Skip to main content

River flows affect the growth of a tropical finfish in the wet-dry rivers of northern Australia, with implications for water resource development

Abstract

Freshwater is a critical input to estuaries but is under increasing demand to support upstream human activities. In this study, otolith biochronology was used to quantify the relationship between river discharge and juvenile growth rates of barramundi (Lates calcarifer) in three regions of the Gulf of Carpentaria in northern Australia. In all regions, river discharge had a strong positive effect on juvenile growth rates. Models were also developed which incorporated the Southern Oscillation Index (SOI) and the Madden–Julian Oscillation (MJO). SOI values corresponding to La Niña events had strong positive consequences for juvenile barramundi growth rates in all regions, and the intensity of positive wet season MJO pulses had a strong positive effect on growth rates in the perennially flowing river, but not the intermittently flowing rivers. The consequences of three hypothetical water development scenarios were estimated for the perennial river. The model predicted a 12%, 8% and 1% reduction in annual barramundi growth rates under proposed scenarios for 18%, 8%, and 3% reduction in river discharge, respectively. Fish growth is a robust, quantitative metric that can be monitored pre and post water resource development to identify the least impactful development scenario and monitor its compliance and success through time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

The otolith increment dataset generated and analysed during the current study is available at https://doi.org/10.6084/m9.figshare.14751747. River flow data for the Mitchell region is available via the Northern Australia Water Resources Assessment river model (https://nawra-river.shinyapps.io/river/). River flow data for the Gilbert and Flinders region are not publicly available at this time. They can be made available upon request to Queensland Hydrology, Queensland Department of Environment and Science. SOI and MJO datasets are publicly available from the Australian Bureau of Meteorology (bom.gov.au/climate/current/soihtm1.shtml) and the United States National Weather Service (cpc.ncep.noaa.gov/products/precip/CWlink/daily_mjo_index/pentad.html), respectively.

References

  • Acreman, M. C., I. C. Overton, J. King, P. J. Wood, I. G. Cowx, M. J. Dunbar, E. Kendy & W. J. Young, 2014. The changing role of ecohydrological science in guiding environmental flows. Hydrological Sciences Journal 59: 433–450.

    Article  Google Scholar 

  • Balston, J., 2008. Chapter 4. Climate impacts on Barramundi and Banana Prawn fisheries of Queensland tropical East Coast. In: Halliday, I. & J. Robins (eds) Environmental flows for sub-tropical estuaries: understanding the freshwater needs of estuaries for sustainable fisheries production and assessing the impacts of water regulation; Final Report FRDC Project No 2001/022, Coastal Zone Project FH3/AF.

  • Balston, J., 2009. Short-term climate variability and the commercial barramundi (Lates calcarifer) fishery of north-east Queensland, Australia. Marine and Freshwater Research 60: 912–923.

    Article  Google Scholar 

  • Blaber, SJM, DA Milton, JP Salini (2008) Chapter 11 The Biology of Barramundi (Lates calcarifer) in the Fly River System. In Bolton, B. (ed) Developments in Earth and Environmental Sciences. vol 9. Elsevier, 411–426.

  • Black, B. A., R. J. Allman, I. D. Schroeder & M. J. Schirripa, 2011. Multidecadal otolith growth histories for red and gray snapper (Lutjanus spp.) in the northern Gulf of Mexico, USA. Fisheries Oceanography 20: 347–356.

    Article  Google Scholar 

  • Black, B. A., G. W. Boehlert & M. M. Yoklavich, 2005. Using tree-ring crossdating techniques to validate annual growth increments in long-lived fishes. Canadian Journal of Fisheries and Aquatic Sciences 62: 2277–2284

    Article  Google Scholar 

  • Booth, D. J., 2014. Do otolith increments allow correct inferences about age and growth of coral reef fishes? Coral Reefs 33: 255–258.

    Article  Google Scholar 

  • Broadley, A., B. Stewart-Koster, R. A. Kenyon, M. A. Burford & C. J. Brown, 2020. Impact of water development on river flows and the catch of a commercial marine fishery. Ecosphere 11: e03194.

    Article  Google Scholar 

  • Bui, H. X. & E. D. Maloney, 2018. Changes in Madden-Julian Oscillation Precipitation and Wind Variance Under Global Warming. Geophysical Research Letters 45: 7148–7155.

    Article  Google Scholar 

  • Bureau of Meteorology, 2012a. Carpentaria Coast Australian Water Resources Assessment 2012. Bureau of Meteorology, 38.

  • Bureau of Meteorology, 2012b. Record-breaking La Niña events - an analysis of the La Niña life cycle and the impacts and significance of the 2010–11 and 2011–12 La Niña events in Australia. Bureau of Meteorology.

  • Burford, M. A., S. J. Faggotter & R. Kenyon, 2020. Contribution of three rivers to floodplain and coastal productivity in the Gulf of Carpentaria: Component 1 final report. Griffith University, Brisbane, Australia.

  • Campana, S. E., 1996. Year-class strength and growth rate in young Atlantic cod Gadus morhua. Marine Ecology Progress Series 135: 21–26

    Article  Google Scholar 

  • Campana, S. E. & S. R. Thorrold, 2001. Otoliths, increments, and elements: keys to a comprehensive understanding of fish populatons? Canadian Journal of Fisheries and Aquatic Sciences 58: 30–38.

    Article  Google Scholar 

  • Campbell, A. B., J. Robins & M. F. O'Neill, 2017. Assessment of the barramundi (Lates calcarifer) fishery in the Southern Gulf of Carpentaria, Queensland, Australia Project Report. State of Queensland, Department of Agriculture and Fisheries, Brisbane, Queensland.

  • Casselman, J. M., 1990. Growth and Relative Size of Calcified Structures of Fish. Transactions of the American Fisheries Society 119: 673–688

    Article  Google Scholar 

  • Chilton, D. E. & R. J. Beamish, 1982. Age determination for fishes studied by the Groundfish Program at the Pacific Biological Station. Canadian Special Publication of Fisheries and Aquatic Sciences 60.

    Google Scholar 

  • Cobon, D. H., R. Darbyshire, J. Crean, S. Kodur, M. Simpson & C. Jarvis, 2020. Valuing Seasonal Climate Forecasts in the Northern Australia Beef Industry. Weather, Climate, and Society 12: 3–14.

    Article  Google Scholar 

  • Coulson, P. G., B. A. Black, I. C. Potter & N. G. Hall, 2014. Sclerochronological studies reveal that patterns of otolith growth of adults of two co-occurring species of Platycephalidae are synchronised by water temperature variations. Marine Biology 161: 383–393.

    Article  Google Scholar 

  • Cowan, T., R. Stone, M. C. Wheeler & M. Griffiths, 2020. Improving the seasonal prediction of Northern Australian rainfall onset to help with grazing management decisions. Climate Services 19.

    Article  Google Scholar 

  • Crook, D. A., D. J. Buckle, Q. Allsop, W. Baldwin, T. M. Saunders, P. M. Kyne, J. D. Woodhead, R. Maas, B. Roberts & M. M. Douglas, 2016. Use of otolith chemistry and acoustic telemetry to elucidate migratory contingents in barramundi Lates calcarifer. Marine and Freshwater Research 68: 1554–1566

    Article  Google Scholar 

  • Davies, P. M., S. E. Bunn & S. K. Hamilton, 2008. 2 - Primary Production in Tropical Streams and Rivers. In Dudgeon, D. (ed) Tropical Stream Ecology. Academic Press, London, 23–42.

    Chapter  Google Scholar 

  • Davis, T. L. O., 1985. Seasonal changes in gonad maturity, and abundance of larvae and early juveniles of barramundi, Lates calcarifer (Bloch), in Van Diemen Gulf and the Gulf of Carpentaria. Marine and Freshwater Research 36: 177–190.

    Article  Google Scholar 

  • Davis, T. L. O. & G. P. Kirkwood, 1984. Age and growth studies on barramundi, Lates calcarifer, in northern Australia. Australian Journal of Marine and Freshwater Research 35: 673–690

    Article  Google Scholar 

  • de Lestang, P., Q. A. Allsop & R. K. Griffin, 2001. Assessment of fish passage ways on fish migration Fishery report. vol 63. Northern Territory Department of Business, Industry and Resource Development, Darwin.

  • Delgado-Rodríguez, M. & J. Llorca, 2004. Bias. Journal of Epidemiology and Community Health 58: 635–641

    Article  Google Scholar 

  • Dormann, C. F., J. Elith, S. Bacher, C. Buchmann, G. Carl, G. Carré, J. R. G. Marquéz, B. Gruber, B. Lafourcade, P. J. Leitão, T. Münkemüller, C. McClean, P. E. Osborne, B. Reineking, B. Schröder, A. K. Skidmore, D. Zurell & S. Lautenbach, 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 27–46.

    Article  Google Scholar 

  • Doubleday, Z. A., C. Izzo, J. A. Haddy, J. M. Lyle, Q. Ye & B. M. Gillanders, 2015. Long-term patterns in estuarine fish growth across two climatically divergent regions. Oecologia 179: 1079–1090

    PubMed  Article  Google Scholar 

  • Duggan, M., P. Bayliss & M. A. Burford, 2019. Predicting the impacts of freshwater-flow alterations on prawn (Penaeus merguiensis) catches. Fisheries Research 215: 27–37

    Article  Google Scholar 

  • Dunstan, D. J., 1959. The barramundi Lates calcarifer (Bloch) in Queensland waters. CSIRO Division of Fisheries and Oceanography, Melbourne, 22.

  • Fisheries Queensland, 2010. Fisheries Long Term Monitoring Program Sampling Protocol - Barramundi (2008 onwards) section Department of Employment, Economic Development and Innovation. Brisbane, Australia

  • Fisheries Queensland, 2012. Fisheries Long Term Monitoring Program Sampling Protocol - Fish Ageing section : Barramundi Department of Employment, Economic Development and Innovation. Brisbane, Australia

  • Garrett, R. N., Reproduction in Queensland barramundi (Lates calcarifer). In: Copland, J. W. & D. L. Grey (eds) Management of Wild and Cultured Sea Bass/Barramundi Proceedings of an International Workshop Held at Darwin, N T Australia, 24–30 September 1986, 1987. Australian Centre for International Agricultural Research: Canberra.

  • Gillanders, B. M., B. A. Black, M. G. Meekan & M. A. Morrison, 2012. Climatic effects on the growth of a temperate reef fish from the Southern Hemisphere: a biochronological approach. Marine Biology 159: 1327–1333

    Article  Google Scholar 

  • Gillanders, B. M. & M. J. Kingsford, 2002. Impact of changes in flow of freshwater on estuarine and open coastal habitats and the associated organisms. Oceanography and Marine Biology: An Annual Review 40: 233–309

    Google Scholar 

  • Grey, D. & C. W. Sadoff, 2007. Sink or Swim? Water security for growth and development. Water Policy 9.

    Article  Google Scholar 

  • Grey, D. L., 1987. An overview of Lates calcarifer in Australia and Asia. In Copland, J. W. & D. L. Grey (eds) Management of Wild and Cultured Sea Bass/Barramundi (Lates calcarifer): proceedings of an international workship held at Darwin, NT, Australia, 24–30 September 1986. ACIAR Proceedings No. 20, Darwin, NT.

  • Hallett, T. B., T. Coulson, J. G. Pilkington, T. H. Clutton-Brock, J. M. Pemberton & B. T. Grenfell, 2004. Why large-scale climate indices seem to predict ecological processes better than local weather. Nature 430: 71-75

    CAS  PubMed  Article  Google Scholar 

  • Halliday, I., J. B. Robins, D. G. Mayer, J. Staunton-Smith & M. J. Sellin, 2011. Freshwater flows affect the year-class strength of barramundi Lates calcarifer in the Fitzroy river estuary, Central Queensland. Proceedings of the Royal Society of Queensland.

  • Halliday, I. A., T. Saunders, M. J. Sellin, Q. Allsop, J. B. Robins, M. McLennan & P. Kurnoth, 2012. Flow impacts on estuarine finfish fisheries of the Gulf of Carpentaria FRDC Project 2007/002 Final report. Queensland Department of Agriculture, Fisheries and Forestry, Brisbane, Australia.

  • Hendon, H. H., M. C. Wheeler & C. Zhang, 2007. Seasonal Dependence of the MJO-ENSO Relationship. Journal of Climate 20: 531–543

    Article  Google Scholar 

  • Herdter, E. S., 2014. Growth Rates in Gulf of Mexico Red Snapper, Lutjanus campechanus, Before and After the Deepwater Horizon Blowout. University of South Florida.

    Google Scholar 

  • Holbrook, N. J., J. Davidson, M. Feng, A. J. Hobday, J. M. Lough, S. McGregor & J. S. Risbey, 2009. El Niño - Southern Oscillation Marine Climate Change in Australia, Impacts and Adaptation Responses, 2009 Report Card. vol 05/09. CSIRO Climate Adaptation National Research Flagship, Cleveland, Queensland, Australia.

  • Holz, L., S. Kim, C. Petheram, G. Podger, J. Hughes, M. Kehoe, D. Aramini, S. Podger, J. Lerat, P. Poulton, J. Hornbuckle & J. M. Perraud, 2013. River system modelling for the Flinders and Gilbert Agricultural Resource Assessment case study analysis A technical report to the Australian Government from the CSIRO Flinders and Gilbert Agricultural Resource Assessment, part of the North Queensland Irrigated Agriculture Strategy. CSIRO Water for a Healthy Country and Sustainable Agriculture flagships, Australia.

  • Hudson, D., O. Alves, H. H. Hendon, E.-P. Lim, G. Liu, J.-J. Luo, C. MacLachlan, A. G. Marshall, L. Shi, G. Wang, R. Wedd, G. Young, M. Zhao & X. Zhou, 2017. ACCESS-S1 The new Bureau of Meteorology multi-week to seasonal prediction system. Journal of Southern Hemisphere Earth Systems Science 67: 132–159

    Article  Google Scholar 

  • Hughes, J., A. Yang, B. Wang, S. Marvanek, L. Carlin, L. Seo, C. Petheram & J. Vaze, 2017. Calibration of river system and landscape models for the Fitzroy, Darwin and Mitchell catchments A technical report to the Australian Government from the CSIRO Northern Australia Water Resource Assessment, part of the National Water Infrastructure Development Fund: Water Resource Assessments. Australia.

  • ICES, 2014. Report of the Workshop on Growth-increment Chronologies in Marine Fish: climate-ecosystem interactions in the North Atlantic (WKGIC). International Council for the Exploration of the Sea, Hamburg, Germany, 20.

  • Katayama, S., 2018. A description of four types of otolith opaque zone. Fisheries Science 84: 735–745

    CAS  Article  Google Scholar 

  • Kendy, E., K. W. Flessa, K. J. Schlatter, C. A. de la Parra, O. M. Hinojosa Huerta, Y. K. Carrillo-Guerrero & E. Guillen, 2017. Leveraging environmental flows to reform water management policy: Lessons learned from the 2014 Colorado River Delta pulse flow. Ecological Engineering 106: 683–694

    Article  Google Scholar 

  • Kennard, M. J., B. J. Pusey, J. D. Olden, S. J. Mackay, J. L. Stein & N. Marsh, 2010. Classification of natural flow regimes in Australia to support environmental flow management. Freshwater Biology 55: 171–193

    Article  Google Scholar 

  • King, J. R. & G. A. McFarlane, 2003. Marine fish life history strategies: applications to fishery management. Fisheries Management and Ecology 10: 249–264

    Article  Google Scholar 

  • Kingsford, R. T., K. F. Walker, R. E. Lester, W. J. Young, P. G. Fairweather, J. Sammut & M. C. Geddes, 2011. A Ramsar wetland in crisis – the Coorong, Lower Lakes and Murray Mouth, Australia. Marine and Freshwater Research 62: 255–265

    CAS  Article  Google Scholar 

  • LeBreton, G. T. O. & F. W. H. Beamish, 2000. Interannual growth variation in fish and tree rings. Canadian Journal of Fisheries and Aquatic Sciences 57: 2345–2356

    Article  Google Scholar 

  • Lisonbee, J. & J. Ribbe, 2021. Seasonal climate influences on the timing of the Australian monsoon onset. Weather and Climate Dynamics 2021: 1–31.

  • Madden, R. A. & P. R. Julian, 1972. Description of Global-Scale Circulation Cells in the Tropics with a 40–50 Day Period. Journal of the Atmospheric Sciences 29: 1109–1123

    Article  Google Scholar 

  • Mallen-Cooper, M. & B. P. Zampatti, 2018. History, hydrology and hydraulics: Rethinking the ecological management of large rivers. Ecohydrology 11: e1965

    Article  Google Scholar 

  • Mallen-Cooper, M. & B. P. Zampatti, 2020. Restoring the ecological integrity of a dryland river: Why low flows in the Barwon–Darling River must flow. Ecological Management & Restoration 21: 218–228.

    Article  Google Scholar 

  • Maneewong, S., Induction of spawning of sea bass (Lates calcarifer) in Thailand. In: Copeland, J. W. & D. L. Grey (eds), Darwin, NT, 1987. p 138–141.

  • Martino, J. C., A. J. Fowler, Z. A. Doubleday, G. L. Grammer & B. M. Gillanders, 2019. Using otolith chronologies to understand long-term trends and extrinsic drivers of growth in fisheries. Ecosphere 10: e02553

    Article  Google Scholar 

  • Martins, T. G., D. Simpson, F. Lindgren & H. Rue, 2012. Bayesian computing with INLA: new features Computational Statistics and Data Analysis.

  • Matta, E. M., B. A. Black & T. K. Wilderbuer, 2010. Climate-driven synchrony in otolith growth-increment chronologies for three Bering Sea flatfish species. Marine Ecology Progress Series 413: 137–145

    Article  Google Scholar 

  • Maunder, M. N., P. R. Crone, A. E. Punt, J. L. Valero & B. X. Semmens, 2016. Growth: Theory, estimation, and application in fishery stock assessment models. Fisheries Research 180: 1–3

    Article  Google Scholar 

  • McCulloch, M., M. Cappo, J. Aumend & W. Müller, 2005. Tracing the life history of individual barramundi using laser ablation MC-ICP-MS Sr-isotopic and Sr/Ba ratios in otoliths. Marine and Freshwater Research 56: 637–644.

    CAS  Article  Google Scholar 

  • McDougall, A., 2004. Assessing the use of sectioned otoliths and other methods to determine the age of the centropomid fish, barramundi (Lates calcarifer) (Bloch), using known-age fish. Fisheries Research 67: 129–141.

    Article  Google Scholar 

  • McGregor, G. B., J. C. Marshall, J. S. Lobegeiger, D. Holloway, N. Menke & J. Coysh, 2018. A Risk-Based Ecohydrological Approach to Assessing Environmental Flow Regimes. Environmental Management 61: 358–374

    Article  Google Scholar 

  • McPhaden, M. J., X. Zhang, H. H. Hendon & M. C. Wheeler, 2006. Large scale dynamics and MJO forcing of ENSO variability. Geophysical Research Letters 33

    Article  Google Scholar 

  • Meynecke, J.-O., M. Grubert, J. M. Arthur, R. Boston & S. Y. Lee, 2012a. The influence of the La Niña-El Niño cycle on giant mud crab (Scylla serrata) catches in Northern Australia. Estuarine, Coastal and Shelf Science 100: 93–101

    Article  Google Scholar 

  • Meynecke, J.-O., M. Grubert & J. Gillson, 2012b. Giant mud crab (Scylla serrata) catches and climate drivers in Australia – a large scale comparison. Marine and Freshwater Research 63: 84–94

    Article  Google Scholar 

  • Milton, D., I. Halliday, M. Sellin, R. Marsh, J. Staunton-Smith & J. Woodhead, 2008. The effect of habitat and environmental history on otolith chemistry of barramundi Lates calcarifer in estuarine populations of a regulated tropical river. Estuarine Coastal and Shelf Science 78

    Article  Google Scholar 

  • Milton, D. A. & S. R. Chenery, 2005. Movement patterns of barramundi Lates calcarifer, inferred from 87Sr/86Sr and Sr/Ca ratios in otoliths, indicate non-participation in spawning. Marine Ecology Progress Series 301: 279–291.

    CAS  Article  Google Scholar 

  • Mitsch, W. J., B. Bernal & M. E. Hernandez, 2015. Ecosystem services of wetlands. International Journal of Biodiversity Science, Ecosystem Services & Management 11: 1–4.

    Article  Google Scholar 

  • Moore, R., 1979. Natural Sex Inversion in the Giant Perch (Lates calcarifer). Marine and Freshwater Research 30: 803–813.

    Article  Google Scholar 

  • Moore, R., 1982. Spawning and earlier life history of barramundi, Lates calcarifer (Bloch), in Papua New Guinea. Australian Jounal of Marine and Freshwater Research 33: 647–661

    Article  Google Scholar 

  • Morrongiello, J. R., R. E. Thresher & D. C. Smith, 2012. Aquatic biochronologies and climate change. Nature Climate Change 2: 849.

    Article  Google Scholar 

  • Morrongiello, J. R., C. T. Walsh, C. A. Gray, J. R. Stocks & D. A. Crook, 2014. Environmental change drives long-term recruitment and growth variation in an estuarine fish. Global Change Biology 20: 1844–1860.

    Article  PubMed  Google Scholar 

  • Ndehedehe, C. E., A. O. Onojeghuo, B. Stewart-Koster, S. E. Bunn & V. G. Ferreira, 2021. Upstream flows drive the productivity of floodplain ecosystems in tropical Queensland. Ecological Indicators 125.

    Article  Google Scholar 

  • Ndehedehe, C. E., B. Stewart-Koster, M. A. Burford & S. E. Bunn, 2020. Predicting hot spots of aquatic plant biomass in a large floodplain river catchment in the Australian wet-dry tropics. Ecological Indicators 117.

    Article  Google Scholar 

  • Nguyen, H. M., A. N. Rountrey, J. J. Meeuwig, P. G. Coulson, M. Feng, S. J. Newman, A. M. Waite, C. B. Wakefield & M. G. Meekan, 2015. Growth of a deep-water, predatory fish is influenced by the productivity of a boundary current system. Scientific Reports 5: 9044.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Oliver, E. C. J. & K. R. Thompson, 2012. A Reconstruction of Madden–Julian Oscillation Variability from 1905 to 2008. Journal of Climate 25: 1996–2019.

    Article  Google Scholar 

  • Ong, J., A. Rountrey, J. Meeuwig, S. Newman, J. Zinke & M. Meekan, 2015. Contrasting environmental drivers of adult and juvenile growth in a marine fish: implications for the effects of climate change. Scientific Reports, 5, 10859. https://doi.org/10.1038/srep10859.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ong, J. J. L., A. N. Rountrey, J. Zinke, J. J. Meeuwig, P. F. Grierson, A. J. O'Donnell, S. J. Newman, J. M. Lough, M. Trougan & M. G. Meekan, 2016. Evidence for climate-driven synchrony of marine and terrestrial ecosystems in northwest Australia. Global Change Biology 22: 2776–2786.

    Article  PubMed  Google Scholar 

  • Pannella, G., 1971. Fish Otoliths: Daily Growth Layers and Periodical Patterns. Science 173: 1124–1127.

    Article  Google Scholar 

  • Pender, P. J. & R. K. Griffin, 1996. Habitat History of Barramundi Lates calcarifer in a North Australian River System Based on Barium and Strontium Levels in Scales. Transactions of the American Fisheries Society 125: 679–689.

    CAS  Article  Google Scholar 

  • Perez, K. O. & S. B. Munch, 2010. Extreme selection on size in the early lives of fish. Evolution 64: 2450–2457.

    PubMed  Google Scholar 

  • Perry, S. J., S. McGregor, A. S. Gupta & M. H. England, 2017. Future Changes to El Niño–Southern Oscillation Temperature and Precipitation Teleconnections. Geophysical Research Letters 44: 10,608–10,616.

    Article  Google Scholar 

  • Petheram, C., T. A. McMahon & M. C. Peel, 2008. Flow characteristics of rivers in northern Australia: Implications for development. Journal of Hydrology 357: 93–111.

    Article  Google Scholar 

  • Petheram, C., J. Hughes, C. Stokes, I. Watson, S. Irvin, D. Musson, S. Philip, C. Turnadge, P. Poulton, L. Rogers, P. Wilson, L. Seo, C. Pollino, A. Ash, T. Webster, S. Yeates, C. Chilcott, C. Bruce, D. Stratford, A. Taylor, P. Davies & A. Higgins, 2018a. Case studies for the Northern Australia Water Resource Assessment. A technical report to the Australian Government from the CSIRO Northern Australia Water Resource Assessment, part of the National Water Infrastructure Development Fund Water Resource Assessments. CSIRO, Canberra.

  • Petheram, C., I. Watson, C. Bruce & C. Chilcott (eds), 2018b. Water resource assessment for the Mitchell catchment. A report to the Australian Government from the CSIRO Northern Australia Water Resource Assessment, part of the National Water Infrastructure Development Fund: Water Resource Assessments. CSIRO, Australia.

  • Pettit, N. E., R. J. Naiman, D. e. M. Warfe, T. D. Jardine, M. M. Douglas, S. E. Bunn & P. M. Davies, 2017. Productivity and Connectivity in Tropical Riverscapes of Northern Australia: Ecological Insights for Management. Ecosystems 20: 492–514.

    Article  Google Scholar 

  • Pollino, C., E. Barber, R. Buckworth, M. Cadiegues, G. Cook, R. Deng, B. Ebner, R. Kenyon, A. Liedloff, L. Merrin, C. Moeseneder, D. Morgan, D. Nielsen, J. O'Sullivan, R. Ponce Reyes, B. Robson, D. Stratford, B. Stewart-Koster & M. Turschwell, 2018. Synthesis of knowledge to support the assessment of impacts of water resource development to ecological assets in northern Australia: asset analysis. A technical report to the Australian Government from the CSIRO Northern Australia Water Resource Assessment, part of the National Water Infrastructure Development Fund: Water Resource Assessments. CSIRO, Canberra.

  • Ricker, W. E., 1979. 11 - Growth Rates and Models. Fish Physiology 8: 677–743.

    Article  Google Scholar 

  • Roberts, B. H., J. R. Morrongiello, A. J. King, D. L. Morgan, T. M. Saunders, J. Woodhead & D. A. Crook, 2019. Migration to freshwater increases growth rates in a facultatively catadromous tropical fish. Oecologia 191: 253–260.

    PubMed  Article  Google Scholar 

  • Robertson, S. G. & A. K. Morison, 1999. A trial of artificial neural networks for automatically estimating the age of fish. Marine and Freshwater Research 50: 73–82

    Article  Google Scholar 

  • Robins, J. B., I. Halliday, J. Staunton-Smith, D. G. Mayer & M. J. Sellin, 2005. Freshwater-flow requirements of estuarine fisheries in tropical Australia: a review of the state of knowledge and application of a suggested approach. Marine and Freshwater Research 56: 1–18

    Article  Google Scholar 

  • Robins, J., D. Mayer, J. Staunton Smith, I. Halliday, B. Sawynok & M. Sellin, 2006. Variable growth rates of the tropical estuarine fish barramundi Lates calcarifer (Bloch) under different freshwater flow conditions. Journal of Fish Biology 69: 379–391.

    Article  Google Scholar 

  • Rountrey, A. N., P. G. Coulson, J. J. Meeuwig & M. Meekan, 2014. Water temperature and fish growth: otoliths predict growth patterns of a marine fish in a changing climate. Global Change Biology 20: 2450–2458

    PubMed  Article  Google Scholar 

  • Rue, H., S. Martino & N. Chopin, 2009. Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations (with discussion). Journal of the Royal Statistical Society, Series B 71: 319–392.

    Article  Google Scholar 

  • Russell, D. J., 2014. Lates calcarifer wild stocks: Their biology, ecology and fishery. In Jerry, D. R. (ed) Biology and Culture of Asian Seabass Lates calcarifer. CRC Press, Taylor and Francis Group, 77–101.

    Google Scholar 

  • Russell, D. J. & R. N. Garrett, 1983. Use by juvenile barramundi, Lates calcarifer (Bloch), and other fishes of temporary supralittoral habitats in a tropical estuary in Northern Australia. Australian Journal of Marine and Freshwater Research 34: 805–811.

    Article  Google Scholar 

  • Sawynok, B., 2014. Tagging in Gulf of Carpentaria Gilbert River to Flinders River 1985–2014. Infofish Australia, 11.

  • Smoliński, S., J. Morrongiello, P. van der Sleen, B. A. Black & S. E. Campana, 2020. Potential sources of bias in the climate sensitivities of fish otolith biochronologies. Canadian Journal of Fisheries and Aquatic Sciences 77: 1552–1563.

    Article  CAS  Google Scholar 

  • Sponaugle, S., 2009. Daily Otolith Increments in the Early Stages of Tropical Fish. In Green, B. S., B. D. Mapstone, G. Carlos & G. A. Begg (eds) Tropical Fish Otoliths: Information for Assessment, Management and Ecology. Springer Netherlands, Dordrecht, 93–132.

    Chapter  Google Scholar 

  • Staunton-Smith, J., J. B. Robins, D. G. Mayer, M. J. Sellin & I. A. Halliday, 2004. Does the quantity and timing of fresh water flowing into a dry tropical estuary affect year-class strength of barramundi (Lates calcarifer)? Marine and Freshwater Research 55: 787–797

    Article  Google Scholar 

  • Stewart-Koster, B. & S. E. Bunn, 2016. The ecology of water security. In Pahl-Wostl, C., A. Bhaduri & J. Gupta (eds) Handbook on water security. Edward Elgar Publishing, Cheltenham.

  • Streipert, S., J. Filar, J. Robins & O. Whybird, 2019. Stock assessment of the barramundi (Lates calcarifer) fishery in Queensland, Australia Technical Report. State of Queensland.

  • Stuart, I. G. & S. C. McKillup, 2002. The use of sectioned otoliths to age barramundi (Lates calcarifer) (Bloch, 1790) [Centropomidae]. Hydrobiologia 479: 231–236.

    Article  Google Scholar 

  • Tanimoto, M., J. B. Robins, M. F. O'Neill, I. A. Halliday & A. B. Campbell, 2012. Quantifying the effects of climate change and water abstraction on a population of barramundi (Lates calcarifer), a diadromous estuarine finfish. Marine and Freshwater Research 63: 715–726

    CAS  Article  Google Scholar 

  • Tonkin, Z., A. Kitchingman, J. Lyon, J. Kearns, G. Hackett, J. O’Mahony, P. D. Moloney, K. Krusic-Golub & T. Bird, 2017. Flow magnitude and variability influence growth of two freshwater fish species in a large regulated floodplain river. Hydrobiologia 797: 289–301.

    Article  Google Scholar 

  • Vance DJ, DJ Staples, JD Kerr, (1985) Factors affecting year-to-year variation in the catch of banana prawns Penaeus merguiensis in the Gulf of Carpentaria, Australia. Journal du Conseil International pour l'Exploration de la Mar 42: 83–97.

  • Warfe, D. M., N. E. Pettit, P. M. Daviews, B. J. Pusey, S. K. Hamilton, M. J. Kennard, S. A. Townsend, P. Bayliss, D. P. Ward, M. M. Douglas, M. A. Burford, M. Finn, S. E. Bunn & I. A. Halliday, 2011. The ‘wet–dry’ in the wet–dry tropics drives river ecosystem structure and processes in northern Australia. Freshwater Biology 56: 2169–2195.

    Article  Google Scholar 

  • Warner, R. F., 1986. Hydrology. In Jeans, D. N. (ed) The Natural Environment Australia – A Geography. vol 1. Sydney University Press.

  • Wheeler, M. C. & H. H. Hendon, 2004. An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction. Monthly Weather Review 132: 1917–1932.

    Article  Google Scholar 

  • Whitehouse, F. W., 1943. The natural drainage of some very flat monsoonal lands. Australian Geographer 4: 183–196

    Article  Google Scholar 

  • Winemiller, K. & K. Rose, 1992. Patterns of Life-History Diversification in North American Fishes: implications for Population Regulation. Canadian Journal of Fisheries and Aquatic Sciences 49: 2196–2218.

    Article  Google Scholar 

  • Wright, C., B. B. Wedding, S. Grauf & O. J. Whybird, 2021. Age estimation of barramundi (Lates calcarifer over multiple seasons from the southern Gulf of Carpentaria using FT-NIR spectroscopy. Marine and Freshwater Research. https://doi.org/10.1071/MF20300

    Article  Google Scholar 

  • Xiao, Y., 2000. Use of the original von Bertalanffy growth model to describe the growth of barramundi, Lates calcarifer (Bloch). Fishery Bulletin 98: 835–841.

    Google Scholar 

  • Xiao, Y. S., 1999. General age- and time-dependent growth models for animals. Fishery Bulletin 97: 690–701.

    Google Scholar 

  • Yezerinac, S. M., S. C. Lougheed & P. Handford, 1992. Measurement Error and Morphometric Studies: Statistical Power and Observer Experience. Systematic Biology 41: 471–482.

    Article  Google Scholar 

  • Zuur, A. F., E. N. Ieno, N. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed Effects Models and Extensions in Ecology with R. Springer-Verlag, New York.

    Book  Google Scholar 

  • Zuur, A. F., J. M. Hilbe & E. N. Ieno, 2013. A beginner's Guide to GLM and GLMM with R. Highland Statistics Ltd. , United Kingdom.

    Google Scholar 

Download references

Acknowledgements

This project was jointly funded through the Queensland Department of Agriculture and Fisheries and the Australian Government’s National Environmental Science Program. Particular thanks to Dr Claire Krause of Geoscience Australia’s Digital Earth Australia program (www.ga.gov.au/dea) for providing Water Observations from Space data for initial exploratory analyses. Digital Earth Australia makes public good data from the United States and European Commission readily available to Australian government and industry. Thanks to Dr Chris Ndehedehe for providing GRACE and SWS remotely sensed datasets for initial exploratory analyses in support of this work, and to two anonymous reviewers for their input on the manuscript.

Funding

This project was jointly funded through the Queensland Department of Agriculture and Fisheries and the Australian Government’s National Environmental Science Program.

Author information

Authors and Affiliations

Authors

Contributions

J. Robins conceived of the project, secured funding, collected data, and contributed to the manuscript. S. Leahy collected data, carried out analyses, and contributed to the manuscript.

Corresponding author

Correspondence to Susannah M. Leahy.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

The animal remains used in this study were donated, and the life and death of all animals were not altered due to the subsequent scientific use of the remains. Therefore under Queensland Government policy, no animal ethics committee approval was required to carry out this study (www.business.qld.gov.au/industries/farms-fishing-forestry/agriculture/livestock/animal-welfare/animals-science/activities/dead-animals).

Consent for publication

All authors, their employer, and the funding agency consent for this material to be published.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Antti P Eloranta

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 766 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leahy, S.M., Robins, J.B. River flows affect the growth of a tropical finfish in the wet-dry rivers of northern Australia, with implications for water resource development. Hydrobiologia 848, 4311–4333 (2021). https://doi.org/10.1007/s10750-021-04641-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04641-7

Keywords

  • Barramundi
  • Otolith increment analysis
  • Water harvesting
  • SOI
  • MJO
  • Gulf of Carpentaria