Skip to main content

Advertisement

Log in

Riparian forests buffer the negative effects of cropland on macroinvertebrate diversity in lowland Amazonian streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Riparian forests regulate stream ecosystems and biodiversity. Therefore, changes to riparian structure may threaten stream ecosystem function by triggering taxonomic and functional changes to aquatic communities. Because macroinvertebrate assemblages are sensitive to environmental changes, they can be effective indicators of stream integrity in disturbed landscapes. To assess the role of riparian forests in maintaining tropical stream communities in areas experiencing large-scale watershed disturbance, we quantified the taxonomic and functional response of stream macroinvertebrate communities to forest clearing in the southeastern Amazon’s agricultural frontier, a region experiencing widespread deforestation. Our results show that watershed deforestation can lead to significant changes in macroinvertebrate richness and community composition. We found a predominance of shredders in forested watersheds; scrapers in cropland watersheds with riparian forests; and collector-filterers in cropland watersheds without riparian forest buffers. Taxonomic composition was controlled by available organic material in forested watersheds and by periphyton in cropland sites regardless of whether they had a riparian buffer. Our results show that the clearing of riparian forests alters food sources supporting aquatic food webs, leading to ecosystem-level shifts through changes in light and temperature dynamics that affect aquatic communities in areas with intense land-use change such as the southeastern Amazon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  • Abell, R., M. L. Thieme, C. Revenga, M. Bryer, M. Kottelat, N. Bogutskaya, B. Coad, N. Mandrak, S. Balderas, W. Bussing, M. Stiassny, P. Skelton, G. Allen, P. Unmack, A. Naseka, R. Ng, N. Sindorf, J. Robertson, E. Armijo, J. Higgins, T. Heibel, E. Wikramanayake, D. Olson, H. López, R. Reis, J. Lundberg, M. Pérez & P. Pétry, 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 585: 403–414.

    Article  Google Scholar 

  • Allen, A. P., J. F. Gillooly & J. H. Brown, 2005. Linking the global carbon cycle to individual metabolism. Functional Ecology 192: 202–213.

    Article  Google Scholar 

  • Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  • Azevedo, A., A. R. Rajão, M. A. Costa, M. C. Stabile, M. N. Macedo, T. N. Dos Reis, A. Alencar, B. Soares-Filho & R. Pacheco, 2017. Limits of Brazil’s Forest Code as a means to end illegal deforestation. Proceedings of the National Academy of Sciences 114: 7653–7658.

    Article  CAS  Google Scholar 

  • Balch, J. K., D. C. Nepstad, P. M. Brando, L. M. Curran, O. Carvalho Jr. & P. Lefebvre, 2008. Negative fire feedback in a transitional forest of southeastern Amazonia. Global Change Biology 1410: 2276–2287.

    Article  Google Scholar 

  • Barbosa, F. A. R., M. Callisto & N. Galdean, 2001. The diversity of benthic macroinvertebrates as an indicator of water quality and ecosystem health: a case study for Brazil. Aquatic Ecosystem Health & Management 4: 51–59.

    Article  Google Scholar 

  • Bertaso, T. R., M. R. Spies, C. B. Kotzian & M. L. Flores, 2015. Effects of forest conversion on the assemblages’ structure of aquatic insects in subtropical regions. Revista Brasileira de Entomologia 59: 43–49.

    Article  Google Scholar 

  • Bispo, P. D. C., L. G. Oliveira, L. M. Bini & K. G. D. Sousa, 2006. Ephemeroptera, Plecoptera and Trichoptera assemblages from riffles in mountain streams of Central Brazil: environmental factors influencing the distribution and abundance of immatures. Brazilian Journal of Biology 662B: 611–622.

    Article  Google Scholar 

  • Bleich, M. E., M. T. F. Piedade, A. F. Mortati & T. André, 2015. Autochthonous primary production in southern Amazon headwater streams: novel indicators of altered environmental integrity. Ecological Indicators 53: 154–161.

    Article  Google Scholar 

  • Boyero L., R.G. Pearson., D. Dudgeon, M.A. Graça, M.O. Gessner, R.J. Albarino, V. Ferreira, C.M. Yule, A.J. Boulton, M. Arunachalam, M. Callisto, E. Chauvet, A. Ramırez, J. Chará, M.S. Moretti, J.F.Jr. Gonçalves, J.E. Helson, A.M. Chara-Serna, A.C. Encalada, J.N. Davies, S. Lamothe, A. Li, A.O.Y. Cornejo, L.M. Buria, V.D. Villanueva, M.C. Zuniga & C.M. Pringle, 2011 Global distribution of a keytrophic guild contrasts with common latitudinal diversity patterns. Ecology 92: 1839–1848

  • Cardoso, M. N., L. B. Calvão, L. F. de Assis Montag, B. S. Godoy & L. Juen, 2018. Reducing the deleterious effects of logging on Ephemeroptera communities through reduced impact management. Hydrobiologia 8231: 191–203.

    Article  Google Scholar 

  • Carvalho, F. G., F. Oliveira Roque, L. Barbosa, L. F. de Assis Montag & L. Juen, 2018. Oil palm plantation is not a suitable environment for most forest specialist species of Odonata in Amazonia. Animal Conservation 21: 526–533.

    Article  Google Scholar 

  • Cattaneo, A., T. Kerimian, M. Roberge & J. Marty, 1997. Periphyton distribution and abundance on substrata of different size along a gradient of stream trophy de Montréal. Hydrobiologia 3541: 101–110.

    Article  Google Scholar 

  • Cayuela, L. & N.J. Gotelli, 2014. rareNMtests: ecological and biogeographical null model tests for comparing rarefaction curves. R package version 1.0.

  • Chao, A. & L. Jost, 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93: 2533–2547.

    Article  PubMed  Google Scholar 

  • Chara-Serna, A. M., J. D. Chara, M. D. Zuniga, R. G. Pearson & L. Boyero, 2012. Diets of leaf litter associated invertebrates in three tropical streams. Annales de Limnologie-International Journal of Limnology 48: 139–144.

    Article  Google Scholar 

  • Chen, H. & P. C. Boutros, 2011. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC bioinformatics 12: 1–7.

    Article  CAS  Google Scholar 

  • Chevene, F., S. Doléadec & D. Chessel, 1994. A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology 31: 295–309.

    Article  Google Scholar 

  • Cuffney, T. F., J. B. Wallace & G. J. Lugthart, 1990. Experimental evidence quantifying the role of benthic invertebrates in organic matter dynamics of headwater streams. Freshwater Biology 23: 281–299.

    Article  Google Scholar 

  • Cummins, K. W. & M. J. Klug, 1979. Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10: 147–172.

    Article  Google Scholar 

  • Cummins, K. W., R. W. Merritt & P. C. N. Andrade, 2005. The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in South Brazil. Studies on Neotropical Fauna and Environment 40: 69–89.

    Article  Google Scholar 

  • Dala-Corte, R. B., A. S. Melo, T. Siqueira, L. M. Bini, R. T. Martins, A. M. Cunico, A. Pes, A. Magalhães, B. Godoy, C. Leal, C. Monteiro-Junior, C. Sternert, D. Castro, D. Macedo, D. Lima-Junior, E. Gubiani, F. Massariol, F. Teresa, F. Becker, F. Souza, F. Valente-Neto, F. Souza, F. Salles, G. Brejão, J. Brito, J. Vitule, J. Simião-Ferreira, K. Dias-Silva, L. Albuquerque, L. Juen, L. Maltchik, L. Casatti, L. Montag, M. Rodrigues, M. Callisto, M. Nogueira, M. Santos, N. Hamada, P. Pamplin, P. Pompeu, R. Leitão, R. Ruaro, R. Mariano, S. Couceiro, V. Abilhoa, V. Oliveira, Y. Shimano, Y. Moretto, Y. Súarez & F. Roque, 2020. Thresholds of freshwater biodiversity in response to riparian vegetation loss in the Neotropical region. Journal of Applied Ecology 57: 1391–1402.

    Article  Google Scholar 

  • Davies, P. E., L. S. J. Cook, P. D. McIntosh & S. A. Munks, 2005. Changes in stream biota along a gradient of logging disturbance, 15 years after logging at Ben Nevis, Tasmania. Forest Ecology and Management 219: 132–148.

    Article  Google Scholar 

  • de Castro, D. M. P., S. Dolédec & M. Callisto, 2018. Land cover disturbance homogenizes aquatic insect functional structure in neotropical savanna streams. Ecological Indicators 84: 573–582.

    Article  Google Scholar 

  • Dillon, M. E., G. Wang & R. B. Huey, 2010. Global metabolic impacts of recent climate warming. Nature 467: 704–706.

    Article  CAS  PubMed  Google Scholar 

  • Domínguez E, C. Molineri, M. Pescador, M.D. Hubbard & C. Nieto, 2006. Ephemeroptera of South America. Aquatic Biodiversity in Latin America ABLAVol 2. Sofia: Pensoft.

  • dos Reis Oliveira, P. C., M. H. Kraak, M. Pena-Ortiz, H. G. van der Geest & P. F. Verdonschot, 2020. Responses of macroinvertebrate communities to land use specific sediment food and habitat characteristics in lowland streams. Science of the Total Environment 703:

    Article  Google Scholar 

  • Dray, S. & A. B. Dufour, 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22: 1–20.

    Article  Google Scholar 

  • Erdozain, M., K. Kidd, D. Kreutzweiser & P. Sibley, 2019. Increased reliance of stream macroinvertebrates on terrestrial food sources linked to forest management intensity. Ecological Applications 29(4):

    Article  PubMed  Google Scholar 

  • Faria, A. P. J., R. Ligeiro, M. Callisto & L. Juen, 2017. Response of aquatic insect assemblages to the activities of traditional populations in eastern Amazonia. Hydrobiologia 8021: 39–51.

    Article  Google Scholar 

  • Feltmate, B. W., R. L. Baker & P. J. Pointing, 1986. Distribution of the stonefly nymph Paragnetina media Plecoptera: Perlidae: influence of prey, predators, current speed, and substrate composition. Canadian Journal of Fisheries and Aquatic Sciences 438: 1582–1587.

    Article  Google Scholar 

  • Fernandes, J. D. F., A. L. de Souza & M. O. Tanaka, 2014. Can the structure of a riparian forest remnant influence stream water quality? A tropical case study. Hydrobiologia 724: 175–185.

    Article  Google Scholar 

  • Ferreira, W. R., R. Ligeiro, D. R. Macedo, R. M. Hughes, P. R. Kaufmann, L. G. Oliveira & M. Callisto, 2015. Is the diet of a typical shredder related to the physical habitat of headwater streams in the Brazilian Cerrado? Annales de Limnologie-International Journal of Limnology 51: 115–127.

    Article  Google Scholar 

  • Ferreira, W. R., L. U. Hepp, R. Ligeiro, D. R. Macedo, R. M. Hughes, P. R. Kaufmann & M. Callisto, 2017. Partitioning taxonomic diversity of aquatic insect assemblages and functional feeding groups in neotropical savanna headwater streams. Ecological indicators 72: 365–373.

    Article  Google Scholar 

  • Firmiano, K. R., D. M. Castro, M. S. Linares & M. Callisto, 2021. Functional responses of aquatic invertebrates to anthropogenic stressors in riparian zones of Neotropical savanna streams. Science of the Total Environment 753:

    Article  CAS  Google Scholar 

  • Gibbs, H. K., A. S. Ruesch, F. Achard, M. K. Clayton, P. Holmgren, N. Ramankutty & J. A. Foley, 2010. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proceedings of the National Academy of Sciences 107: 16732–16737.

    Article  CAS  Google Scholar 

  • Godoy, B. S., A. P. J. Faria, L. Juen, L. Sara & L. G. Oliveira, 2019. Taxonomic sufficiency and effects of environmental and spatial drivers on aquatic insect community. Ecological Indicators 107:

    Article  Google Scholar 

  • Gotelli, N. J. & R. K. Colwell, 2011. Estimating species richness. Biological Diversity: Frontiers in Measurement and Assessment 12: 39–54.

    Google Scholar 

  • Hamada, N., J. L. Nessimian & R. B. Querino, 2014. Insetos aquáticos na Amazônia Brasileira: taxonomia, biologia e ecologia. Manaus, INPA: 724p.

    Google Scholar 

  • Hayhoe, S. J., C. Neill, S. Porder, R. McHorney, P. Lefebvre, M. T. Coe & A. V. Krusche, 2011. Conversion to soy on the amazonian agricultural frontier increases streamflow without affecting stormflow dynamics. Global Change Biology 17: 1821–1833.

    Article  Google Scholar 

  • He, X. Sun, X. Dong, Q. Cai & S.C. Jahnig, 2019. Benthic macroinvertebrates as indicators for river health in the Changjiang Basin. In Chinese Water Systems (pp. 207-217).

  • Hieber, M. & M. O. Gessner, 2002. Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83: 1026–1038.

    Article  Google Scholar 

  • Ilha, P., L. Schiesari, F. I. Yanagawa, K. Jankowski & C. A. Navas, 2018. Deforestation and stream warming affect body size of Amazonian fishes. PloS one 135:

    Article  Google Scholar 

  • Ilha, P., S. Rosso & L. Schiesari, 2019. Effects of deforestation on headwater stream fish assemblages in the Upper Xingu River Basin. Southeastern Amazonia, Neotropical Ichthyology: 171.

    Google Scholar 

  • Jankowski, K., C. Neill, E. A. Davidson, M. N. Macedo, C. Costa, G. L. Galford, L. Maracahipes-Santos, P. Lefevbre, D. Nunes, C. Cerri, R. McHorney, C. O’Connell & M. T. Coe, 2018. Deep soils modify environmental consequences of increased nitrogen fertilizer use in intensifying Amazon agriculture. Scientific reports 8: 1–11.

    Article  Google Scholar 

  • Juen, L., E. J. Cunha, F. G. Carvalho, M. C. Ferreira, T. O. Begot, A. L. Andrade, Y. Shimano, H. Leão, P. Pompeu & L. F. A. Montag, 2016. Effects of oil palm plantations on the habitat structure and biota of streams in eastern Amazon. River Research and Applications 3210: 2081–2094.

    Article  Google Scholar 

  • Kiffney, P. M., J. S. Richardson & J. P. Bull, 2003. Responses of periphyton and insects to experimental manipulation of riparian buffer width along forest streams. Journal of Applied Ecology 40: 1060–1076.

    Article  Google Scholar 

  • Kominoski, J. S., J. J. F. Shah, C. Canhoto, D. G. Fischer, D. P. Giling, E. González & Y. R. McElarney, 2013. Forecasting functional implications of global changes in riparian plant communities. Frontiers in Ecology and the Environment 11: 423–432.

    Article  Google Scholar 

  • Lake, P. S., 2000. Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society 19: 573–592.

    Article  Google Scholar 

  • Leal, C. G., P. S. Pompeu, T. A. Gardner, R. P. Leitão, R. M. Hughes, P. R. Kaufmann, J. Zuanon, F. de Paula, S. Ferraz, J. Thomson, R. Mac Nally, J. Ferreira & J. Barlow, 2016. Multi-scale assessment of human-induced changes to Amazonian instream habitats. Landscape Ecology 318: 1725–1745.

    Article  Google Scholar 

  • Lecci L.S., T.V.D. Simões & A.R. Calor, 2014. Plecoptera do Semiárido: conhecimento atual e desafios. Artrópodes do Semiárido: biodiversidade e conservação. Printmídia, Feira de Santana, 91-98.

  • Legendre, P. & L. F. Legendre, 2012. Numerical ecology. Elsevier, Amsterdam.

    Google Scholar 

  • Lepš, J. & P. Šmilauer, 2003. Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Li, A. O. & D. Dudgeon, 2008. Food resources of shredders and other benthic macroinvertebrates in relation to shading conditions in tropical Hong Kong streams. Freshwater Biology 53: 2011–2025.

    Article  Google Scholar 

  • Ligeiro, R., R. M. Hughes, P. R. Kaufmann, D. R. Macedo, K. R. Firmiano, W. R. Ferreira, D. Oliveira, A. Melo & M. Callisto, 2013. Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness. Ecological indicators 25: 45–57.

    Article  Google Scholar 

  • Lorion, C. M. & B. P. Kennedy, 2009. Relationships between deforestation, riparian forest buffers and benthic macroinvertebrates in neotropical headwater streams. Freshwater Biology 54: 165–180.

    Article  CAS  Google Scholar 

  • Luiza-Andrade, A., L. S. Brasil, N. L. Benone, Y. Shimano, A. P. J. Farias, L. F. Montag & L. Juen, 2017. Influence of oil palm monoculture on the taxonomic and functional composition of aquatic insect communities in eastern Brazilian Amazonia. Ecological Indicators 82: 478–483.

    Article  Google Scholar 

  • Luiza-Andrade, A., L. S. Brasil, N. R. Torres, J. Brito, R. R. Silva, L. Maioli, M. F. Barbirato & L. Juen, 2020. Effects of local environmental and landscape variables on the taxonomic and trophic composition of aquatic insects in a rare forest formation of the Brazilian Amazon. Neotropical Entomology 49: 821–831.

    Article  CAS  PubMed  Google Scholar 

  • Luke, S. H., E. M. Slade, C. L. Gray, K. V. Annammala, J. Drewer, J. Williamson, A. Agma, M. Ationg, S. Mitchell, C. Vairappan & M. J. Struebig, 2019. Riparian buffers in tropical agriculture: scientific support, effectiveness and directions for policy. Journal of Applied Ecology 561: 85–92.

    Article  Google Scholar 

  • Macedo, M. N., R. S. DeFries, D. C. Morton, C. M. Stickler, G. L. Galford & Y. E. Shimabukuro, 2012. Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proceedings of the National Academy of Sciences 109: 1341–1346.

    Article  CAS  Google Scholar 

  • Macedo, M. N., M. T. Coe, R. DeFries, M. Uriarte, P. M. Brando, C. Neill & W. S. Walker, 2013. Land-use-driven stream warming in southeastern Amazonia. Philosophical Transactions of the Royal Society B: Biological Sciences 368: 20120153.

    Article  Google Scholar 

  • Maracahipes-Santos, L., D.V. Silvério, M.N. Macedo, L. Maracahipes, K.J. Jankowski, L.N. Paolucci, C. Neill & P.M. Brando, 2020. Agricultural land-use change alters the structure and diversity of Amazon riparian forests. Biological Conservation 252:

  • Mouillot, D., D. R. Bellwood, C. Baraloto, J. Chave, R. Galzin, M. Harmelin-Vivien, M. Kulbicki, S. Lavergne, S. Lavorel, N. Mouquet, C. T. Paine, J. Renauld & W. Thuiller, 2013. Rare species support vulnerable functions in high-diversity ecosystems. PLoS biol 11(5):

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy, R. C., S. Porder, C. Neill, P. Brando, R. M. Quintino & S. A. D. Nascimento, 2015. Structure and composition of altered riparian forests in an agricultural Amazonian landscape. Ecological Applications 25: 1725–1738.

    Article  PubMed  Google Scholar 

  • Naiman, R. J. & H. Decamps, 1997. The ecology of interfaces: riparian zones. Annual review of Ecology and Systematics 28: 621–658.

    Article  Google Scholar 

  • Naiman, R. J., H. Decamps & M. Pollock, 1993. The role of riparian corridors in maintaining regional biodiversity. Ecological applications 3: 209–212.

    Article  PubMed  Google Scholar 

  • Naiman, R. J., H. Decamps & M. E. Mcclain, 2005. Riparia—Ecology. Elsevier Academic Press, London, Conservation and Management of Streamside Communities.

    Google Scholar 

  • Neill, C., M. T. Coe, S. H. Riskin, A. V. Krusche, H. Elsenbeer, M. N. Macedo, R. McHorney, P. Lefevbre, E. Davidson, R. Scheffler, A. Michela, S. Porder & L. Deegan, 2013. Watershed responses to Amazon soya bean cropland expansion and intensification. Philosophical Transactions of the Royal Society B: Biological Sciences 368: 201–204.

    Article  Google Scholar 

  • Nessimian J.L., E.M. Venticinque, J. Zuanon, P.J.R. De Marco, M. Gordo, L. Fidelis, J.D. Batista & L. Juen, 2008. Land use, habitat integrity, and aquatic insect assemblages in Central Amazonian streams.Hydrobiologia 614:117–131.

  • Nunes, S. S., J. Barlow, T. A. Gardner, J. V. Siqueira, M. R. Sales & C. M. Souza, 2015. A 22 year assessment of deforestation and restoration in riparian forests in the eastern Brazilian Amazon. Environmental conservation 42: 193–203.

    Article  Google Scholar 

  • Nunes, S., J. Barlow, T. Gardner, M. Sales, D. Monteiro & Jr C. Souza Jr, 2019. Uncertainties in assessing the extent and legal compliance status of riparian forests in the eastern Brazilian Amazon. Land Use Policy 82: 37–47.

    Article  Google Scholar 

  • Oksanen J., F.G. Blanchet, R. Kindt, P. Legendre, P.R. Minchin, R.B. O’hara & M.J Oksanen, 2013. Package ‘vegan’. Community ecology package, version, 29.

  • Oliveira, J. M. B. & L. Juen, 2019. Structuring of dragonfly communities (Insecta: Odonata) in Eastern Amazon: Effects of environmental and spatial factors in preserved and altered streams. Insects 10: 1–18.

    Google Scholar 

  • Oliveira, L., P. Bispo, V. Crisci & K. Sousa, 1999. Distribuições de categorias funcionais alimentares de larvas de Trichoptera Insecta em uma região serrana do Brasil Central. Acta Limnologica Brasil 11: 173–183.

    Google Scholar 

  • Osborne, L. L. & D. A. Kovacic, 1993. Riparian vegetated buffer strips in water-quality restoration and stream management. Freshwater Biology 29: 243–258.

    Article  Google Scholar 

  • Paiva, C. K. S., A. P. J. de Faria, L. B. Calvão & L. Juen, 2017. Effect of oil palm on the Plecoptera and Trichoptera Insecta assemblages in streams of eastern Amazon. Environmental monitoring and assessment 189: 1–9.

    Article  Google Scholar 

  • Paiva, C. K. S., A. P. J. Faria, L. B. Calvao & L. Juen, 2021. The anthropic gradient determines the taxonomic diversity of aquatic insects in Amazonian streams. Hydrobiologia 848: 1073–1085.

    Article  Google Scholar 

  • Peck D.V., J.M. Lazorchak & D.J. Klemm, Eds, 2006. Environmental Monitoring and Assessment Program–surface Waters: Western Pilot Study Field Operations Manual for Wadeable Streams. National Health and Environmental Effects Research Laboratory [and] National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency.

  • Pert, P. L., J. R. A. Butler, J. E. Brodie, C. Bruce, M. Honzak, F. J. Kroon, D. Metcalfe, D. Mitchell & G. Wong, 2010. A catchment-based approach to mapping hydrological ecosystem services using riparian habitat: a case study from the Wet Tropics, Australia. Ecological Complexity 73: 378–388.

    Article  Google Scholar 

  • Péru, N. & S. Dolédec, 2010. From compositional to functional biodiversity metrics in bioassessment: a case study using stream macroinvertebrate communities. Ecological Indicators 10: 1025–1036.

    Article  Google Scholar 

  • Petchey, O. L. & K. J. Gaston, 2002. Functional diversity FD, species richness and community composition. Ecology letters 53: 402–411.

    Article  Google Scholar 

  • Poff, N. L., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 162: 391–409.

    Article  Google Scholar 

  • Poff, N. L., J. D. Olden, N. K. Vieira, D. S. Finn, M. P. Simmons & B. C. Kondratieff, 2006. Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. Journal of the North American Benthological Society 254: 730–755.

    Article  Google Scholar 

  • Rao, C.R., 1964. The use and interpretation of principal component analysis in applied research. Sankhyā: The Indian Journal of Statistics Series A: 329-358.

  • Richardson, J. S. & S. Beraud, 2014. Effects of riparian forest harvest on streams: a meta-analysis. Journal of Applied Ecology 51: 1712–1721.

    Article  Google Scholar 

  • Riskin, S. H., C. Neill, K. Jankowski, A. V. Krusche, R. McHorney, H. Elsenbeer, M. Macedo, D. Nunes & S. Porder, 2017. Solute and sediment export from Amazon forest and soybean headwater streams. Ecological applications 271: 193–207.

    Article  Google Scholar 

  • Rizo-Patrón, F., A. Kumar, M. B. M. Colton, M. Springer & F. A. Trama, 2013. Macroinvertebrate communities as bioindicators of water quality in conventional and organic irrigated rice fields in Guanacaste, Costa Rica. Ecological Indicators 29: 68–78.

    Article  Google Scholar 

  • Shimano, Y. & L. Juen, 2016. How oil palm cultivation is affecting mayfly assemblages in Amazon streams. Annales de Limnologie-International Journal of Limnology 52: 35–45.

    Article  Google Scholar 

  • Shimano, Y., M. Cardoso & L. Juen, 2018. Ecological studies of mayflies Insecta, Ephemeroptera: can sampling effort be reduced without losing essential taxonomic and ecological information? Acta Amazonica 48: 137–145.

    Article  Google Scholar 

  • Shortle J.S., D.G. Able & M. Ribaudo, 2001. Agriculture and water quality: the issues. In Environmental Policies for Agricultural Pollution Control. CABI Publishing, London: 1–18.

  • Siegloch, A. E., M. Suriano, M. Spies & A. Fonseca-Gessner, 2014. Effect of land use on mayfly assemblages structure in Neotropical headwater streams. Anais da Academia Brasileira de Ciencias 86: 1735–1747.

    Article  PubMed  Google Scholar 

  • Siegloch, A. E., R. Schmitt, M. Spies, M. Petrucio & M. I. M. Hernández, 2016. Effects of small changes in riparian forest complexity on aquatic insect bioindicators in Brazilian subtropical streams. Marine and Freshwater Research 68: 519–527.

    Article  Google Scholar 

  • Soares-Filho, B., R. Rajão, M. Macedo, A. Carneiro, W. Costa, M. Coe, H. Rodrigues & A. Alencar, 2014. Cracking Brazil’s forest code. Science 344: 363–364.

    Article  CAS  PubMed  Google Scholar 

  • Souza, A. L. T., D. G. Fonseca, R. Liborio & M. O. Tanaka, 2013. Influence of riparian vegetation and forest structure on the water quality of rural low-order streams in SE Brazil. Forest Ecology and Management 298: 12–18.

    Article  Google Scholar 

  • Sponseller, R. A., E. F. Benfield & H. M. Valett, 2001. Relationships between land use, spatial scale and stream macroinvertebrate communities. Freshwater Biology 4610: 1409–1424.

    Article  Google Scholar 

  • Sweeney, B. W., 1993. Effects of stream side vegetation on macroinvertebrate communities of White Clay Creekin eastern North America. Proceedings of the Academy of Natural Sciences of Philadelphia 144: 291–340.

    Google Scholar 

  • Sweeney, B. W., T. L. Bott, J. K. Jackson, L. A. Kaplan, J. D. Newbold, L. J. Standley, C. Hession & R. J. Horwitz, 2004. Riparian deforestation, stream narrowing, and loss of stream ecosystem services. Proceedings of the National Academy of Sciences 10139: 14132–14137.

    Article  Google Scholar 

  • Tanaka, M. O., A. L. T. de Souza, L. E. Moschini & A. K. de Oliveira, 2016. Influence of watershed land use and riparian characteristics on biological indicators of stream water quality in southeastern Brazil. Agriculture, Ecosystems & Environment 216: 333–339.

    Article  Google Scholar 

  • Tank, J. L., E. J. Rosi-Marshall, N. A. Griffiths, S. A. Entrekin & M. L. Stephen, 2010. A review of allochthonous organic matter dynamics and metabolism in streams. Journal of the North American Benthological Society 291: 118–146.

    Article  Google Scholar 

  • Ter Braak, C. J. & P. F. Verdonschot, 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences 57: 255–289.

    Article  Google Scholar 

  • Tewksbury, J. J., R. B. Huey & C. A. Deutsch, 2008. Putting the heat on tropical animals. Science 320: 1296–1297.

    Article  CAS  PubMed  Google Scholar 

  • Tierno de Figueroa, J. M., M. J. López-Rodríguez & M. Villar-Argaiz, 2019. Spatial and seasonal variability in the trophic role of aquatic insects: an assessment of functional feeding group applicability. Freshwater Biology 64: 954–966.

    Article  Google Scholar 

  • Tolkkinen, M. J., J. Heino, S. H. Ahonen, K. Lehosmaa & H. Mykrä, 2020. Streams and riparian forests depend on each other: a review with a special focus on microbes. Forest Ecology and Management 462:

    Article  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. C. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

Download references

Acknowledgments

We thank IPAM and Grupo AMaggi for logistical support and use of the Tanguro field site. The expedition field team composed of Dr. Paulo Ilha, Dr. Murilo Sversut Dias, Dr. Tiago Barros Miguel, MSc. Pâmela Virgolino, MSc. Lorrane Gabrielle Cantanhede, Nathane Queiroz, Darlisson Nunes, and Raimundo Mota provided excellent field support and comradery. We thank Dra. Ludmila Rattis and MSc. Paul Lefebvre for producing the map used in Fig. 1. We also thank the two anonymous reviewers. Funding for this research came from the Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq (PELD/TANG #441703/2016‐0); CAPES (Post-doctoral Fellowship 88887.136296/2017-00 to NM); and the National Science Foundation (DEB 1457602, INFEWS 1739724 to LAD and MNM). We thank CNPq for the productivity scholarship granted to LJ (304710/2019-9) and A.L.A. for the Doctoral Scholarship (141991/2016-0). KJJ was supported by the US Army Corps of Engineers’ Upper Mississippi River Restoration Program. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq (PELD/TANG #441703/2016‐0); CAPES (Post-doctoral Fellowship 88887.136296/2017-00 to NM); National Science Foundation (DEB 1457602, INFEWS 1739724 to LAD and MNM); Productivity scholarship granted to LJ (304710/2019-9); and Doctoral Scholarship to A.L.A. (141991/2016-0)

Author information

Authors and Affiliations

Authors

Contributions

NCSM conceived the study, did the field collection, analyzed data, and wrote the paper. KJJ conceived the study, did the field collection, and wrote the paper. MNM conceived the study and wrote the paper. LJ conceived the study and wrote the paper; AL-A conceived the study, did the field collection, and wrote the paper. LD conceived the study and wrote the paper.

Corresponding author

Correspondence to N. C. S. Marques.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Handling editor: Verónica Ferreira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1920 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, N.C.S., Jankowski, K.J., Macedo, M.N. et al. Riparian forests buffer the negative effects of cropland on macroinvertebrate diversity in lowland Amazonian streams. Hydrobiologia 848, 3503–3520 (2021). https://doi.org/10.1007/s10750-021-04604-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04604-y

Keywords

Navigation