Skip to main content
Log in

Wood abundance in urban and rural streams in northwestern South Carolina

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In streams and rivers, wood from riparian vegetation contributes to habitat complexity and substrates for stream biota, influences channel geomorphology, alters flow, retains sediment and organic matter, and enhances nutrient uptake. A few studies have shown that wood amounts in urban streams may be lower than in rural streams or that wood amounts in streams are inversely related to watershed impervious surface cover (ISC). To determine if these patterns occur more broadly, we compared wood amounts in urban and non-urban streams in the South Carolina Piedmont and Blue Ridge Provinces. We measured wood abundance in 20 streams draining urbanized (15–68% ISC) or non-urbanized (≤ 2.5% ISC) watersheds. Our results did not support the hypothesis that urban streams would have less wood than rural streams, and we found no relationship between wood amounts and watershed ISC. Indeed, one urban stream bordered by large riparian trees had the greatest wood volume of all streams in our study. Instead, large wood amounts were best explained by tree canopy cover and length of unobstructed tree-lined channel upstream. These results suggest that the presence of numerous riparian trees influences wood amounts positively even in urban streams where wood amounts might be expected to be low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data generated during this study are available from the corresponding author on reasonable request.

Code availability

Standard statistical methods were conducted using publicly available software.

References

  • Abbe, T. B. & D. R. Montgomery, 2003. Patterns and processes of wood debris accumulation in the Queets river basin, Washington. Geomorphology 51: 81–107.

    Article  Google Scholar 

  • Anderson, D. R., 2008. Model Based Inference in the Life Sciences: A Primer on Evidence. Springer, New York.

    Book  Google Scholar 

  • Arnold, T. W., 2010. Uninformative parameters and model selection using Akaike’s Information Criterion. Journal of Wildlife Management 74: 1175–1178.

    Article  Google Scholar 

  • Beck, D.E. 1990. Liriodendron tulipifera L. Yellow-poplar. In Burns, R. M., & Honkala, B.H. (eds), Silvics of North America: Volume 2. Hardwoods. U.S. Department of Agriculture, Washington, DC: 406–416.

  • Beechie, T. J. & T. H. Sibley, 1997. Relationships between channel characteristics, woody debris, and fish habitat in northwestern Washington streams. Transactions of the American Fisheries Society 126: 217–229.

    Article  Google Scholar 

  • Benda, L., D. Miller, J. Sias, D. Martin, R. Bilby, C. Veldhuisen, & T. Dunne, 2003. Wood recruitment processes and wood budgeting. In Gregory, S.V., K. L. Boyer, & A. M. Gurnell (eds), The Ecology and Management of Wood in World Rivers. American Fisheries Society, Symposium 37, Bethesda, Maryland: 49–73.

  • Benke, A.C., & J. B. Wallace, 2003. Influence of wood on invertebrate communities in streams and rivers. In Gregory, S.V., K. L. Boyer, & A. M. Gurnell (eds), The Ecology and Management of Wood in World Rivers. American Fisheries Society, Symposium 37, Bethesda, Maryland: 149–177.

  • Ben-Shachar, M., D. Lüdecke & D. Makowski, 2020. Effectsize: estimation of effect size indices and standardized parameters. Journal of Open Source Software 5(56): 2815.

    Article  Google Scholar 

  • Berg, N., A. Carlson & D. Azuma, 1998. Function and dynamics of woody debris in stream reaches in the central Sierra Nevada, California. Canadian Journal of Fisheries and Aquatic Sciences 55: 1807–1820.

    Article  Google Scholar 

  • Bilby, R. E., 1984. Removal of woody debris may affect stream channel stability. Journal of Forestry 82: 609–613.

    Google Scholar 

  • Bilby, R. E. & G. E. Likens, 1980. Importance of organic debris dams in the structure and function of stream ecosystems. Ecology 61: 1107–1113.

    Article  Google Scholar 

  • Bilby, R. E. & J. W. Ward, 1991. Characteristics and function of large woody debris in streams draining old-growth, clear-cut, and second-growth forests in southwestern Washington. Canadian Journal of Fisheries and Aquatic Sciences 48: 2499–2508.

    Article  Google Scholar 

  • Blaen, P. J., M. J. Kurz, J. D. Drummond, J. L. A. Knapp, C. Mendoza-Lera, N. M. Schmadel, M. J. Klaar, A. Jäger, S. Folegot, J. Lee-Cullin, A. S. Ward, J. P. Zarnetske, T. Datry, A. M. Milner, J. Lewandowski, D. M. Hannah & S. Krause, 2018. Woody debris is related to reach-scale hotspots of lowland stream ecosystem respiration under baseflow conditions. Ecohydrology 11: e1952.

    Article  Google Scholar 

  • Blauch, G. A. & A. J. Jefferson, 2019. If a tree falls in an urban stream, does it stick around? Mobility, characteristics, and geomorphic influence of large wood in urban streams in northeastern Ohio, USA. Geomorphology 337: 1–14.

    Article  Google Scholar 

  • Bond, N. R. & P. S. Lake, 2003. Characterizing fish–habitat associations in streams as the first step in ecological restoration. Austral Ecology 28: 611–621.

    Article  Google Scholar 

  • Booth, D. B., D. R. Montgomery & J. Bethel, 1997. Large woody debris in urban streams of the Pacific Northwest. In Roesner, L. A. (ed.), Effects of Watershed Development and Management on Aquatic Ecosystems. American Society of Civil Engineers, New York: 178–197.

    Google Scholar 

  • Clark, C., P. Roni & S. Burgess, 2019. Response of juvenile salmonids to large wood placement in Columbia River tributaries. Hydrobiologia 842: 173–190.

    Article  CAS  Google Scholar 

  • Cordova, J. M., E. J. Rosi-Marshall, A. M. Yamamuro & G. A. Lamberti, 2007. Quantity, controls and functions of large woody debris in Midwestern USA streams. River Research and Applications 23: 21–33.

    Article  Google Scholar 

  • Costigan, K. H., P. J. Soltesz & K. L. Jaeger, 2015. Large wood in central Appalachian headwater streams: controls on and potential changes to wood loads from infestation of hemlock woolly adelgid. Earth Surface Processes and Landforms 40: 1746–1763.

    Article  Google Scholar 

  • Cribari-Neto, F. & A. Zeileis, 2010. Beta regression in R. Journal of Statistical Software 34(2): 1–24.

    Article  Google Scholar 

  • de Paula, F. R., P. Gerhard, S. J. Wenger, A. Ferreira, C. A. Vettorazzi & S. F. de Barros Ferraz, 2013. Influence of forest cover on in-stream large wood in an agricultural landscape of southeastern Brazil: a multi-scale analysis. Landscape Ecology 28: 13–27.

    Article  Google Scholar 

  • Diehl, T. H., 1997. Potential Drift Accumulation at Bridges. Department of Transportation, McLean, Virginia.

    Google Scholar 

  • Diez, J. R., A. Elosegi & J. Pozo, 2001. Woody debris in North Iberian streams: influence of geomorphology, vegetation, and management. Environmental Management 28: 687–698.

    Article  CAS  PubMed  Google Scholar 

  • Dolloff, C. A., & M. L. Warren, Jr., 2003. Fish relationships with large wood in small streams. In Gregory, S.V., K. L. Boyer, & A. M. Gurnell (eds), The Ecology and Management of Wood in World Rivers. American Fisheries Society, Symposium 37, Bethesda, Maryland: 179–193.

  • Dossi, F., P. Leitner & W. Graf, 2020. Age matters: substrate-specific colonization patterns of benthic invertebrates on installed large wood. Aquatic Ecology 54: 741–760.

    Article  Google Scholar 

  • Duncan, W. W., R. B. Goodloe, J. L. Meyer & E. S. Prowell, 2011. Does channel incision affect in-stream habitat? Examining the effects of multiple geomorphic variables on fish habitat. Restoration Ecology 19: 64–73.

    Article  Google Scholar 

  • Elosegi, A., J. R. Díez, & J. Pozo, 1999. Abundance, characteristics, and movement of woody debris in four Basque streams. Archiv für Hydrobiologie 144: 455–471.

    Article  Google Scholar 

  • Elosegi, A., & L. B. Johnson, 2003. Wood in streams and rivers in developed landscapes. In Gregory, S.V., K. L. Boyer, & A. M. Gurnell (eds), The Ecology and Management of Wood in World Rivers. American Fisheries Society, Symposium 37, Bethesda, Maryland: 337–353.

  • Evans, B. F., C. R. Townsend & T. A. Crowl, 1993. Distribution and abundance of coarse woody debris in some southern New Zealand streams from contrasting forest catchments. New Zealand Journal of Marine and Freshwater Research 27: 227–239.

    Article  Google Scholar 

  • Fausch, K. D. & T. G. Northcote, 1992. Large woody debris and salmonid habitat in a small coastal British Columbia stream. Canadian Journal of Fisheries and Aquatic Sciences 49: 682–693.

    Article  Google Scholar 

  • Finkenbine, J. K., J. W. Atwater & D. S. Mavinic, 2000. Stream health after urbanization. Journal of the American Water Resources Association 36: 1149–1160.

    Article  CAS  Google Scholar 

  • Flebbe, P. A., 1999. Trout use of woody debris and habitat in Wine Spring Creek, North Carolina. Forest Ecology and Management 114: 367–376.

    Article  Google Scholar 

  • Fox, J. & S. Weisberg, 2019. An R Companion to Applied Regression, 3rd ed. Sage, Thousand Oaks.

    Google Scholar 

  • Galia, T., V. Ruiz-Villanueva, R. Tichavský, K. Šilhán, M. Horáček & M. Stoffel, 2018. Characteristics and abundance of large and small instream wood in a Carpathian mixed-forest headwater basin. Forest Ecology and Management 424: 468–482.

    Article  Google Scholar 

  • Groffman, P. M., A. N. Dorsey & P. M. Mayer, 2005. N processing within geomorphic structures in urban streams. Journal of the North American Benthological Society 24: 613–625.

    Article  Google Scholar 

  • Hardison, E. C., M. A. O’Driscoll, J. P. DeLoatch, R. J. Howard & M. M. Brinson, 2009. Urban land use, channel incision, and water table decline along coastal plain streams, North Carolina. Journal of the American Water Resources Association 45: 1032–1046.

    Article  Google Scholar 

  • Hax, C. L. & S. W. Golladay, 1993. Macroinvertebrate colonization and biofilm development on leaves and wood in a boreal river. Freshwater Biology 29: 79–87.

    Article  Google Scholar 

  • Hedman, C. W., D. H. Van Lear & W. T. Swank, 1996. In-stream large woody debris loading and riparian forest seral stage associations in the southern Appalachian Mountains. Canadian Journal of Forest Research 26: 1218–1227.

    Article  Google Scholar 

  • Hellal, J., C. Michel, V. Barsotti, V. Laperche, F. Garrido & C. Joulian, 2016. Representative sampling of natural biofilms: influence of substratum type on the bacterial and fungal communities structure. SpringerPlus 5: 822.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoffman, A. & D. Hering, 2000. Wood-associated macroinvertebrate fauna in Central European streams. International Review of Hydrobiology 85: 25–48.

    Article  Google Scholar 

  • Horner, R. R., D. B. Booth, A. Azous & C. W. May, 1997. Watershed determinants of ecosystem functioning. In Roesner, L. A. (ed.), Effects of Watershed Development and Management on Aquatic Ecosystems. American Society of Civil Engineers, New York: 251–274.

    Google Scholar 

  • Horton, J. W., Jr., & K. I. McConnell, 1991. The western Piedmont. In Horton, J. W., Jr., & V. A. Zullo (eds), The Geology of the Carolinas. The University of Tennessee Press, Knoxville: 79–92.

  • James, G., D. Witten, T. Hastie & R. Tibshirani, 2013. An Introduction to Statistical Learning with Applications in R. Springer, New York.

    Book  Google Scholar 

  • Johnson, L. B., D. H. Breneman & C. Richards, 2003. Macroinvertebrate community structure and function associated with large wood in low gradient streams. River Research and Applications 19: 199–218.

    Article  Google Scholar 

  • Johnson, P. & D. Royall, 2019. Evaluating the effects of urbanization age on the morphology of low-order urban streams in the U.S. southern Piedmont. Physical Geography 40: 1–27.

    Article  Google Scholar 

  • Koslofsky, E., K. Price, & C. R. Jackson, 2016. Effects of urbanization on stream flashiness in the I-85 corridor of the southeastern Piedmont (Masters thesis, Georgia State University).

  • Krause, S., M. J. Klaar, D. M. Hannah, J. Mant, J. Bridgeman, M. Trimmer & S. Manning-Jones, 2014. The potential of large woody debris to alter biogeochemical processes and ecosystem services in lowland rivers. WIREs Water 1: 263–275.

    Article  CAS  Google Scholar 

  • Lassettre, N. S. & G. M. Kondolf, 2012. Large woody debris in urban stream channels: redefining the problem. River Research and Applications 28: 1477–1487.

    Article  Google Scholar 

  • Lenth, R. V., 2021. emmeans: estimated marginal means, aka least-squares means. R package version 1.5.4. https://CRAN.R-project.org/package=emmeans

  • Lester, R. E., W. Wright, M. Jones-Lennon & Phil Rayment, 2009. Large versus small wood in streams: the effect of wood dimension on macroinvertebrate communities. Fundamental and Applied Limnology 174: 339–351.

    Article  Google Scholar 

  • Mackey, M. J., G. M. Connette, W. E. Peterman & R. D. Semlitsch, 2014. Do golf courses reduce the ecological value of headwater streams for salamanders in the southern Appalachian Mountains? Landscape and Urban Planning 125: 17–27.

    Article  Google Scholar 

  • Mangiafico, S., 2020. rcompanion: functions to support extension education program evaluation. R package version 2.3.26. https://CRAN.R-project.org/package=rcompanion.

  • Manning, A. D., R. B. Cunningham, D. Tongway & D. B. Lindenmayer, 2020. Woodlands and woody debris: understanding structure and composition to inform restoration. PLoS ONE 15: e0224258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, D. J. & L. E. Benda, 2001. Patterns of instream wood recruitment and transport at the watershed scale. Transactions of the American Fisheries Society 130: 940–958.

    Article  Google Scholar 

  • Mazerolle, M. J., 2020. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.3-1. https://cran.r-project.org/package=AICcmodavg.

  • Merten, E. C., P. G. Vaz, J. A. Decker-Fritz, J. C. Finlay & H. G. Stefan, 2013. Relative importance of breakage and decay as processes depleting large wood from streams. Geomorphology 190: 40–47.

    Article  Google Scholar 

  • McDade, B., D. J. Martin & S. L. Van De Gevel, 2020. Impacts of the hemlock woolly adelgid (Adelges tsugae) on headwater stream large woody debris loads in the southern Appalachian Mountains. Southeastern Geographer 60: 65–86.

    Article  Google Scholar 

  • Molokwu, N. D., P. G. Vaz, T. Bradshaw, A. Blake, C. Henessey & E. Merten, 2014. Effects of substrate on the benthic macroinvertebrate community: an experimental approach. Ecological Engineering 73: 109–114.

    Article  Google Scholar 

  • Montgomery, D. R., J. M. Buffington, R. D. Smith, K. M. Schmidt & G. Pess, 1995. Pool spacing in forest channels. Water Resources Research 31: 1097–1105.

    Article  Google Scholar 

  • Nakamura, F. & F. J. Swanson, 1993. Effects of coarse woody debris on morphology and sediment storage of a mountain stream system in western Oregon. Earth Surface Processes and Landforms 18: 43–61.

    Article  Google Scholar 

  • NOAA NCEI (National Oceanic and Atmospheric Administration National Centers for Environmental Information), 2020. Data Tools: 1981-2010 Normals. Accessed May 2020. https://www.ncdc.noaa.gov/cdo-web/datatools/normals.

  • Olejnik, S. & J. Algina, 2003. Generalized eta and omega squared statistics: measures of effect size for some common research designs. Psychological Methods 8: 434–447.

    Article  PubMed  Google Scholar 

  • Osei, N. A., A. M. Gurnell & G. L. Harvey, 2015. The role of large wood in retaining fine sediment, organic matter and plant propagules in a small, single-thread forest river. Geomorphology 235: 77–87.

    Article  Google Scholar 

  • Owusu-Adjei, J., 2007. Characteristics of coarse woody debris and its impact on urban streambed process and structure, North Buffalo Creek, Greensboro, U.S.A. (Masters thesis, The University of North Carolina at Greensboro).

  • Paul, M. J. & J. L. Meyer, 2001. Streams in the urban landscape. Annual Review of Ecology and Systematics. 32: 333–365.

    Article  Google Scholar 

  • Paul, M. J., J. L. Meyer & C. A. Couch, 2006. Leaf breakdown in streams differing in catchment land use. Freshwater Biology 51: 1684–1695.

    Article  Google Scholar 

  • R Core Team, 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Reid, D. J. & C. Tippler, 2019. Access to natural substrates in urban streams does not counter impoverishment of macroinvertebrate communities: a comparison of engineered and non-engineered reaches. Water, Air, & Soil Pollution 230: 8.

    Article  CAS  Google Scholar 

  • Riley, J. W., K. M. Beaulieu, S. J. Walsh, & C. A. Journey, 2020. Effects of box culverts on stream habitat, channel morphology, and fish and macroinvertebrate communities at selected sites in South Carolina, 2016–18. United States Geological Survey Scientific Investigations Report 2020–5021. United States Geological Survey, Reston, Virginia.

  • Rizzo, A. A., R. L. Raesly & R. R. Hilderbrand, 2016. Stream salamander responses to varying degrees of urbanization within Maryland’s piedmont physiographic province. Urban Ecosystems 19: 397–413.

    Article  Google Scholar 

  • Roberts, C. R., 1989. Flood frequency and urban-induced channel change: some British examples. In Beven, K. & P. Carling (eds), Floods: Hydrological, Sedimentological and Geomorphological Implications. Wiley, Chichester: 57–82.

    Google Scholar 

  • Rosgen, D. L., 1994. A classification of natural rivers. Catena 22: 169–199.

    Article  Google Scholar 

  • Savery, T. S., G. H. Belt & D. A. Higgins, 2001. Evaluation of the Rosgen stream classification system in Chequamegon-Nicolet National Forest, Wisconsin. Journal of the American Water Resources Association 37: 641–654.

    Article  Google Scholar 

  • Schalko, I., 2020. Wood retention at inclined racks: Effects on flow and local bedload processes. Earth Surface Processes and Landforms 45: 2036–2047.

    Article  Google Scholar 

  • Schneider, K. N. & K. O. Winemiller, 2008. Structural complexity of woody debris patches influences fish and macroinvertebrate species richness in a temperate floodplain-river system. Hydrobiologia 610: 235–244.

    Article  Google Scholar 

  • Segura, C. & D. B. Booth, 2010. Effects of geomorphic setting and urbanization on wood, pools, sediment storage, and bank erosion in Puget Sound streams. Journal of the American Water Resources Association 46: 972–986.

    Article  Google Scholar 

  • Silsbee, D. G. & G. L. Larson, 1983. A comparison of streams in logged and unlogged areas of Great Smoky Mountains National Park. Hydrobiologia 102: 99–111.

    Article  CAS  Google Scholar 

  • Sterling, J. L., A. D. Rosemond & S. J. Wenger, 2016. Watershed urbanization affects macroinvertebrate community structure and reduces biomass through similar pathways in Piedmont streams, Georgia, USA. Freshwater Science 35: 676–688.

    Article  Google Scholar 

  • Stewart, P. M., S. Bhattarai, M. W. Mullen, C. K. Metcalf & E. G. Reátegui-Zirena, 2012. Characterization of large wood and its relationship to pool formation and macroinvertebrate metrics in southeastern coastal plain streams, USA. Journal of Freshwater Ecology 27: 351–365.

    Article  CAS  Google Scholar 

  • Sweeney, B. W., 1993. Effects of streamside vegetation on macroinvertebrate communities of White Clay Creek in eastern North America. Proceedings of the Academy of Natural Sciences of Philadelphia 144: 291–340.

    Google Scholar 

  • Tank, J. L. & M. J. Winterbourn, 1996. Microbial activity and invertebrate colonisation of wood in a New Zealand forest stream. New Zealand Journal of Marine and Freshwater Research 30: 271–280.

    Article  CAS  Google Scholar 

  • Terando, A. J., J. Costanza, C. Belyea, R. R. Dunn, A. McKerrow, & J. A. Collazo, 2014. The southern megalopolis: using the past to predict the future of urban sprawl in the Southeast U.S. PLoS ONE 9: e102261.

  • Trimble, W. S., 2008. Man-Induced Soil Erosion on the Southern Piedmont 1700–1970, 2nd ed. Soil and Water Conservation Society, Ankeny, Iowa.

    Google Scholar 

  • UCD CSRL (University of California Davis California Soil Resource Lab), 2020. SoilWeb. Accessed May 2020. https://casoilresource.lawr.ucdavis.edu/gmap/.

  • USGS (United States Geological Survey), 2019. National Hydrography Dataset. Accessed October 2019. https://www.usgs.gov/core-science-systems/ngp/national-hydrography/access-national-hydrography-products.

  • Valett, H. M., C. L. Crenshaw & P. F. Wagner, 2002. Stream nutrient uptake, forest succession, and biogeochemical theory. Ecology 83: 2888–2901.

    Article  Google Scholar 

  • Vaz, P. G., S. Dias, P. Pinto, E. C. Merten, C. T. Robinson, D. R. Warren & F. C. Rego, 2014. Effects of burn status and conditioning on colonization of wood by stream macroinvertebrates. Freshwater Science 33: 832–846.

    Article  Google Scholar 

  • Vaz, P. G., E. C. Merten, C. T. Robinson & P. Pinto, 2021. Severely burned wood from wildfires has low functional potential in streams. Journal of Applied Ecology 00: 1–11.

    Google Scholar 

  • Vietz, G. J., M. J. Sammonds, C. J. Walsh, T. D. Fletcher, I. D. Rutherfurd & M. J. Stewardson, 2014. Ecologically relevant geomorphic attributes of streams are impaired by even low levels of watershed effective imperviousness. Geomorphology 206: 67–78.

    Article  Google Scholar 

  • Violin, C. R., P. Cada, E. B. Sudduth, B. A. Hassett, D. L. Penrose & E. S. Bernhardt, 2011. Effects of urbanization and urban stream restoration on the physical and biological structure of stream ecosystems. Ecological Applications 21: 1932–1949.

    Article  PubMed  Google Scholar 

  • Walsh, C. J., A. H. Roy, J. W. Feminella, P. D. Cunningham, P. M. Groffman & R. P. Morgan II, 2005. The urban stream syndrome: current knowledge and the search for a cure. Journal of the North American Benthological Society 24: 706–723.

    Article  Google Scholar 

  • Warren, D. R., C. E. Kraft, W. S. Keeton, J. S. Nunery & G. E. Likens, 2009. Dynamics of wood recruitment in streams of the northeastern US. Forest Ecology and Management 258: 804–813.

    Article  Google Scholar 

  • Williams, C. E. & R. E. Cook, 2010. Forest seral stage and large woody debris abundance in an Allegheny High Plateau forest stream system. Natural Areas Journal 30: 20–26.

    Article  Google Scholar 

  • Wohl, E., 2014. A legacy of absence: wood removal in US rivers. Progress in Physical Geography 38: 637–663.

    Article  Google Scholar 

  • Wohl, E. & D. N. Scott, 2016. Wood and sediment storage and dynamics in river corridors. Earth Surface Processes and Landforms 42: 5–23.

    Article  Google Scholar 

  • Wohl, E., K. B. Lininger, M. Fox, B. R. Baillie, & W. D. Erskine, 2017. Instream large wood loads across bioclimatic regions. Forest Ecology and Management 404: 370–380.

    Article  Google Scholar 

  • Wyżga, B. & J. Zawiejska, 2010. Large wood storage in channelized and unmanaged sections of the Czarny Dunajec River, Polish Carpathians: implications for the restoration of mountain rivers. Folia Geographica, Series Geographica-Physica XLI: 5–34.

    Google Scholar 

  • Zeileis, A. & T. Hothorn, 2002. Diagnostic checking in regression relationships. R News 2(3): 7–10.

    Google Scholar 

  • Zhang, N., I. D. Rutherfurd & M. Ghisalberti, 2019. The effect of instream logs on bank erosion potential: a flume study with multiple logs. Journal of Ecohydraulics. https://doi.org/10.1080/24705357.2019.1669495.

    Article  Google Scholar 

  • Zimmer, M. A. & J. P. Gannon, 2018. Run-off processes from mountains to foothills: the role of soil stratigraphy and structure in influencing run-off characteristics across high to low relief landscapes. Hydrologic Processes 32: 1546–1560.

    Article  Google Scholar 

Download references

Acknowledgments

We thank David Brendle and Megan Chapman for their assistance in data collection and the Nature Conservancy for access to one of the field locations. Suresh Muthukrishnan provided guidance with GIS analyses and measurements of stream channel morphology, as well as helpful discussion of stream channel dynamics. We also thank Roy Bowers and John Quinn for discussion of statistical analyses. Comments from two anonymous reviewers helped to improve the manuscript. Funding was provided by Furman University and an Undergraduate Science Education award to Furman University from the Howard Hughes Medical Institute. This study is a contribution to the River Basins Research Initiative at Furman University.

Funding

Funding was provided by Furman University and an Undergraduate Science Education award to Furman University from the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, data collection, and data analysis. The first draft of the manuscript was written by Abbie M. Weigel and Gregory P. Lewis, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gregory P. Lewis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors agree with the content of the manuscript and have given their consent to submit.

Additional information

Handling editor: Verónica Ferreira

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewis, G.P., Weigel, A.M., Duskin, K.M. et al. Wood abundance in urban and rural streams in northwestern South Carolina. Hydrobiologia 848, 4263–4283 (2021). https://doi.org/10.1007/s10750-021-04638-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04638-2

Keywords

Navigation