Skip to main content

Advertisement

Log in

Variability of benthic macroinvertebrate biomass in two contrasting streams in southern Chile

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Organism biomass, a continuous quantity, may be useful for general community and diversity assessment. Body length and biomass of benthic macroinvertebrates from two aquatic environments with different impact levels are determined in this study, classifying organisms using functional and taxonomic characteristics. Lyophilized benthic macroinvertebrate biomass was quantified to test for significant differences between an impacted and reference (less environmental impact) site. Results show that macroinvertebrate assemblages from the less impacted stream had higher average biomass than the assemblage from the perturbed site, and significant differences in biomass of Plecoptera, Trichoptera, predators, filterers and gills breathers were found between sites. The biomass signature was calculated for each analyzed scenario, weighting the presence of all specimens sampled considering the total biomass in a single regression curve equation. The cubic polynomial model had the best fit to the data. More background from theory to practice should be considered in biomonitoring research; hence we propose the application of macroinvertebrate biomass as an additional metric that will help evaluate the ecological status of streams, thus contributing to the knowledge of community-based biomonitoring of benthic macroinvertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, 2nd ed. US Environmental Protection Agency, Office of Water, Washington:

    Google Scholar 

  • Benke, A. C., 1993. Concepts and patterns of invertebrate production in running waters. SIL Proceedings, 1922–2010, 25:1, 15–38.

  • Benke, A. C., 1998. Production dynamics of riverine chironomids: extremely high biomass turnover rates of primary consumers. Ecology 79: 899–910.

    Article  Google Scholar 

  • Benke, A. C. & A. D. Huryn, 2007. Secondary production of macroinvertebrates. Methods in Stream Ecology. Academic Press: 691–710.

  • Benke, A. C., A. D. Huryn, L. A. Smock & J. B. Wallace, 1999. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. Journal of the North American Benthological Society 18: 308–343.

    Article  Google Scholar 

  • Bonada, N., N. Prat, V. H. Resh & B. Statzner, 2006. Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. The Annual Review of Entomology 51: 495–523.

    Article  CAS  PubMed  Google Scholar 

  • Caamaño, M., 1985. Taxonomía de las ninfas terminales de Plecoptera (Insecta) en tres ritrones preandinos de Riñihue, X región, Universidad Austral de Chile, Valdivia, Chile, Chile:

    Google Scholar 

  • Camargo, J. A., 1990. Performance of a new ecotoxicological index to assess environmental impacts on freshwater communities. Bulletin of Environmental Contamination and Toxicology 44: 529–534.

    Article  CAS  PubMed  Google Scholar 

  • Chang, F. H., J. E. Lawrence, B. Rios-Touma & V. H. Resh, 2014. Tolerance values of benthic macroinvertebrates for stream biomonitoring: assessment of assumptions underlying scoring systems worldwide. Environmental Monitoring and Assessment 186: 2135–2149.

    Article  CAS  PubMed  Google Scholar 

  • Chanut, P. C. M., T. Datry, C. Gabbud, & C. T. Robinson, 2019. Direct and indirect effects of flood regime on macroinvertebrate assemblages in a floodplain riverscape. Ecohydrology 12: e2095.

  • Clark, J. S., D. M. Bell, M. H. Hersh, M. C. Kwit, E. Moran, C. Salk, A. Stine, D. Valle & K. Zhu, 2011. Individual-scale variation, species-scale differences: inference needed to understand diversity. Ecology Letters 14: 1273–1287.

    Article  PubMed  Google Scholar 

  • Correa-Araneda, F., M. E. Díaz, K. Ovalle, F. Encina-Montoya, R. Urrutia & R. Figueroa, 2014. Benthic macroinvertebrates community patterns of Mediterranean forested wetlands and their relation with changes in the hydroperiod. Limnetica 33: 361–374.

    Google Scholar 

  • Correa-Araneda, F., L. Boyero, R. Figueroa, C. Sánchez, R. Abdala, A. Ruiz-García & M. A. Graça, 2015. Joint effects of climate warming and exotic litter (Eucalyptus globulus Labill.) on stream detritivore fitness and litter breakdown. Aquatic Sciences 77: 197–205.

    Article  Google Scholar 

  • Culp, J. M., D. G. Armanini, M. J. Dunbar, J. M. Orlofske, N. L. Poff, A. I. Pollard, A. G. Yates & G. C. Hose, 2011. Incorporating traits in aquatic biomonitoring to enhance causal diagnosis and prediction. Integrated Environmental Assessment and Management 7: 187–197.

    Article  PubMed  Google Scholar 

  • Cummins, K. W., 2016. Combining taxonomy and function in the study of stream macroinvertebrates. Journal of Limnology 75: 235–241.

    Article  Google Scholar 

  • Curtis, W. J., A. E. Gebhard & J. S. Perkin, 2018. The river continuum concept predicts prey assemblage structure for an insectivorous fish along a temperate riverscape. Freshwater Science 37: 618–630.

    Article  Google Scholar 

  • Domínguez, E. & H. R. Fernández, 2009. Macroinvertebrados bentónicos sudamericanos: sistemática y biología, Fundación Miguel Lillo, Tucumán, Argentina.

  • Edwards, F. K., R. B. Lauridsen, L. Armand, H. M. Vicent & J. I. Jones, 2009. The relationship between length, mass and preservation time for three species of freshwater leeches (Hirudinea). Fundamental and Applied Limnology 173: 321–327.

    Article  Google Scholar 

  • Eklöf, J., Å. Austin, U. Bergström, S. Donadi, B. D. Eriksson, J. Hansen & G. Sundblad, 2017. Size matters: relationships between body size and body mass of common coastal, aquatic invertebrates in the Baltic Sea. PeerJ 5: e2906.

  • Elgueta, A., K. Górski, M. Thoms, P. Fierro, B. Toledo, A. Manosalva & E. Habit, 2021. Interplay of geomorphology and hydrology drives macroinvertebrate assemblage responses to hydropeaking. Science of the Total Environment 768: 144262.

  • Elosegui, A., 2009. Conceptos y técnicas en ecología fluvial. BBVA Foundation.

  • Feio, M. J., R. M. Hughes, M. Callisto, S. J. Nichols, O. N. Odume, B. R. Quintella, M. Kuemmerlen, F. C. Aguiar, S. F. P. Almeida, P. Alonso-EguíaLis, F. O. Arimoro, F. J. Dyer, J. S. Harding, S. Jang, P. R. Kaufmann, S. Lee, J. Li, D. R. Macedo, A. Mendes, N. Mercado-Silva, W. Monk, K. Nakamura, G. G. Ndiritu, R. Ogden, M. Peat, T. B. Reynoldson, B. Rios-Touma, P. Segurado & A. G. Yates, 2021. The biological assessment and rehabilitation of the world’s rivers: an overview. Water 13: 371.

    Article  CAS  PubMed  Google Scholar 

  • Fierro, P., C. Bertrán, M. Mercado, F. Peña-Cortés, J. Tapia, E. Hauenstein, E. Caputo & L. Vargas-Chacoff, 2015. Landscape composition as a determinant of diversity and functional feeding groups of aquatic macroinvertebrates in southern rivers of the Araucanía, Chile. Latin American Journal of Aquatic Research 43: 186–200.

    Article  Google Scholar 

  • Fierro, P., M. Ferrú, & C. Lara, 2020. Effects of forest conversion on the aquatic Coleoptera assemblage in Mediterranean-climate streams. Ecological Indicators 111: 106043.

  • Fierro, P., C. Valdovinos, C. Lara & G. S. Saldías, 2021. Influence of intensive agriculture on benthic macroinvertebrate assemblages and water quality in the Aconcagua River basin (Central Chile). Water 13: 492.

    Article  CAS  Google Scholar 

  • Figueroa, R., R. Palma, V. Ruiz & X. Niell, 2007. Análisis comparativo de índices bióticos utilizados en la evaluación de la calidad de las aguas en un río mediterráneo de Chile: río Chillán, VIII Región. Revista Chilena De Historia Natural 80: 225–242.

    Article  Google Scholar 

  • Friberg, N., N. Bonada, D. C. Bradley, M. J. Dunbar, F. K. Edwards, J. Grey, R. B. Hayes, A. G. Hildrew, N. Lamouroux, M. Trimmer & G. Woodward, 2011. Biomonitoring of human impacts in freshwater ecosystems: the good, the bad and the ugly. Advances in Ecological Research 44: 1–68.

    Article  Google Scholar 

  • Gaedke, U., 1993. Ecosystem analysis based on biomass size distributions: a case study of a plankton community in a large lake. Limnology and Oceanography 38: 112–127.

    Article  Google Scholar 

  • Goldschmidt, T., 2016. Water mites (Acari, Hydrachnidia): powerful but widely neglected bioindicators–a review. Neotropical Biodiversity 2: 12–25.

    Article  Google Scholar 

  • Gjoni, V. & A. Basset, 2018. A cross-community approach to energy pathways across lagoon macroinvertebrate guilds. Estuaries and Coasts 41: 2433–2446.

    Article  Google Scholar 

  • Gjoni, V., F. Cozzoli, I. Rosati & A. Basset, 2017. Size–density relationships: A cross-community approach to benthic macroinvertebrates in Mediterranean and Black Sea lagoons. Estuaries and Coasts 40: 1142–1158.

    Article  Google Scholar 

  • Gjoni, V., S. Ghinis, M. Pinna, L. Mazzotta, G. Marini, M. Ciotti, I. Rosati, F. Vignes, S. Arima & A. Basset, 2019. Patterns of functional diversity of macroinvertebrates across three aquatic ecosystem types, NE Mediterranean. Mediterranean Marine Science 20: 703–717.

    Article  Google Scholar 

  • Hamada, N., J. H. Thorp & D. C. Rogers, 2018. Thorp and Covich's Freshwater Invertebrates: Volume 3: Keys to Neotropical Hexapoda, Academic Press.

  • Hilsenhoff, W. L., 1988. Rapid field assessment of organic pollution with a family-level biotic index. Journal of the North American Benthological Society 7: 65–68.

    Article  Google Scholar 

  • Höss, S., E. Claus, P. C. Von der Ohe, M. Brinke, H. Güde, P. Heininger & W. Traunspurger, 2011. Nematode species at risk—a metric to assess pollution in soft sediments of freshwaters. Environment International 37: 940–949.

    Article  PubMed  Google Scholar 

  • Jennings, T. A., 1999. Lyophilization: Introduction and Basic Principles, CRC Press:

    Book  Google Scholar 

  • Jonsson, M., 2003. Investigations of species richness effects on ecosystem functioning using stream-living macroinvertebrates as model organisms. Doctoral dissertation.

  • Kaufmann, P. R., P. Levine, D. V. Peck, E. G. Robison & C. Seeliger, 1999. Quantifying physical habitat in wadeable streams. USEPA, National Health and Environmental Effects Research Laboratory, Western Ecology Division.

  • Ledger, M. E., F. K. Edwards, L. E. Brown, A. M. Milner & G. Woodward, 2011. Impact of simulated drought on ecosystem biomass production: an experimental test in stream mesocosms. Global Change Biology 17: 2288–2297.

    Article  Google Scholar 

  • Llopis-Belenguer, C., I. Blasco-Costa & J. A. Balbuena, 2018. Evaluation of three methods for biomass estimation in small invertebrates, using three large disparate parasite species as model organisms. Scientific Reports 8: 1–9.

    Google Scholar 

  • Luebert, F. & P. Pliscoff, 2006. Sinopsis bioclimática y vegetacional de Chile. Editorial Universitaria.

  • Mährlein, M., M. Pätzig, M. Brauns & A. M. Dolman, 2016. Length–mass relationships for lake macroinvertebrates corrected for back-transformation and preservation effects. Hydrobiologia 768: 37–50.

    Article  Google Scholar 

  • Makarieva, A. M., V. G. Gorshkov & B. L. Li, 2004. Body size, energy consumption and allometric scaling: a new dimension in the diversity–stability debate. Ecological Complexity 1: 139–175.

    Article  Google Scholar 

  • Merritt, R. W., K. W. Cummins & M. B. Berg, 2017. Trophic relationships of macroinvertebrates. Methods in Stream Ecology, Volume 1. Academic Press: 413—433.

  • Miele, V., C. Guill, R. Ramos-Jiliberto & S. Kéfi, 2019. Non-trophic interactions strengthen the diversity—functioning relationship in an ecological bioenergetic network model. PLoS Computational Biology 15: e1007269.

  • Miyasaka, H., M. Genkai-Kato, Y. Miyake, D. Kishi, I. Katano, H. Doi, S.-Y. Ohba & N. Kuhara, 2008. Relationships between length and weight of freshwater macroinvertebrates in Japan. Limnology 9: 75–80.

    Article  Google Scholar 

  • Moorman, M. C., N. Peterson, S. E. Moore & P. J. Donoso, 2013. Stakeholder perspectives on prospects for co-management of an old-growth forest watershed near Valdivia, Chile. Society & Natural Resources 26: 1022–1036.

    Article  Google Scholar 

  • Morante, T., L. García-Arberas, A. Antón & A. Rallo, 2012. Macroinvertebrate biomass estimates in Cantabrian streams and relationship with brown trout (Salmo trutta) populations. Limnetica 31: 0085–0094.

    Google Scholar 

  • Nakagawa, H. & Y. Takemon, 2014. Length-mass relationships of macro-invertebrates in a freshwater stream in Japan. Aquatic Insects 36: 53–61.

    Article  Google Scholar 

  • Nilsson, E., K. Olsson, A. Persson, P. Nyström, G. Svensson & U. Nilsson, 2008. Effects of stream predator richness on the prey community and ecosystem attributes. Oecologia 157: 641–651.

    Article  PubMed  Google Scholar 

  • Ortiz, J. D. & M. A. Puig, 2007. Point source effects on density, biomass, and diversity of benthic macroinvertebrates in a Mediterranean stream. River Research and Applications 23: 155–170.

    Article  Google Scholar 

  • Oscoz, J., D. Galicia & R. Miranda, 2011. Clave dicotómica para la identificación de macroinvertebrados de la cuenca del Ebro, Confederación Hidrográfica del Ebro, Zaragoza, España.

  • Plante, C. & J. A. Downing, 1989. Production of freshwater invertebrate populations in lakes. Canadian Journal of Fisheries and Aquatic Sciences 46: 1489–1498.

    Article  Google Scholar 

  • R Studio Team, 2015. RStudio: Integrated development for R. R Studio, Inc., Boston, MA. http://www.rstudio.com.

  • Reynaga, M. C., N. Davalos & C. Molineri, 2017. Spatial and ontogenetic variations in the diet of a widely distributed stonefly Claudioperla tigrina (Plecoptera: Gripopterygidae). Revista De Biología Tropical 65: 1174–1184.

    Article  Google Scholar 

  • Roldán, G., 1988. Guía para el estudio de los macroinvertebrados acuáticos del Departamento de Antioquia. Fondo para la Protección del Medio Ambiente José Celestino Mutis, Colombia.

  • Roldán, G. & J. Ramírez, 2008. Fundamentos de Limnología Neotropical, Universidad de Antioquia, Medellín, Colombia:

    Google Scholar 

  • Schneider, C. A., W. S. Rasband & K. W. Eliceiri, 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sitati, A., P. O. Raburu, M. J. Yegon & F. O. Masese, 2021. Land-use influence on the functional organization of Afrotropical macroinvertebrate assemblages. Limnologica 88: 125875.

  • Smock, L. A., 1980. Relationships between body size and biomass of aquatic insects. Freshwater Biology 10: 375–383.

    Article  Google Scholar 

  • Sullivan, S. M. P., M. C. Watzin & W. S. Keeton, 2007. A riverscape perspective on habitat associations among riverine bird assemblages in the Lake Champlain Basin, USA. Landscape Ecology 22: 1169–1186.

    Article  Google Scholar 

  • Tackenberg, O., 2007. A new method for non-destructive measurement of biomass, growth rates, vertical biomass distribution and dry matter content based on digital image analysis. Annals of Botany 99: 777–783.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thorp, J. H. & A. P. Covich, 2015. Overview of inland water habitats. Thorp and Covich's Freshwater Invertebrates. Academic Press: 23—56.

  • Thorp, J. H. & D. C. Rogers, 2015. Thorp and Covich’s Freshwater Invertebrates, Elsevier, London:

    Google Scholar 

  • Valdovinos Zarges, C., P. Fierro & V. Olmos, 2019. Freshwater Invertebrates of Southwestern South America: Diversity, Biogeography, and Threats. Inland Waters-Dynamics and Ecology.

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Vera Sánchez, A., 2018. Two new species of Diamphipnoidae (Insecta: Plecoptera) from Chile, with description of adults and eggs. Zootaxa 4527: 49–60.

    Article  Google Scholar 

  • Ward, J. V. & J. A. Wiens, 2001. Ecotones of riverine ecosystems: role and typology, spatio-temporal dynamics, and river regulation. International Journal of Ecohydrology and Hydrobiology 1: 25–36.

    Google Scholar 

  • Waters, T. F., 1977. Secondary production in inland waters, in Advances in ecological research. Academic Press 10: 91–164.

    Google Scholar 

  • West, G. B., J. H. Brown & B. J. Enquist, 1997. A general model for the origin of allometric scaling laws in biology. Science 276: 122–126.

    Article  CAS  PubMed  Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 2013. Limnological Analyses. New York: Springer

  • Wilson, H. L., M. F. Johnson, P. J. Wood, C. R. Thorne & M. P. Eichhorn, 2021. Anthropogenic litter is a novel habitat for aquatic macroinvertebrates in urban rivers. Freshwater Biology 66: 524–534.

    Article  CAS  Google Scholar 

  • Woelfl, S., 2018. Desarrollo de protocolo para la toma de decisiones en torno a la actividad acuícola en la cuenca de Rio Bueno, Universidad Austral de Chile, Valdivia, Chile, Informe GORE:

    Google Scholar 

  • Zhao, Y., D. Feng, L. Yu, X. Wang, Y. Chen, Y. Bai, H. J. Hernández, M. Galleguillos, C. Estades, G. S. Biging & J. D. Radke, 2016. Detailed dynamic land cover mapping of Chile: Accuracy improvement by integrating multi-temporal data. Remote Sensing of Environment 183: 170–185.

    Article  Google Scholar 

Download references

Acknowledgements

We thank to Dr. Stefan Woelfl for providing the laboratory implements and useful tips and advice, to Systematics Laboratory of the Institute of Marine and Limnological Sciences of the Universidad Austral de Chile. Special thanks to “Escuela de Graduados, Magíster en Recursos Hídricos”, Science Faculty, Universidad Austral

de Chile.

Funding

This work was supported by the Agencia Nacional de Investigación y Desarrollo (ANID) Becas CONICYT Magister/2019—22190521.

Author information

Authors and Affiliations

Authors

Contributions

JM-S performed the analytic calculations. JM-S, PF, JN designed the study, analyzed the results, and co-drafted the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Jorge Machuca-Sepúlveda or Jorge Nimptsch.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Handling editor: Marcelo S. Moretti

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machuca-Sepúlveda, J., Fierro, P. & Nimptsch, J. Variability of benthic macroinvertebrate biomass in two contrasting streams in southern Chile. Hydrobiologia 849, 641–660 (2022). https://doi.org/10.1007/s10750-021-04731-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04731-6

Keywords

Navigation