Skip to main content

Advertisement

Log in

The response of fish size and species diversity to environmental gradients in two Neotropical coastal streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This study investigated the effects of environmental variation on fish diversity patterns in two coastal streams in northwestern Ecuador. Specifically, we examined the role of topography, instream conditions (pH, conductivity), and human influence (land-use modifications) on fish species richness, diversity and evenness as well as body size diversity and size evenness. Study region comprised 19 sites sampled bimonthly during the dry and wet seasons in 2016–2017. The results showed that the contribution of each measure of fish diversity responded differently to the local drivers. For size-based metrics, fish assemblages displayed greater size diversity (more diversity of body sizes) at lower pH and conductivity levels. Taxonomic metrics showed a negative relationship between the number of species and the downstream–upstream gradient. In both measures of diversity, human influence negatively affected size evenness and Shannon diversity, with less equitable abundance distribution and fewer species in more human-altered locations. These results improve our understanding of how assembly processes operate in shaping local fish assemblages in Neotropical coastal streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data are available from the corresponding author P. Jiménez-Prado upon reasonable request.

References

  • Abelson, A. & Y. Loya, 1995. Cross-scale patterns of particulate food acquisition in marine benthic environments. The American Naturalist 145: 848–854.

    Article  Google Scholar 

  • Akaike, H., 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716–723.

    Article  Google Scholar 

  • APHA, 2012. Standard methods for the examination of water and wastewater, 22nd edition edited by E. W. Rice, R. B. Baird, A. D. Eaton and L. S. Clesceri. American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF), Washington.

  • Baldasso, M. C., L. L. Wolff, M. P. Neves & R. L. Delariva, 2019. Ecomorphological variations and food supply drive trophic relationships in the fish fauna of a pristine Neotropical stream. Environmental Biology Fish 102: 783–800.

    Article  Google Scholar 

  • Benejam, L., I. Tobes, S. Brucet & R. Miranda, 2018. Size spectra and other size-related variables of river fish communities: systematic changes along the altitudinal gradient on pristine Andean streams. Ecological Indicators 90: 366–378.

    Article  Google Scholar 

  • Borges, P. P., M. S. Dias, F. R. Carvalho, L. Casatti, P. S. Pompeu, M. Cetra, F. L. Tejerina-Garro, Y. R. Suárez, J. C. Nabout & F. B. Teresa, 2020. Stream fish metacommunity organization across a Neotropical ecoregion: the role of environment, anthropogenic impact and dispersal-based processes. PLoS ONE 15:

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broadway, K. J., M. Pyron, J. R. Gammon & B. A. Murry, 2015. Shift in a large river fish assemblage: body-size and trophic structure dynamics. PLoS ONE 10:

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brosse, S., G. Grenouillet, M. Gevrey, K. Khazraie & L. Tudesque, 2011. Small-scale gold mining erodes fish assemblage structure in small neotropical streams. Biodiversity Conservation 20: 1013–1026.

    Article  Google Scholar 

  • Brown, J. H., F. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.

    Article  Google Scholar 

  • Carvajal-Quintero, J. D., F. Escobar, F. Alvarado, F. A. Villa-Navarro, Ú. Jaramillo-Villa & J. A. Maldonado-Ocampo, 2015. Variation in freshwater fish assemblages along a regional elevation gradient in the northern Andes, Colombia. Ecology and Evolution 5: 2608–2620.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz, B. B., L. E. Miranda & M. Cetra, 2013. Links between riparian landcover, instream environment and fish assemblages in headwater streams of south-eastern Brazil. Ecology of Freshwater Fisheries 22: 607–616.

    Article  Google Scholar 

  • Cusson, M. & E. Bourget, 1997. Influence of topographic heterogeneity and spatial scales on the structure of the neighboring intertidal endobenthic macrofaunal community. Marine Ecology Progress Series 150: 181–193.

    Article  Google Scholar 

  • Dala-Corte, R. B., F. G. Becker & A. S. Melo, 2017. The importance of metacommunity process for long-term turnover of riffle-dwelling fish assemblages depends on spatial position within a dendritic network. Canadian Journal of Fisheries and Aquatic Sciences 74: 101–115.

    Article  Google Scholar 

  • de Freitas-Terra, B., R. M. Hughes & F. G. Araújo, 2013. Sampling sufficiency for fish assemblage surveys of tropical Atlantic Forest streams, Southeastern Brazil. Fisheries 38: 150–158.

    Article  Google Scholar 

  • Dormann, C. F., J. Elith, S. Bacher, C. Buchmann, G. Carl, G. Carré, J. R. G. Marquéz, B. Gruber, B. Lafourcade, P. J. Leitão, T. Münkemüller, C. McClean, P. E. Osborne, B. Reineking, B. Schröder, A. K. Skidmore, D. Zurell & S. Lautenbach, 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 27–46.

    Article  Google Scholar 

  • dos Anjos, M. B. & J. Zuanon, 2007. Sampling effort and fish species richness in small terra firme forest streams of central Amazonia, Brazil. Neotropical Ichthyology 5: 45–52.

    Article  Google Scholar 

  • dos Santos, N. C. L., H. S. de Santana, J. C. G. Ortega, R. M. Dias, L. F. Stegmann, I. M. da Silva Araújo, W. Severi, L. M. Bini, L. C. Gomes & A. A. Agostinho, 2017. Environmental filters predict the trait composition of fish communities in reservoir cascades. Hydrobiologia 802: 245–253.

    Article  Google Scholar 

  • Foubert, A., F. Lecomte, P. Legendre & M. Cusson, 2018. Spatial organisation of fish communities in the St. Lawrence River: a test for longitudinal gradients and spatial heterogeneities in a large river system. Hydrobiologia 809: 155–173.

    Article  Google Scholar 

  • Gillooly, J., J. Brown, G. West, V. Savage & E. Charnov, 2001. Effects of size and temperature on metabolic rate. Science 293: 2248–2251.

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves, C. D. S., R. D. Holt, M. C. Christman & L. Casatti, 2020. Environmental and spatial effects on coastal stream fishes in the Atlantic rain forest. Biotropica 52: 139–150.

    Article  Google Scholar 

  • González, R. J., R. W. Wilson & C. M. Wood, 2005. Ionoregulation in tropical fishes from ion poor, acidic blackwaters. In Val, A. L., V. M. F. de Almeida-Val & D. J. Randall (eds), Fish Physiology. Academic Press, Waltham.

    Google Scholar 

  • Gorman, O. T. & J. R., Karr, 1978. Habitat Structure and Stream Fish Communities. Ecology 59(3): 507-515. https://doi.org/10.2307/1936581

  • Ibañez, C., J. Belliard, R. M. Hughes, P. Irz, A. Kamdem-Toham, N. Lamouroux, P. A. Tedesco & T. Oberdorff, 2009. Convergence of temperate and tropical stream fish assemblages. Ecography 32: 658–670.

    Article  Google Scholar 

  • Ibañez, C., T. Oberdorff, G. Teugels, V. Mamononekene, S. Lavoué, Y. Fermon, D. Paugy & A. K. Toham, 2007. Fish assemblages structure and function along environmental gradients in rivers of Gabon (Africa). Ecology of Freshwater Fish 16: 315–334.

    Article  Google Scholar 

  • Jackson, D. A., P. R. Peres-Neto & J. O. Olden, 2001. What controls who is where in freshwater fish communities: the roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences 58: 157–170.

    Google Scholar 

  • Jiménez-Prado P., 2012. Contaminación del río Atacames y su impacto en la comunidad de peces. Anuario de Investigación y Desarrollo. Centro de Investigación y Desarrollo de la Pontificia Universidad católica del Ecuador Sede Esmeraldas. pp. 14–27.

  • Jiménez-Prado, P., W. Aguirre, E. Laaz-Moncayo, R. Navarrete-Amaya, F. Nugra-Salazar, E. Rebolledo-Monsalve, E. Zárate-Hugo, A. Torres-Novoa & J. Valdiviezo-Rivera, 2015. Guía de peces para aguas continentales en la vertiente occidental del Ecuador. Pontificia Universidad Católica del Ecuador Sede Esmeraldas (PUCESE); Universidad del Azuay (UDA) y Museo Ecuatoriano de Ciencias Naturales, MECN. Esmeraldas, Ecuador.

  • Johal, M. S., K. K. Tandon, Y. K. Rawal, A. K. Tylor, H. S. Banyal & H. S. Rumana, 2001. Species richness of fish in relation to environmental factors. Current Science 80: 499–502.

    Google Scholar 

  • Johnson, R. K., M. T. Furse, D. Hering & L. Sandin, 2007. Ecological relationships between stream communities and spatial scale: implications for designing catchment-level monitoring programmes. Freshwater Biology 52: 939–958.

    Article  Google Scholar 

  • Jones, F. A. M., M. G. Rutherford, A. E. Deacon, D. A. T. Phillip & A. E. Magurran, 2019. Quantifying regional biodiversity in the tropics: a case study of freshwater fish in Trinidad and Tobago. Biotropica 51: 700–708.

    Article  Google Scholar 

  • Kanno, Y., J. C. Vokoun, D. C. Dauwalter, R. M. Hughes, A. T. Herlihy, T. R. Maret & T. M. Patton, 2009. Influence of rare species on electrofishing distance–species richness relationships at stream sites. Transactions of the American Fisheries Society 138: 1240–1251.

    Article  Google Scholar 

  • Leitão, R. P., J. Zuanon, D. Mouillot, C. G. Leal, R. M. Hughes, P. R. Kaufmann, S. Villéger, P. S. Pompeu, D. Kasper, F. R. de Paula, S. F. B. Ferraz & T. A. Gardner, 2018. Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. Ecography 41: 219–232.

    Article  PubMed  PubMed Central  Google Scholar 

  • McGarvey, D. & R. Hughes, 2008. Longitudinal Zonation of Pacific Northwest (U.S.A.) fish assemblages and the species-discharge relationship. Copeia 2: 311–321.

    Article  Google Scholar 

  • McGarvey, D. J. & B. F. Terra, 2016. Using river discharge to model and deconstruct the latitudinal diversity gradient for fishes of the Western Hemisphere. Journal of Biogeography 43: 1436–1449.

    Article  Google Scholar 

  • McGarvey, D. J. & G. M. Ward, 2008. Scale dependence in the species-discharge relationship for fishes of the southeastern U.S.A. Freshwater Biology 53: 2206–2219.

    Google Scholar 

  • Mojica, J. I., J. Lobón-Cervia & C. Castellanos, 2014. Quantifying fish species richness and abundance in Amazonian streams: assessment of a multiple gear method suitable for Terra firme stream fish assemblages. Fisheries Management and Ecology 21: 220–233.

    Article  Google Scholar 

  • Molinero, J., 2019. Seasonality and composition of benthic coarse particulate organic matter in two coastal tropical streams with different land uses. Hydrobiologia 838: 29–43.

    Article  Google Scholar 

  • Morrone, J. J., 2001. Toward a cladistic model of the Caribbean: delimitation of areas of endemism. Caldasia 23: 43–76.

    Google Scholar 

  • Nakagawa, S. & H. Schielzeth, 2013. A general and simple method for obtaining R2 from generalized linear mixed effects models. Methods in Ecology and Evolution 4: 133–142.

    Article  Google Scholar 

  • Oberdorff, T., P. A. Tedesco, B. Hugueny, F. Leprieur, O. Beauchard, S. Brosse & H. H. Dürr, 2011. Global and regional patterns in riverine fish species richness: a review. International Journal of Ecology 2011: 1–12.

    Article  Google Scholar 

  • Peters, R. H., 1983. The Ecological Implications of Body Size. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Quintana, X. D., J. J. Egozcue, O. Martínez-Abella, R. López-Flores, S. Gascón, S. Brucet & D. Boix, 2016. Update: a non-parametric method for the measurement of size diversity, with emphasis on data standardization. The measurement of the size evenness. Limnology and Oceanography Methods 14: 408–413.

    Article  Google Scholar 

  • R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available from https://www.R-project.org/.

  • Rahbek, C., 1995. The elevational gradient of species richness: a uniform pattern? Ecography 18: 200–205.

    Article  Google Scholar 

  • Reynolds, L., A. T. Herlihy, P. R. Kaufmann, S. V. Gregory & R. M. Hughes, 2003. Electrofishing effort requirements for assessing species richness and biotic integrity in western Oregon streams. North American Journal of Fisheries Management 23: 450–461.

    Article  Google Scholar 

  • Roa-Fuentes, C. A. & L. Casatti, 2017. Influence of environmental features at multiple scales and spatial structure on stream fish communities in a tropical agricultural region. Journal of Freshwater Ecology 32: 281–295.

    Article  Google Scholar 

  • Santos, F. B., F. C. Ferreira & K. E. Esteves, 2015. Assessing the importance of the riparian zone for stream fish communities in a sugarcane dominated landscape (Piracicaba River Basin, southeast Brazil). Environmental Biology of Fishes 98: 1895–1912.

    Article  Google Scholar 

  • Smith, C. L. & C. R. Powell, 1971. The summer fish communities of Brier Creek, Marshall County, Oklahoma. The American Museum of Natural History Central Park West at 79th, New York 2458: pp. 1–30

  • Stagg, C. L., D. R. Schoolmaster, S. C. Piazza, G. Snedden, G. D. Steyer, C. J. Fischenich & R. W. McComas, 2016. A landscape-scale assessment of above- and belowground primary production in coastal wetlands: implications for climate change-induced Community Shifts. Estuaries and Coasts 40: 856–879.

    Article  CAS  Google Scholar 

  • Tobes, I., S. Gaspar, M. Peláez-Rodríguez & R. Miranda, 2016. Spatial distribution patterns of fish assemblages relative to macroinvertebrates and environmental conditions in Andean piedmont streams of the Colombian Amazon. Inland Waters 6: 89–104.

    Article  CAS  Google Scholar 

  • Tonkin, J. D., F. Altermatt, D. S. Finn, J. Heino, J. D. Olden, S. U. Pauls & D. A. Lytle, 2017. The role of dispersal in river network metacommunities: patterns, processes, and pathways. Freshwater Biology 63: 141–163.

    Article  Google Scholar 

  • Trebilco, R., J. K. Baum, A. K. Salomon & N. K. Dulvy, 2013. Ecosystem ecology: size-based constraints on the pyramids of life. Trends in Ecology and Evolution 28: 423–431.

    Article  PubMed  Google Scholar 

  • Vannote, R., G. Minshall, K. Cummings, J. Sedell & C. Cushing, 1980. The river continuum concept. Canadian Journal of Fish and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Wentworth, C. K., 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology 30: 377–392.

    Article  Google Scholar 

  • Whittaker, R. J., K. J. Willis & R. Field, 2001. Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography 28: 453–470.

    Article  Google Scholar 

  • Willis, S. C., K. O. Winemiller & H. Lopez-Fernandez, 2005. Habitat structural complexity and morphological diversity of fish assemblages in a Neotropical floodplain river. Oecologia 142: 284–295.

    Article  CAS  PubMed  Google Scholar 

  • Woodward, G., L. Brown, F. Edwards, L. Hudson, M. Lawrence, D. Reuman & M. Ledger, 2012. Climate change impacts in multispecies systems: drought alters food web size structure in a field experiment. Philosophical Transactions of The Royal Society B 367: 2990–2997.

    Article  Google Scholar 

  • Zobel, M., 1997. The relative role of species pool in determining plant species richness: an alternative explanation of species coexistence? Trends in Ecology and Evolution 7: 266–269.

    Article  Google Scholar 

  • Zuur, A., E. N. Ieno, N. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed effects models and extensions in ecology with R. Springer, New York.

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by internal research funds at the Pontificia Universidad Católica del Ecuador Sede Esmeraldas from 2016 to 2018. The work is part of the thesis of P.J-P within the Doctorate studies in Agricultural Sciences and the Natural Environment at the University of Zaragoza, with the support of Banco Santander. We appreciate the collaboration of Fernando Vasquez in the field sampling and we thank Donald Taphord for English language corrections. We also thank the anonymous reviewers for the comments that helped to improve this manuscript.

Funding

This study was funded by the Pontificia Universidad Católica del Ecuador Sede Esmeraldas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Jiménez-Prado.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This work does not contain any studies with human participants performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Handling editor: Fernando M. Pelicice.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez-Prado, P., Arranz, I. The response of fish size and species diversity to environmental gradients in two Neotropical coastal streams. Hydrobiologia 848, 4419–4432 (2021). https://doi.org/10.1007/s10750-021-04654-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04654-2

Keywords

Navigation