Skip to main content

Advertisement

Log in

Annual cycle dampening and decrease in predictability of water level fluctuations in a dam-regulated Neotropical floodplain

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The flood pulse concept refers to seasonal variation in river water levels promoting landscape spatial heterogeneity, connectivity, and nutrient cycling among nearby environments, in addition to contributing to the ecological functioning of river-floodplain systems. This seasonal variation is inherent to river-floodplain systems and responsible for establishing their natural pattern, as frequently observed in nature. In Brazil, the Upper Parana River and its floodplain constitute a river-floodplain system of interest, where an upstream reservoir cascade has altered the flood regime. This regime has been explored in the past; however, research has focused only on its time-domain. In this study, I sought to analyze the flood pulse in the Upper Paraná River Floodplain through a set of spectral (frequency-domain) and nonlinear analyses using a time-series of water level fluctuations (1968–2017) in the system. In doing so, I believe to bring novel information on this system flood regime in terms of its dynamic invariants. I divided the data into four periods: (i) natural regime period, (ii) transitional period, (iii) dam cascade period, and (iv) Primavera dam period. Spectral analysis demonstrated a decrease in the annual cycle amplitude, reflected in its power spectrum, which indicates a weakening in the difference between flood and drought events. Additionally, nonlinear dynamical analysis revealed a less deterministic and predicable behavior leading to more erratic fluctuations, thus jeopardizing the temporal heterogeneity of the system. Such altered dynamics is harmful for threatening the ability of organisms to harmonize their biological cycles with seasonal phenomena, consequently raising concerns about the maintenance of ecological integrity in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the data are public available and can be downloaded from the Agência Nacional de Águas (ANA; Brazil’s National Water Agency) using the Hydroweb platform querying for Porto São José hydrological station (www.ana.gov.br).

References

  • Abarbanel, H. D. I., 1996. Analysis of Observed Chaotic Data. Springer, New York.

    Book  Google Scholar 

  • Agostinho, A. A., L. C. Gomes, S. Verissimo, & E. K. Okada, 2004a. Flood regime, dam regulation and fish in the Upper Paraná River: effects on assemblage attributes, reproduction and recruitment. Reviews in Fish biology and Fisheries Springer 14: 11–19,

    Article  Google Scholar 

  • Agostinho, A. A., S. M. Thomaz, & L. C. Gomes, 2004b. Threats for biodiversity in the floodplain of the Upper Paraná River: effects of hydrological regulation by dams. Ecohydrology & Hydrobiology 4: 255–256.

    Google Scholar 

  • Agostinho, A., C. Bonecker, & L. Gomes, 2009. Effects of water quantity on connectivity: the case of the upper Paraná River floodplain. Ecohydrology and Hydrobiology Elsevier 9: 99–113,

    Article  Google Scholar 

  • Agostinho, A., S. Thomaz, & L. C. Gomes, 2004c. Threats for biodiversity in the floodplain of the Upper Paraná River: effects of hydrological regulation by dams. Ecological Research 4: 255–256.

    Google Scholar 

  • Algarte, V. M., N. S. Siqueira, E. A. Murakami, & L. Rodrigues, 2009. Effects of hydrological regime and connectivity on the interannual variation in taxonomic similarity of periphytic algae. Brazilian journal of biology = Revista brasleira de biologia 69: 609–616,

    Article  CAS  PubMed  Google Scholar 

  • Allan, J. D., P. B. McIntyre, S. D. P. Smith, B. S. Halpern, G. L. Boyer, A. Buchsbaum, G. A. Burton, L. M. Campbell, W. L. Chadderton, J. J. H. Ciborowski, P. J. Doran, T. Eder, D. M. Infante, L. B. Johnson, C. A. Joseph, A. L. Marino, A. Prusevich, J. G. Read, J. B. Rose, E. S. Rutherford, S. P. Sowa, & A. D. Steinman, 2013. Joint analysis of stressors and ecosystem services to enhance restoration effectiveness. Proceedings of the National Academy of Sciences 110: 372–377.

    Article  CAS  Google Scholar 

  • Assahira, C., M. T. F. Piedade, S. E. Trumbore, F. Wittmann, B. B. L. Cintra, E. S. Batista, A. F. de Resende, & J. Schöngart, 2017. Tree mortality of a flood-adapted species in response of hydrographic changes caused by an Amazonian river dam. Forest Ecology and Management Elsevier B.V. 396: 113–123.

    Article  Google Scholar 

  • Baron, J. S., N. L. Poff, P. L. Angermeier, C. N. Dahm, H. Peter, N. G. Hairston, R. B. Jackson, C. A. Johnston, B. D. Richter, A. D. Steinman, N. G. Hairston, R. B. Jackson, & C. A. Johnston, 2002. Meeting ecological and societal needs for freshwater stable [available on internet at http://www.jstor.org/stable/3099968] Linked references are available on JSTOR for this article: meeting ecological and societal needs for freshwater. 12: 1247–1260.

  • Baumgartner, M. T., P. A. Piana, G. Baumgartner, & L. C. Gomes, 2020. Storage or run-of-river reservoirs: exploring the ecological effects of dam operation on stability and species interactions of fish assemblages. Environmental Management Springer US 65: 220–231.

    Article  PubMed  Google Scholar 

  • Best, J., 2015. Anthropogenic stresses on the world ’ s big rivers. Nature Geoscience Springer US 2015:, doi: https://doi.org/10.1038/s41561-018-0262-x.

    Article  Google Scholar 

  • Bonetto, A. A., J. R. Wais, & H. P. Castello, 1989. The increasing damming of the Paraná basin and its effects on the lower reaches. Regulated Rivers: Research & Management 4: 333–346.

    Article  Google Scholar 

  • Camilloni, I., & V. Barros, 2000. The Paraná river response to El Ninõ 1982 – 83 and 1997 – 98 Events. Journal of Hydrometeorology 1: 412–430.

    Article  Google Scholar 

  • Cazelles, B., M. Chavez, D. Berteaux, F. Ménard, J. O. Vik, S. Jenouvrier, & N. C. Stenseth, 2008. Wavelet analysis of ecological time series. Oecologia 156: 287–304,

    Article  PubMed  Google Scholar 

  • Comunello, É., E. E. De Souza Filho, P. C. Rocha, & M. R. Nanni, 2003. Dinâmica de inundação de áreas sazonalmente alagáveis na planície aluvial do alto rio paraná: estudo preliminar. Anais XI SBSR Belo Horizonte (INPE): 2459–2466.

  • Cowpertwait, P., 2009. Introdcutory time series with R. Media. [available on internet at http://www.springerlink.com/index/https://doi.org/10.1007/978-0-387-88698-5].

  • de Assis Murillo, R., D. Corrêa Alves, R. dos Santos Machado, M. J. Silveira, K. Fidanza Rodrigues, & S. M. Thomaz, 2019. Responses of two macrophytes of the genus Polygonum to water level fluctuations and interspecific competition. Aquatic Botany 157:10-16.

    Article  Google Scholar 

  • Degn, H., A. V. Holden, & L. F. Olsen, 1987. Chaos in Biological Systems. Springer US, Boston,

    Book  Google Scholar 

  • Depetris, P. J., 2007. The parana river under extreme flooding: a hydrological and hydro-geochemical insight. Interciencia 32: 656–662.

    Google Scholar 

  • Depetris, P. J., & S. Kempe, 1990. The impact of the E1 NiSo 1982 event on the Paranh River , its discharge and carbon transport. Paleogeography, Paleoclimatology, Paleoecology 89: 239–244.

    Article  Google Scholar 

  • Dias, J. D., N. R. Simões, M. Meerhoff, F. A. Lansac-Tôha, L. F. M. Velho, & C. C. Bonecker, 2016. Hydrological dynamics drives zooplankton metacommunity structure in a Neotropical floodplain. Hydrobiologia 781: 109–125,.

    Article  CAS  Google Scholar 

  • Dunck, B., V. M. Algarte, M. V. Cianciaruso, & L. Rodrigues, 2016. Functional diversity and trait-environment relationships of periphytic algae in subtropical floodplain lakes. Ecological Indicators 67: 257–266,

    Article  Google Scholar 

  • Dunck, B., J. C. Bortolini, L. Rodrigues, L. C. Rodrigues, S. Jati, & S. Train, 2013. Functional diversity and adaptative strategies of planktonic and periphytic algae in isolated tropical floodplain lake. Brazilian Journal of Botany 36: 257–266,.

    Article  Google Scholar 

  • Eckmann, J. ., S. O. Kamphorst, & D. Ruelle, 1987. Recurrence plots of dynamical systems. Europhysics Letters (EPL) 4: 973–977,.

    Article  Google Scholar 

  • Ellner, S., & P. Turchin, 1995. Chaos in a noisy world: new methods and evidence from time-series analysis. The American Naturalist 145: 343–375,.

    Article  Google Scholar 

  • Gomes, L. C., C. K. Bulla, A. A. Agostinho, L. P. Vasconcelos, & L. E. Miranda, 2011. Fish assemblage dynamics in a Neotropical floodplain relative to aquatic macrophytes and the homogenizing effect of a flood pulse. Hydrobiologia 685: 97–107,.

    Article  Google Scholar 

  • Gordon, E., & R. K. Meentemeyer, 2006. Effects of dam operation and land use on stream channel morphology and riparian vegetation. Geomorphology 82: 412–429.

    Article  Google Scholar 

  • Grinsted, A., J. C. Moore, & S. Jevrejeva, 2004. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics 11: 561–566,.

    Article  Google Scholar 

  • Hobbs, B., & A. Ord, 2018. Nonlinear dynamical analysis of GNSS data: quantification, precursors and synchronisation. Progress in Earth and Planetary Science Progress in Earth and Planetary Science 5:1-35.

    Google Scholar 

  • Junk, W. J., P. B. Bayley, & R. R. Sparks, 1989. The flood pulse concept in river-floodplain systems In Dodge, D. P. (ed), Proceedings of the International Large River Symposium (LARS), Canadian Journal of Fisheries and Aquatic Sciences. NRC Research Press, Ottawa: 110–127. [available on internet at http://swrcb2.swrcb.ca.gov/waterrights/water_issues/programs/bay_delta/bay_delta_plan/water_quality_control_planning/docs/sjrf_spprtinfo/junk_et_al_1989.pdf].

  • Kitagawa, G., 2010. Introduction to Time Series Modeling. CRC Press, Boca Raton.

    Book  Google Scholar 

  • Kondolf, G. M., R. J. P. Schmitt, P. Carling, S. Darby, M. Arias, S. Bizzi, A. Castelletti, T. A. Cochrane, S. Gibson, M. Kummu, C. Oeurng, Z. Rubin, & T. Wild, 2018. Changing sediment budget of the Mekong: cumulative threats and management strategies for a large river basin. Science of the Total Environment 625: 114–134.

    Article  CAS  Google Scholar 

  • Labat, D., 2008. Wavelet analysis of the annual discharge records of the world’s largest rivers. Advances in Water Resources 31: 109–117.

    Article  Google Scholar 

  • Labat, D., 2010. Wavelet analyses in hydrology In Sivakumar, B., & R. Berndtsson (eds), Advances in Data-Based Approaches for Hydrologic Modeling and Forecasting. World Scientific Publishing Company, Singapore 371–409.

    Chapter  Google Scholar 

  • Lakshmanan, M., & S. Rajasekar, 2003a. What is nonlinearity? In Lakshmanan, M., & S. Rajasekar (eds), Nonlinear Dynamics. Springer, Berlin Heidelberg: 1–11.

    Chapter  Google Scholar 

  • Lakshmanan, M., & S. Rajasekar, 2003b. Nonlinear Dynamics. Springer, Berlin Heidelberg,.

    Book  Google Scholar 

  • Lemke, M. J., H. M. Hagy, K. Dungey, A. F. Casper, A. M. Lemke, T. D. VanMiddlesworth, & A. Kent, 2017. Echoes of a flood pulse: short-term effects of record flooding of the Illinois River on floodplain lakes under ecological restoration. Hydrobiologia 804: 1–25.

    Article  Google Scholar 

  • Lytle, D. A., & N. L. R. Poff, 2004. Adaptation to natural flow regimes. Trends in Ecology and Evolution 19: 94–100.

    Article  PubMed  Google Scholar 

  • Marwan, N., 2010. How to avoid potential pitfalls in recurrence plot based data analysis. International Journal of Bifurcation and Chaos 21: 1003–1017,

    Article  Google Scholar 

  • Marwan, N., M. Carmen Romano, M. Thiel, & J. Kurths, 2007. Recurrence plots for the analysis of complex systems. Physics Reports 438: 237–329.

    Article  Google Scholar 

  • Moi, D. A., J. Ernandes-Silva, M. T. Baumgartner, & R. P. Mormul, 2020. The effects of river-level oscillations on the macroinvertebrate community in a river–floodplain system. Limnology 21: 219–232,

    Article  Google Scholar 

  • Mwale, D., T. Y. Gan, & S. S. P. Shen, 2004. A new analysis of variability and predictability of seasonal rainfall of central southern Africa for 1950-94. International Journal of Climatology 24: 1509–1530.

    Article  Google Scholar 

  • Nielsen, D. L., K. Podnar, R. J. Watts, A. L. Wilson, & K. P. R. J. Watts, 2013. Empirical evidence linking increased hydrologic stability with decreased biotic diversity within wetlands. Hydrobiologia 708: 81–96,

    Article  Google Scholar 

  • Oliveira, A. G., H. I. Suzuki, L. C. Gomes, & A. A. Agostinho, 2014. Interspecific variation in migratory fish recruitment in the Upper Paraná River: effects of the duration and timing of floods. Environmental Biology of Fishes 98: 1327–1337.

    Article  Google Scholar 

  • Opperman, J. J., R. Luster, B. A. McKenney, M. Roberts, & A. W. Meadows, 2010. Ecologically functional floodplains: connectivity, flow regime, and scale. Journal of the American Water Resources Association 46: 211–226.

    Article  Google Scholar 

  • Padial, A. A. A., P. Carvalho, S. M. Thomaz, S. M. Boschilia, R. B. Rodrigues, J. T. Kobayashi, Æ. P. Carvalho, R. Becker, R. Æ. Josilaine, T. Kobayashi, & E. Nin, 2009. The role of an extreme flood disturbance on macrophyte assemblages in a Neotropical floodplain. Aquatic Sciences 71: 389–398,

    Article  Google Scholar 

  • Parsons, M., C. A. McLoughlin, K. A. Kotschy, K. H. Rogers, & M. W. Rountree, 2005. The effects of extreme floods on the biophysical heterogeneity of river landscapes. Frontiers in Ecology and the Environment 3: 487–494.

    Article  Google Scholar 

  • Petesse, M. L., & M. Petrere, 2012. Tendency towards homogenization in fish assemblages in the cascade reservoir system of the Tietê river basin, Brazil. Ecological Engineering 48: 109–116,

    Article  Google Scholar 

  • R Core Team, 2019. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [available on internet at http://www.r-project.org].

  • Reis, V., V. Hermoso, S. K. Hamilton, S. E. Bunn, E. Fluet-Chouinard, B. Venables, & S. Linke, 2019. Characterizing seasonal dynamics of Amazonian wetlands for conservation and decision making. Aquatic Conservation: Marine and Freshwater Ecosystems 29: 1073–1082.

    Article  Google Scholar 

  • Resende, A. F. de, J. Schöngart, A. S. Streher, J. Ferreira-Ferreira, M. T. F. Piedade, & T. S. F. Silva, 2019. Massive tree mortality from flood pulse disturbances in Amazonian floodplain forests: the collateral effects of hydropower production. Science of the Total Environment. 659: 587–598.

    Article  CAS  Google Scholar 

  • Roberto, M. C., N. N. Santana, & S. M. Thomaz, 2009. Limnology in the Upper Paraná River floodplain: large-scale spatial and temporal patterns, and the influence of reservoirs. Brazilian Journal of Biology = Revista brasleira de biologia 69: 717–725.

    Article  CAS  PubMed  Google Scholar 

  • Rocha, P. C., M. Santos, & E. E. Souza-Filho, 2001. Alterações no regime hidrológico do alto rio Paraná como resposta ao controle de descargas efetuado por grandes barramentos a montante. Anais do VIII Encuentro de Geógrafos de América Latina, Santiago: 28–39.

  • Rosch, A., & H. Schmidbauer, 2014. WaveletComp: a guided tour through the R-package: 1–38.

  • Santos, C. A. G., C. de O. Galvão, K. Suzuki, & R. M. Trigo, 2001. Matsuyama city rainfall data analysis using wavelet transform. Proceedings of hydraulic engineering 45: 211–216,

    Article  Google Scholar 

  • Scheiner, S. M., & M. R. Willig, 2008. A general theory of ecology. Theoretical Ecology 1: 21–28.

    Article  Google Scholar 

  • Shannon, C., 1948. A mathematical theory of communication. The Bell System Technical Journal 27: 379–423.

    Article  Google Scholar 

  • Shumway, R. H., & D. S. Stoffer, 2017. Time Series Analysis and Its Applications. Springer, New York

    Book  Google Scholar 

  • Simões, N. R., J. D. Dias, C. M. Leal, L. Souza Magalhães Braghin, F. A. Lansac-Tôha, C. C. Bonecker, J. De, N. Ressye, & L. D. S. Magalha, 2013. Floods control the influence of environmental gradients on the diversity of zooplankton communities in a neotropical floodplain. Aquatic Sciences 75: 607–617,.

    Article  Google Scholar 

  • Sivakumar, B., 2009. Nonlinear dynamics and chaos in hydrologic systems: latest developments and a look forward. Stochastic Environmental Research and Risk Assessment 23: 1027–1036.

    Article  Google Scholar 

  • Sivakumar, B., 2017. Chaos in Hydrology. Springer, Dordrecht,

    Book  Google Scholar 

  • Sivakumar, B., 2018. Chaos identification and prediction methods. In Sivakumar, B. (ed), Chaos in Hydrology. Springer, Dordrecht: 173–198.

    Google Scholar 

  • Smith, L. C., D. L. Turcotte, & B. L. Isacks, 1998. Stream flow characterization and feature detection using a discrete wavelet transform. Hydrological Processes 12: 233–249.

    Article  Google Scholar 

  • Souza-Filho, E. E., 2009. Evaluation of the Upper Paraná River discharge controlled by reservoirs. Brazilian Journal of Biology 69: 707–716,.

    Article  CAS  Google Scholar 

  • Souza-Filho, E. E., P. C. Rocha, E. Comunello, & J. C. Stevaux, 2004. Effects of the Porto Primavera Dam on physical environment of the downstream floodplain In Thomaz, S. M., A. A. Agostinho, & N. A. Hahn (eds), The Upper Parana River and its Floodplain: Physical Aspects, Ecology and Conservation. Backhuys Publishers, Leiden: 55–74.

    Google Scholar 

  • Steinman, A. D., M. E. Ogdahl, M. Weinert, & D. G. Uzarski, 2014. Influence of water-level fluctuation duration and magnitude on sediment–water nutrient exchange in coastal wetlands. Aquatic Ecology 48: 143–159,

    Article  CAS  Google Scholar 

  • Takens, F., 1981. Detecting strange attractors in turbulence In Rand, D., & L. Young (eds), Dynamic Systems and Turbulence. Springer, New York: 366–381.

    Google Scholar 

  • Thiel, M., M. C. Romano, P. L. Read, & J. Kurths, 2004. Estimation of dynamical invariants without embedding by recurrence plots. Chaos 14: 234–243.

    Article  CAS  PubMed  Google Scholar 

  • Thomaz, S. M., L. M. Bini, & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13,.

    Article  Google Scholar 

  • Thomaz, S. M., F. A. Lansac-Tôha, M. do C. Roberto, F. A. Esteves, & A. F. Lima, 1992. Seasonal variation of some limnological factors of lagoa do Guarana: a varzea lake of the High Rio Parana, state of Mato Grosso do Sul, Brazil - 38924.pdf. Brazil. Rev. Hydrobiol 25: 269–276,

    Google Scholar 

  • Tonkin, J. D., M. T. Bogan, N. Bonada, B. Rios-Touma, & D. A. Lytle, 2017. Seasonality and predictability shape temporal species diversity. Ecology 98: 1201–1216.

    Article  PubMed  Google Scholar 

  • Torrence, C., & G. P. Compo, 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79: 61–78.

    Article  Google Scholar 

  • Trulla, L. L., A. Giuliani, J. P. Zbilut, & C. L. Webber, 1996. Recurrence quantification analysis of the logistic equation with transients. Physics Letters A 223: 255–260,

    Article  CAS  Google Scholar 

  • Wang, S., B. Fu, S. Piao, Y. Lü, P. Ciais, X. Feng, & Y. Wang, 2016. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nature Geoscience 9: 38–41.

    Article  CAS  Google Scholar 

  • Ward, J. V., & J. A. Stanford, 1995. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regulated Rivers: Research & Management 11: 105–119,

    Article  Google Scholar 

  • Webber, C. L., N. Marwan, A. Facchini, & A. Giuliani, 2009. Simpler methods do it better: success of recurrence quantification analysis as a general purpose data analysis tool. Physics Letters, Section A: General, Atomic and Solid State Physics 373: 3753–3756,

    Article  CAS  Google Scholar 

  • Webber, C. L., & J. P. Zbilut, 2005. Recurrence quantification analysis of nonlinear dynamical systems In Riley, M. A., & G. Van Orden (eds), Tutorials in Contemporary Nonlinear Methods for the Behavioural Sciences: 26–92.

  • Webber Jr., C. L., J. P. P. Zbilut, & C. L. Webber Jr, 2005. Recurrence quantification analysis of nonlinear dynamical systems. Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences 94: 26–94,

    Google Scholar 

  • Wernberg, T., D. A. Smale, F. Tuya, M. S. Thomsen, T. J. Langlois, T. De Bettignies, S. Bennett, & C. S. Rousseaux, 2013. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nature Climate Change 3: 78–82,

    Article  Google Scholar 

  • Zhang, J., T. Huang, L. Chen, D. Z. Zhu, L. Zhu, L. Feng, & X. Liu, 2020. Impact of the Three Gorges Reservoir on the hydrologic regime of the river-lake system in the middle Yangtze River. Journal of Cleaner Production 258: 121004,

    Article  Google Scholar 

  • Zuccaro, G., D. De Gregorio, & M. F. Leone, 2018. Theoretical model for cascading effects analyses. International Journal of Disaster Risk Reduction 30: 199–215.

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank FAPESP (São Paulo Research Foundation—proc. 2018/18896-4) for granting me a post-doc scholarship. This work was developed in the context of the project “Challenges for biodiversity conservation against climate change, pollution and land use and occupation (PDIP)” (proc. 17/50341-0).

Funding

I would like to thank FAPESP (São Paulo Research Foundation—proc. 2018/18896-4) for granting me a post-doc scholarship. This work was developed in the context of the project “Challenges for biodiversity conservation against climate change, pollution and land use and occupation (PDIP)” (proc. 17/50341-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaques Everton Zanon.

Ethics declarations

Conflict of interest

There are no conflicts of interest concerning the manuscript.

Additional information

Handling editor: Andrew Dzialowski

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 845 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanon, J.E. Annual cycle dampening and decrease in predictability of water level fluctuations in a dam-regulated Neotropical floodplain. Hydrobiologia 848, 4477–4491 (2021). https://doi.org/10.1007/s10750-021-04656-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04656-0

Keywords

Navigation