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna:

    Google Scholar 

  • Rahmstorf, S., 2007. A semi-empirical approach to projecting future sea-level rise. Science 315: 368–370.

    CAS  PubMed  Google Scholar 

  • Rath, K. M., N. Fierer, D. V. Murphy & J. Rousk, 2019. Linking bacterial community composition to soil salinity along environmental gradients. ISME Journal 13: 836–846.

    CAS  Google Scholar 

  • Schuler, H., S. P. Egan, G. R. Hood, R. W. Busbee, A. L. Driscoe & J. R. Ott, 2018. Diversity and distribution of Wolbachia in relation to geography, host plant affiliation and life cycle of a heterogonic gall wasp. BMC Evolutionary Biology 18: 1–15.

    Google Scholar 

  • Short, F. T., S. Kosten, P. A. Morgan, S. Malone & G. E. Moore, 2016. Impacts of climate change on submerged and emergent wetland plants. Aquatic Botany 135: 3–17.

    Google Scholar 

  • Silverman, M. P. & E. F. Munoz, 1973. Effect of iron and salt on prodigiosin synthesis in Serratia marcescens. Journal of Bacteriology 114: 999–1006.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spor, A., O. Koren & R. Ley, 2011. Unravelling the effects of the environment and host genotype on the gut microbiome. Nature Reviews Microbiology 9: 279–290.

    CAS  PubMed  Google Scholar 

  • Suenami, S., M. Konishi Nobu & R. Miyazaki, 2019. Community analysis of gut microbiota in hornets, the largest eusocial wasps, Vespa mandarinia and V. simillima. Scientific Reports 9: 1–13.

    Google Scholar 

  • Sullam, K. E., S. D. Essinger, C. A. Lozupone, M. P. O’Connor, G. L. Rosen, R. Knight, S. S. Kilham & J. A. Russell, 2012. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Molecular Ecology 21: 3363–3378.

    PubMed  Google Scholar 

  • Teixeira, L., Á. Ferreira & M. Ashburner, 2008. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biology 6: 2753–2763.

    CAS  Google Scholar 

  • Thompson, F., T. Iida & J. Swings, 2004. Biodiversity of Vibrios. Microbiology and Molecular Biology Reviews 68: 403–431.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Truong, A., M. Sondossi & J. B. Clark, 2017. Genetic characterization of Wolbachia from Great Salt Lake brine flies. Symbiosis 72: 95–102.

    Google Scholar 

  • Wetzel, F. T., W. D. Kissling, H. Beissmann & D. J. Penn, 2012. Future climate change driven sea-level rise: secondary consequences from human displacement for island biodiversity. Global Change Biology 18: 2707–2719.

    PubMed  Google Scholar 

  • Wickham, H., 2017. ggplot2 – Elegant Graphics for Data Analysis | Hadley Wickham. Springer [available on internet at https://www.springer.com/gp/book/9780387981413%0A, https://www.springer.com/gp/book/9783319242750%0A, https://www.springer.com/gp/book/9783319242750%0A].

  • Wilkinson, L., 2012. Exact and approximate area-proportional circular Venn and Euler diagrams. IEEE Transactions on Visualization and Computer Graphics 18: 321–331.

  • Wrange, A. L., C. André, T. Lundh, U. Lind, A. Blomberg, P. J. Jonsson & J. N. Havenhand, 2014. Importance of plasticity and local adaptation for coping with changing salinity in coastal areas: a test case with barnacles in the Baltic Sea. BMC Evolutionary Biology 14: 156.

    PubMed  PubMed Central  Google Scholar 

  • Zchori-Fein, E., C. Borad & A. R. Harari, 2006. Oogenesis in the date stone beetle, Coccotrypes dactyliperda, depends on symbiotic bacteria. Physiological Entomology 31: 164–169.

    Google Scholar 

  • Zhang, M., Y. Sun, Y. Liu, F. Qiao, L. Chen, W. Liu, Z. Du & E. Li, 2016. Response of gut microbiota to salinity change in two euryhaline aquatic animals with reverse salinity preference. Aquaculture 454: 72–80.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Eyda Gómez and Marta Vargas Timchenko for logistical support in the STRI Ecological and Evolutionary Genomics Laboratory.

Funding

This work was supported by the Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT, Panamá) in the form of a Doctoral Fellowship to A.M.C. (No. 270-2013-284) and a Research Grant (No. FID16-116) to L.F.D. Additional support was provided by Instituto para la Formación y Aprovechamiento de los Recursos Humanos in the form of a Doctoral Fellowship to A.M.C. A.M.C. and L.C.M. acknowledge support from the Sistema Nacional de Investigación (SNI, Panamá). L.F.D. is supported by the University of Massachusetts Boston and K.S. received support from the Simons Foundation (Grant 429440 to W. Wcislo, P.I.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization AMC and LFD; formal analysis AMC, KAC, and KS; methodology AMC; investigation AMC, LFD, KAC, KS, CFA, and LCM; writing—review and editing AMC, LFD, KAC, KS, CFA, and LCM; funding acquisition LFD. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Anakena M. Castillo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest Editors: Isa Schön, Diego Fontaneto & Elena L. Peredo / Aquatic Microbiomes

Supplementary Information

Below is the link to the electronic supplementary material.

10750_2021_4732_MOESM1_ESM.pdf

Supplementary file1 (PDF 42 kb) Fig. S1 Rarefaction curves of bacterial phylogenetic diversity (based on Faith’s PD, ± SE) associated with T. withei from two field sites (A) and common garden experiments (B)

10750_2021_4732_MOESM2_ESM.pdf

Supplementary file2 (PDF 90 kb) Fig. S2 Relative abundance of the most common bacteria taxa associated with T. withei in common garden experiments (salinity treatments 0 to 5 ppt). Abundance was estimated at the rank of bacterial class (A), as well as at the rank of genus (B). α Diversity was estimated based on Faith’s phylogenetic diversity for each site (C). FW and BW in upper part represent both FW and BW origin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Castillo, A.M., Chavarria, K.A., Saltonstall, K. et al. Salinity effects on the microbiome of a Neotropical water strider. Hydrobiologia (2021). https://doi.org/10.1007/s10750-021-04732-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10750-021-04732-5

Keywords

  • Common garden experiments
  • Host–microbiome interaction
  • Pathogens
  • Salinity
  • Sea level rise
  • Neotropical water striders
  • 16S RNA