Skip to main content
Log in

Social influence on anti-predatory behaviors of juvenile bighead carp (Hypophthalmichthys nobilis) are influenced by conspecific experience and shoal composition

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

At early life stages invasive fishes may have no innate or learned behavioral responses to native predators. However, social cues expressed by shoal mates is one strategy species use to assess risk. By shoaling and using social cues, fishes may identify and mimic others with anti-predator behaviors to increase their own survival. Ability of non-native fishes, such as bighead carp (Hypophthalmichthys nobilis), to mimic native species that have experienced predatory threats is not known. In this experimental study, we varied the number of experienced individuals and the species composition to contrast the responses of naïve juvenile bighead carp exposed to predatory kairomones when grouped with differing numbers of either experienced conspecific or experienced heterospecific (golden shiner, Notemigonus crysoleucas) shoal mates. We found fully naïve groups of bighead carp did not respond to largemouth bass kairomones, but that naïve individuals could mimic anti-predatory behaviors of experienced individuals, even when those experienced individuals were heterospecifics. Diverse alarm responses of bighead carp to composition and experience suggest that responses of this species are plastic. Through changing responses based on shoal experience level and composition, plastic social learning highlights how naïve individuals may adapt to novel predator threats, which could inform predictions of non-native persistence in novel waterways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data will be made available by reasonable request.

Code availability

No novel code was developed for this manuscript.

References

  • Alevizon, W. S., 1976. Mixed schooling and its possible significance in a tropical western Atlantic parrotfish and surgeonfish. Copeia 1976: 796–798.

    Article  Google Scholar 

  • Anderson, M. J., 2001. A new method for non‐parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  • Anderson, M., R. Gorley & K. Clarke, 2008. PERMANOVA+ for Primer. Primer–E, Plymouth, UK.

    Google Scholar 

  • Banerji, A., 2021. Acquisition of adaptive traits via interspecific association: ecological consequences and applications. Ecologies 2: 43–70.

    Article  Google Scholar 

  • Bass, S. L. S. & R. Gerlai, 2008. Zebrafish (Danio rerio) responds differentially to stimulus fish: the effects of sympatric and allopatric predators and harmless fish. Behavioural Brain Research 186: 107–117.

    Article  PubMed  Google Scholar 

  • Bonabeau, E. & L. Dagorn, 1995. Possible universality in the size distribution of fish schools. Physical Review E 51: R5220.

    Article  CAS  Google Scholar 

  • Boros, G., A. Mozsár, Z. Vitál, A. Nagy & A. Specziár, 2014. Growth and condition factor of hybrid (bighead Hypophthalmichthys nobilis Richardson, 1845× silver carp H. molitrix Valenciennes, 1844) Asian carps in the shallow, oligo‐mesotrophic Lake Balaton. Journal of Applied Ichthyology 30: 546–548.

    Article  Google Scholar 

  • Boys, C. A. & R. J. Williams, 2012. Succession of fish and crustacean assemblages following reinstatement of tidal flow in a temperate coastal wetland. Ecological Engineering 49: 221–232.

    Article  Google Scholar 

  • Brown, B., I. Inman & A. Jearld Jr., 1970. Schooling and shelter seeking tendencies in fingerling channel catfish. Transactions of the American Fisheries Society 99: 540–545.

    Article  Google Scholar 

  • Brown, G. E., C. Rive, M. C. O. Ferrari & D. P. Chivers, 2006. The dynamic nature of antipredator behavior: prey fish integrate threat-sensitive antipredator responses within background levels of predation risk. Behavioral Ecology and Sociobiology 61: 9–16.

    Article  Google Scholar 

  • Cabecinha, E., R. Cortes, J. A. Cabral, T. Ferriera, M. Lourenço & M. Â. Pardal, 2009. Multi-scale approach using phytoplankton as a first step towards the definition of the ecological status of reservoirs. Ecological Indicators 9: 240–255.

    Article  CAS  Google Scholar 

  • Calkins, H. A., S. J. Tripp & J. E. Garvey, 2011. Linking silver carp habitat selections to flow and phytoplankton in the Mississippi River. Biological Invasions 14: 949–958.

    Article  Google Scholar 

  • Clark, C. W. & M. Mangel, 1986. The evolutionary advantages of group foraging. Theoretical Population Biology 30: 45–75.

    Article  Google Scholar 

  • Clarke, K. R., 1993. Non‐parametric multivariate analyses of changes in community structure. Austral Ecology 18: 117–143.

    Article  Google Scholar 

  • Clarke, K. & R. Warwick, 1994. An approach to statistical analysis and interpretation. Change in Marine Communities. Plymouth Marine Laboratory, Plymouth, United Kingdom.

  • Clarke, K. & R. Gorley, 2015. PRIMER v7: User Manual/Tutorial; PRIMER-E.

  • Collins, S. F., T. M. Detmer, K. A. Nelson, M. A. Nannini, G. G. Sass & D. H. Wahl, 2018. The release and regulation of rotifers: examining the predatory effects of invasive juvenile common and bighead carp. Hydrobiologia 813: 199–211.

    Article  Google Scholar 

  • Cremer, M. C. & R. O. Smitherman, 1980. Food-Habits and Growth of silver and bighead carp in Cages and Ponds. Aquaculture 20: 57–64.

    Article  Google Scholar 

  • Detmer, T. M. & D. H. Wahl, 2020. Effects of habitat and fish type and diet on the behavior of Daphnia. Inland Waters 11: 57–66.

    Article  CAS  Google Scholar 

  • Demšar, J., C. K. Hemelrijk, H. Hildenbrandt & I. L. Bajec, 2015. Simulating predator attacks on schools: evolving composite tactics. Ecological Modelling 304: 22–33.

    Article  Google Scholar 

  • Ferrari, M. C., J. J. Trowell, G. E. Brown & D. P. Chivers, 2005. The role of learning in the development of threat-sensitive predator avoidance by fathead minnows. Animal Behaviour 70: 777–784.

    Article  Google Scholar 

  • Ferrari, M. C., A. Gonzalo, F. Messier & D. P. Chivers (2007) Generalization of learned predator recognition: an experimental test and framework for future studies. Proceedings of the Royal Society B: Biological Sciences 274: 1853–1859.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gascon, D. & W. C. Leggett, 1977. Distribution, abundance, and resource utilization of littoral zone fishes in response to a nutrient/production gradient in Lake Memphremagog. Journal of the Fisheries Board of Canada 34: 1105–1117.

    Article  Google Scholar 

  • Ghosal, R., P. X. Xiong & P. W. Sorensen, 2016. Invasive bighead and silver carps form different sized shoals that readily intermix. PLOS One 11: e0157174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Godard, R. D., B. B. Bowers & C. Wannamaker, 1998. Responses of golden shiner minnows to chemical cues from snake predators. Behaviour 135: 1213–1228.

    Article  Google Scholar 

  • Hamilton, W. D., 1971. Geometry for the selfish herd. Journal of Theoretical Biology 31: 295–311.

    Article  CAS  PubMed  Google Scholar 

  • Herbert-Read, J. E., S. Krause, L. Morrell, T. Schaerf, J. Krause & A. Ward, 2013. The role of individuality in collective group movement. Proceedings of the Royal Society B 280: 20122564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill, J. E., L. G. Nico, C. E. Cichra & C. R. Gilbert, 2004. Prey vulnerability to peacock cichlids and largemouth bass based on predator gape and prey body depth. Proceedings of the Fifty-Eighth Annual Conference of the Southeastern Association of Fish and Wildlife Agencies: 47–56.

  • Holm, S., 1979. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics: 65–70.

  • Johnson, J. H., M. A. Chalupnicki, R. Abbett, A. R. Diaz & C. C. Nack, 2017. Feeding ecology of Brook silverside, golden shiner, and subyearling pumpkinseed in a Lake Ontario embayment. Journal of Fish and Wildlife Management 8: 240–248.

    Article  Google Scholar 

  • Kolar, C. S., D. C. Chapman, W. R. Courtenay, Jr., C. M. Housel, J. D. Williams & D. P. Jennings, 2005. Asian carps of the genus Hypophthalmichthys (Pisces, Cyprinidae) – a biological synopsis and environmental risk assessment. United States Geological Survey, LaCrosse, Wisconsin.

  • Krause, J., 1993. The effect of ‘Schreckstoff’ on the shoaling behaviour of the minnow: a test of Hamilton’s selfish herd theory. Animal Behaviour 45: 1019–1024.

    Article  Google Scholar 

  • Krause, J., J.-G. Godin & D. Brown, 1996. Phenotypic variability within and between fish shoals. Ecology 77: 1586–1591.

    Article  Google Scholar 

  • Krause, J., J. E. Herbert-Read, F. Seebacher, P. Domenici, A. D. Wilson, S. Marras, M. B. S. Svedsen, D. Strömbom, J. F. Steffensen & S. Krause, 2017. Injury-mediated decrease in locomotor performance increases predation risk in schooling fish. Philosophical Transactions of the Royal Society B 372: 20160232.

    Article  Google Scholar 

  • Kruskal, J. B., 1964. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29: 115–129.

    Article  Google Scholar 

  • Lampo, E. G., B. C. Knights, J. M. Vallazza, C. A. Anderson, W. T. Rechkemmer, L. E. Solomon, A. F. Casper, R. M. Pendleton & J. T. Lamer, 2017. Using Pharyngeal Teeth and Chewing Pads to Estimate Juvenile silver carp Total Length in the La Grange Reach, Illinois River. North American Journal of Fisheries Management 37: 1145–1150.

    Article  Google Scholar 

  • Landeau L, Terborgh J (1986) Oddity and the ‘confusion effect’ in predation. Animal Behaviour 34(5) 1372–1380. https://doi.org/10.1016/S0003-3472(86)80208-1.

  • Leblond, C. & S. G. Reebs, 2006. Individual leadership and boldness in shoals of golden shiners (Notemigonus crysoleucas). Behaviour 143: 1263–1280.

    Article  Google Scholar 

  • Lee, D. S., S. Platania, G. Burgess & R. Kuhler, 1983. Atlas of North American Freshwater Fishes, 1983 Supplement.

  • Leshcheva, T. & A. Y. Zhuikov, 1989. Training of Fish: Ecological and Applied Aspects. Nauka, Moscow.

    Google Scholar 

  • Magurran, A. E., 1990. The Adaptive Significance of Schooling as an Anti-predator Defence in Fish. Annales Zoologici Fennici. JSTOR: 51–66.

  • Magurran, A. E. & A. Higham, 1988. Information transfer across fish shoals under predator threat. Ethology 78: 153–158.

    Article  Google Scholar 

  • Mainardi, D., 1980. Tradition and the social transmission of behavior in animals. Westview Press.

    Google Scholar 

  • Mathis, A., D. P. Chivers & R. J. F. Smith, 1996. Cultural transmission of predator recognition in fishes: intraspecific and interspecific learning. Animal Behaviour 51: 185–201.

    Article  Google Scholar 

  • McGrath P. E., E. J. Hilton & J. A. Musick, 2013. Temporal and spatial effects on the diet of an estuarine piscivore, longnose gar (Lepisosteus osseus). Estuaries and Coasts 36(6): 1292–1303

    Article  CAS  Google Scholar 

  • Mirza, R. S., J. J. Scott & D. P. Chivers, 2001. Differential responses of male and female red swordtails to chemical alarm cues. Journal of Fish Biology 59: 716–728.

    Article  Google Scholar 

  • Morse, D. H., 1977. Feeding behavior and predator avoidance in heterospecific groups. BioScience 27: 332–339.

    Article  Google Scholar 

  • Niemelä, P. T. & N. J. Dingemanse, 2014. Artificial environments and the study of ‘adaptive’ personalities. Trends in Ecology & Evolution, 29(5): 245–247.

    Article  Google Scholar 

  • Parrish, J. K. & L. Edelstein-Keshet, 1999. Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284: 99–101.

    Article  CAS  PubMed  Google Scholar 

  • Pavlov, D. & A. Kasumyan, 2000. Patterns and mechanisms of schooling behavior in fish: a review. Journal of Ichthyology 40: S163.

    Google Scholar 

  • Pitcher, T. J., 1986. Functions of Shoaling Behaviour in Teleosts. Croom Helm Ltd, London & Sydney.

    Book  Google Scholar 

  • Pitcher, T. J. & C. J. Wyche, 1983 Predator-Avoidance Behaviours of Sand-eel Schools: Why Schools Seldom Split. Predators and Prey in Fishes. Springer: 193–204.

  • Pitcher, T., A. Magurran & J. Edwards, 1985. Schooling mackerel and herring choose neighbours of similar size. Marine Biology 86: 319–322.

    Article  Google Scholar 

  • Sampson, S. J., J. H. Chick & M. A. Pegg, 2009. Diet overlap among two Asian carp and three native fishes in backwater lakes on the Illinois and Mississippi rivers. Biological Invasions 11: 483–496.

    Article  Google Scholar 

  • Sanft, E., J. J. Parkos, S. F. Collins, A. P. Porreca & D. H. Wahl, 2018. Vulnerability of juvenile bighead and silver carps to predation by largemouth bass. Transactions of the American Fisheries Society 147: 1207–1214.

    Article  Google Scholar 

  • Sass, G. G., C. Hinz, A. C. Erickson, N. N. McLelland, M. A. McClelland & J. A. Epifanio, 2014. Invasive bighead and silver carp effects on zooplankton communities in the Illinois River, Illinois, USA. Journal of Great Lakes Research 40: 911–921.

    Article  Google Scholar 

  • Savino, J. F. & R. A. Stein, 1989. Behavior of fish predators and their prey: habitat choice between open water and dense vegetation. Environmental Biology of Fishes 24: 287–293.

    Article  Google Scholar 

  • Schaerf, T. M., P. W. Dillingham & A. J. Ward, 2017. The effects of external cues on individual and collective behavior of shoaling fish. Science Advances 3: e1603201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shirkhorshidi, A. S., S. Aghabozorgi & T. W. Wah, 2015. A comparison study on similarity and dissimilarity measures in clustering continuous data. PLOS One 10: e0144059.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sih, A., D. I. Bolnick, B. Luttbeg, J. L. Orrock, S. D. Peacor, L. M. Pintor, E. Preisser, J. S. Rehage & J. R. Vonesh, 2010. Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119: 610–621.

    Article  Google Scholar 

  • Stabell, O. B. & M. S. Lwin. 1997. Predator-induced phenotypic changes in crucian carp are caused by chemical signals from conspecifics. Environmental Biology of Fishes 49: 145–149.

    Google Scholar 

  • Strandburg-Peshkin, A., C. R. Twomey, N. W. Bode, A. B. Kao, Y. Katz, C. C. Ioanou, S. B. Rosenthal, C. J. Torney, H. S. Wu & S. A. Levin, 2013. Visual sensory networks and effective information transfer in animal groups. Current Biology 23: R709–R711.

    Article  CAS  PubMed  Google Scholar 

  • Webster, M. M. & A. J. Ward, 2011. Personality and social context. Biological Reviews 86: 759–773.

    Article  PubMed  Google Scholar 

  • Wilson, J. C., D. P. White, T. M. Detmer & D. H. Wahl, 2021. Behavioral response of juvenile silver and bighead carp to conspecific and heterospecific alarm cues. Biological Invasions 23: 2233–2248.

    Article  Google Scholar 

  • Wisenden, B. D., M. L. Rugg, N. L. Korpi & L. C. Fuselier, 2009. Lab and field estimates of active time of chemical alarm cues of a cyprinid fish and an amphipod crustacean. Behaviour 146: 1423–1442.

    Article  Google Scholar 

  • Wright, T. F., J. Eberhard, E. Hobson, M. L. Avery & M. Russello, 2010. Behavioral flexibility and species invasions: the adaptive flexibility hypothesis. Ethology Ecology & Evolution 22: 393–404.

    Article  Google Scholar 

Download references

Acknowledgements

This study was improved through thoughtful discussion with members of the Kaskaskia Biological Station. A special thanks should be given to Scott Collins, Joseph Parkos, Anthony Porreca, and Corey DeBoom for their thoughtful feedback throughout the completion of this project. The study was supported in part by funding from the Great Lakes Research Initiative, administered through the Illinois Department of Natural Resources (CAFWS-93).

Funding

The study was supported in part by funding from the Great Lakes Research Initiative, administered through the Illinois Department of Natural Resources (CAFWS-93).

Author information

Authors and Affiliations

Authors

Contributions

JCW and DHW conceived and designed the experiments. JCW performed the experiments. JCW, TMD, and DW analyzed the data. JCW, TMD, DW, and DHW provided scientific input, wrote the manuscript and supplied editorial advice.

Corresponding author

Correspondence to Thomas M. Detmer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Institutional Animal Care and Use Committee (#14069) approval was obtained before commencement of the study. All fishes were acquired, retained and used in compliance with federal, state, and local laws and regulations.

Statement of animal rights

Institutional Animal Care and Use Committee (#14069) approval was obtained before commencement of the study. All fishes were acquired, retained and used in compliance with federal, state, and local laws and regulations.

Additional information

Handling editor: Grethe Robertsen

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, J.C., Detmer, T.M., White, D. et al. Social influence on anti-predatory behaviors of juvenile bighead carp (Hypophthalmichthys nobilis) are influenced by conspecific experience and shoal composition. Hydrobiologia 848, 5087–5101 (2021). https://doi.org/10.1007/s10750-021-04694-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04694-8

Keywords

Navigation