Abstract
Dreissenid mussels can alter nutrient cycling and algal productivity in many freshwater ecosystems. But their effects on sedimentary phosphorus dynamics remain largely undefined. Here, we report evidence that dreissenids affect the concentrations of five sedimentary phosphorus fractions and total phosphorus. During our study, zebra mussels were still common and coexisted with quagga mussels in many parts of the basin. The relative abundances varied across the basin, which we characterized as five west-to-east alternating zones where zebra mussels dominated zones I (coastal) and III, quagga mussels dominated zones II and IV, and few dreissenids were present in zone V. The phosphorus fractions exhibited variation concordant with and therefore potentially influenced by dreissenids. Concentrations of all fractions and TP were consistently greater in sediments where quagga mussels dominated than in sediments where zebra mussels dominated. The responses to the absence versus presence of dreissenids were mixed, with Res-P being significantly affected, NaCl-Pi and HCl-Pi being moderately affected, and NaOH-Pi being least affected. Although such dreissenid effects were somewhat altered by in-lake biogeochemical cycling and transfer, we found that elevated levels of NaCl-Pi in dreissenid-present sediments, especially in quagga-dominated sediments, could be linked to recent eutrophication and harmful algal blooms in the basin.
This is a preview of subscription content, access via your institution.




Data availability
All data are available upon request.
Code availability
Code is available upon request.
Consent to publication
All authors agree to the content for the work.
References:
Arnott, D. L. & M. J. Vanni, 1996. Nitrogen and phosphorus recycling by the zebra mussel (Dreissena polymorpha) in the western basin of Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences 53(3): 646–659.
Baker, D. B., R. Confesor, D. E. Ewing, L. T. Johnson, J. W. Kramer & B. J. Merryfield, 2014. Phosphorus loading to Lake Erie from the Maumee, Sandusky and Cuyahoga Rivers: the importance of bioavailability. Journal of Great Lakes Research 40(3): 502–517.
Beeton, A. M., 1963. Limnological Survey of Lake Erie 1959 and 1960 Great Lakes Fishery Commission. Technical Report. Great Lakes Fishery Commission: 32.
Beletsky, D., N. Hawley & Y. R. Rao, 2013. Modeling summer circulation and thermal structure of Lake Erie. Journal of Geophysical Research: Oceans 118(11): 6238–6252.
Berkman, P. A., M. A. Haltuch, E. Tichich, D. W. Garton, G. W. Kennedy, J. E. Gannon, S. D. Mackey, J. A. Fuller & D. L. Liebenthal, 1998. Zebra mussels invade Lake Erie muds. Nature 393(6680): 27–28.
Berthold, M., D. Zimmer & R. Schumann, 2015. A simplified method for total phosphorus digestion with potassium persulphate at sub-boiling temperatures in different environmental samples. Rostocker Meeresbiologische Beiträge 25: 7–25.
Bertram, P. E., 1993. Total phosphorus and dissolved oxygen trends in the Central Basin of Lake Erie, 1970–1991. Journal of Great Lakes Research 19(2): 224–236.
Bolsenga, S. J. & C. E. Herdendorf, 1993. Lake Erie and Lake St. Clair Handbook. Wayne State University Press, Detroit.
Boström, B., I. Ahlgren & R. Bell, 1985. Internal nutrient loading in a eutrophic lake, reflected in seasonal variations of some sediment parameters. Verhandlungen des Internationalen Verein Limnologie 22(5): 3335–3339.
Bryan, N. J., C. V. Florence, T. D. Crail & D. L. Moorhead, 2013. Freshwater mussel community response to warm water discharge in western Lake Erie. Journal of Great Lakes Research 39(3): 449–454.
Burlakova, L. E., A. Y. Karatayev, C. Pennuto & C. Mayer, 2014. Changes in Lake Erie benthos over the last 50 years: historical perspectives, current status, and main drivers. Journal of Great Lakes Research 40(3): 560–573.
Burris, R., J. Busch, W. Cadet, C. Crook, W. Franz, H. Harrington, K. Kroonemeyer, J. Letterhos, J. Loftus, J. Rupert, W. Van Cott & H. Wirick, 1993. Long-Term Dredged Material Management Plan Within the Context of Maumee River Watershed Sediment Management Strategy. Toledo Harbor, OH: 175.
Carlton, J. T., 2008. The zebra mussel Dreissena polymorpha found in North America in 1986 and 1987. Journal of Great Lakes Research 34(4): 770–773.
Chapra, S. C., 1977. Total phosphorus model for the Great Lakes. Journal of Environmental Engineering Division 103(2): 147–161.
Cheung, M. Y., S. Liang & J. Lee, 2013. Toxin-producing cyanobacteria in freshwater: a review of the problems, impact on drinking water safety, and efforts for protecting public health. Journal of Microbiology 51(1): 1–10.
Coloso, J. J., J. J. Cole & M. L. Pace, 2011. Short-term variation in thermal stratification complicates estimation of lake metabolism. Aquatic Sciences 73(2): 305–315.
Conroy, J. D., W. J. Edwards, R. A. Pontius, D. D. Kane, H. Zhang, J. F. Shea, J. N. Richey & D. A. Culver, 2005a. Soluble nitrogen and phosphorus excretion of exotic freshwater mussels (Dreissena spp.): potential impacts for nutrient remineralisation in western Lake Erie. Freshwater Biology 50(7): 1146–1162.
Conroy, J. D., D. D. Kane, D. M. Dolan, W. J. Edwards, M. N. Charlton & D. A. Culver, 2005b. Temporal trends in Lake Erie plankton biomass: roles of external phosphorus loading and dreissenid mussels. Journal of Great Lakes Research 31(Supplement 2): 89–110.
Crail, T. D., R. A. Krebs & D. T. Zanatta, 2011. Unionid mussels from nearshore zones of Lake Erie. Journal of Great Lakes Research 37(1): 199–202.
Dermott, R. & M. Munawar, 1993. Invasion of Lake Erie offshore sediments by Dreissena, and its ecological implications. Canadian Journal of Fisheries and Aquatic Sciences 50(11): 2298–2304.
DiCiccio, T. J. & B. Efron, 1996. Bootstrap confidence intervals. Statistical Sciences 11(3): 189–212.
Dittrich, M., A. Chesnyuk, A. Gudimov, J. McCulloch, S. Quazi, J. Young, J. Winter, E. Stainsby & G. Arhonditsis, 2013. Phosphorus retention in a mesotrophic lake under transient loading conditions: insights from a sediment phosphorus binding form study. Water Research 47(3): 1433–1447.
Dobson, E. P. & G. L. Mackie, 1998. Increased deposition of organic matter, polychlorinated biphenyls, and cadmium by zebra mussels (Dreissena polymorpha) in western Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences 55(5): 1131–1139.
FWPCA, 1968. Lake Erie Report: A Plan for Water Pollution Control. U.S. Department of the Interior, Federal Water Pollution Control Administration (FWPCA), Great Lakes Region: 113.
Giles, C. D., P. D. F. Isles, T. Manley, Y. Xu, G. K. Druschel & A. W. Schroth, 2016. The mobility of phosphorus, iron, and manganese through the sediment–water continuum of a shallow eutrophic freshwater lake under stratified and mixed water-column conditions. Biogeochemistry 127(1): 15–34.
Griffiths, R. W., D. W. Schloesser, J. H. Leach & W. P. Kovalak, 1991. Distribution and dispersal of the zebra mussel (Dreissena polymorpha) in the Great Lakes region. Canadian Journal of Fisheries and Aquatic Sciences 48(8): 1381–1388.
Hecky, R. E., R. E. Smith, D. R. Barton, S. J. Guildford, W. D. Taylor, M. N. Charlton & T. Howell, 2004. The nearshore phosphorus shunt: a consequence of ecosystem engineering by dreissenids in the Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 61(7): 1285–1293.
Ho, J. C., R. P. Stumpf, T. B. Bridgeman & A. M. Michalak, 2017. Using Landsat to extend the historical record of lacustrine phytoplankton blooms: a Lake Erie case study. Remote Sensing of Environment 191: 273–285.
Hoke, R. A., J. P. Giesy, G. T. Ankley, J. L. Newsted & J. R. Adams, 1990. Toxicity of sediments from western Lake Erie and the Maumee River at Toledo, Ohio, 1987: implications for current dredged material disposal practices. Journal of Great Lakes Research 16(3): 457–470.
IJC, 1970. Pollution of Lake Erie, Lake Ontario and the International Section of the St. Lawrence River, Vol. 1. International Joint Commission, Canada and United States: 150.
James, W., 2014. Effects of Open-Lake Dredge Material Placement on Sediment Characteristics and Diffusive Phosphorus Fluxes in Lake Erie, Western Basin. University of Wisconsin-Stout, Sustainability Science Institute, Menomonie: 26.
Jarvis, P., 2000. Zebra (Dreissena polymorpha) and quagga mussel (Dreissena bugensis) distribution and density in Lake Erie, 1992–1998. Canadian Technical Report of Fisheries and Aquatic Sciences 2304: 1–46.
Jasechko, S., J. J. Gibson & T. W. D. Edwards, 2014. Stable isotope mass balance of the Laurentian Great Lakes. Journal of Great Lakes Research 40(2): 336–346.
Karatayev, A. Y., L. E. Burlakova, S. E. Mastitsky, D. K. Padilla & E. L. Mills, 2011. Contrasting rates of spread of two congeners, Dreissena polymorpha and Dreissena rostriformis bugensis, at different spatial scales. Journal of Shellfish Research 30(3): 923–931.
Karatayev, A. Y., L. E. Burlakova, C. Pennuto, J. Ciborowski, V. A. Karatayev, P. Juette & M. Clapsadl, 2014. Twenty five years of changes in Dreissena spp. populations in Lake Erie. Journal of Great Lakes Research 40(3): 550–559.
Karatayev, A. Y., L. E. Burlakova & D. K. Padilla, 2015. Zebra versus quagga mussels: a review of their spread, population dynamics, and ecosystem impacts. Hydrobiologia 746(1): 97–112.
Klerks, P. L., P. C. Fraleigh & J. E. Lawniczak, 1996. Effects of zebra mussel (Dreissena polymorpha) on seston levels and sediment deposition in western Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences 53(10): 2284–2291.
Kovacik, T. L., 1972. Information on the velocity and flow pattern of Detroit River water in western Lake Erie revealed by an accidental salt spill. Ohio Journal of Science 72(3): 81–86.
Kpodonu, A. T. N. K., D. P. Hamilton, A. Hartland, D. C. Laughlin & C. H. Lusk, 2016. Coupled use of sediment phosphorus speciation and pigment composition to infer phytoplankton phenology over 700 years in a deep oligotrophic lake. Biogeochemistry 129(1): 181–196.
Lukkari, K., H. Hartikainen & M. Leivuori, 2007. Fractionation of sediment phosphorus revisited. I: fractionation steps and their biogeochemical basis. Limnology and Oceanographic Methods 5(12): 433–444.
Maccoux, M. J., A. Dove, S. M. Backus & D. M. Dolan, 2016. Total and soluble reactive phosphorus loadings to Lake Erie: a detailed accounting by year, basin, country, and tributary. Journal of Great Lakes Research 42(6): 1151–1165.
Makarewicz, J. C., 1993. Phytoplankton biomass and species composition in Lake Erie, 1970 to 1987. Journal of Great Lakes Research 19(2): 258–274.
Makarewicz, J. C., P. Bertram & T. W. Lewis, 2000. Chemistry of the offshore surface waters of Lake Erie: pre- and post-Dreissena introduction (1983–1993). Journal of Great Lakes Research 26(1): 82–93.
Marvin, C., M. Charlton, J. Milne, L. Thiessen, J. Schachtschneider, G. Sardella & E. Sverko, 2007. Metals associated with suspended sediments in Lakes Erie and Ontario, 2000–2002. Environmental Monitoring and Assessment 130(1–3): 149–161.
Matisoff, G. & M. L. Carson, 2014. Sediment resuspension in the Lake Erie nearshore. Journal of Great Lakes Research 40(3): 532–540.
Matisoff, G., E. M. Kaltenberg, R. L. Steely, S. K. Hummel, J. Seo, K. J. Gibbons, T. B. Bridgeman, Y. Seo, M. Behbahani, W. F. James, L. T. Johnson, P. Doan, M. Dittrich, M. A. Evans & J. D. Chaffin, 2016. Internal loading of phosphorus in western Lake Erie. Journal of Great Lakes Research 42(4): 775–788.
Michalak, A. M., E. J. Anderson, D. Beletsky, S. Boland, N. S. Bosch, T. B. Bridgeman, J. D. Chaffin, K. Cho, R. Confesor, I. Daloğlu, J. V. DePinto, M. A. Evans, G. L. Fahnenstiel, L. He, J. C. Ho, L. Jenkins, T. H. Johengen, K. C. Kuo, E. LaPorte, X. Liu, M. R. McWilliams, M. R. Moore, D. J. Posselt, R. P. Richards, D. Scavia, A. L. Steiner, E. Verhamme, D. M. Wright & M. A. Zagorski, 2013. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proceedings of the National Academy of Sciences of USA 110: 6448–6452.
Mills, E. L., R. M. Dermott, E. F. Roseman, D. Dustin, E. Mellina, D. B. Conn & A. P. Spidle, 1993. Colonization, ecology, and population structure of the “Quagga” mussel (Bivalvia: Dreissenidae) in the Lower Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 50(11): 2305–2314.
Nelson, N. S., 1987. An acid‐persulfate digestion procedure for determination of phosphorus in sediments. Communications in Soil Science and Plant Analysis 18(4): 359–369.
Nicholls, K. H. & G. J. Hopkins, 1993. Recent changes in Lake Erie (North Shore) phytoplankton: cumulative impacts of phosphorus loading reductions and the zebra mussel introduction. Journal of Great Lakes Research 19(4): 637–647.
NOAA, 1999. Bathymetry of Lake Erie and Lake Saint Clair. National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5KS6PHK. Accessed 11 November 2014.
Ostrofsky, M. L., 1987. Phosphorus species in the surficial sediments of lakes of eastern North America. Canadian Journal of Fisheries and Aquatic Sciences 44(5): 960–966.
Ozersky, T., S. Y. Malkin, D. R. Barton & R. E. Hecky, 2009. Dreissenid phosphorus excretion can sustain C. glomerata growth along a portion of Lake Ontario shoreline. Journal of Great Lakes Research 35(3): 321–328.
Painter, S., C. Marvin, F. Rosa, T. B. Reynoldson, M. N. Charlton, M. Fox, P. A. Lina Thiessen & J. F. Estenik, 2001. Sediment contamination in Lake Erie: a 25-year retrospective analysis. Journal of Great Lakes Research 27(4): 434–448.
Patterson, M. W. R., J. J. H. Ciborowski & D. R. Barton, 2005. The distribution and abundance of Dreissena Species (Dreissenidae) in Lake Erie, 2002. Journal of Great Lakes Research 31: 223–237.
Pennuto, C. M., L. E. Burlakova, A. Y. Karatayev, J. Kramer, A. Fischer & C. Mayer, 2014. Spatiotemporal characteristics of nitrogen and phosphorus in the benthos of nearshore Lake Erie. Journal of Great Lakes Research 40(3): 541–549.
Przywara, M. S., 1978. Characterizations of the Detroit, Raisin, and Maumee Sediment Plumes in Western Lake Erie Using Grain-size and Heavy-Mineral Analyses. Bowling Green State University, Bowling Green.
Psenner, R. & R. Pucsko, 1988. Phosphorus fractionation: advantages and limits of the method for the study of sediment P origins and interactions. Archiv fur Hydrobiologie Beih Ergebn Limnologie 30: 43–59.
Smith, D. R., K. W. King & M. R. Williams, 2015. What is causing the harmful algal blooms in Lake Erie? Journal of Soil and Water Conservation 70(2): 27A–29A.
Søndergaard, M., J. Jensen & E. Jeppesen, 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506–509(1–3): 135–145.
Søndergaard, M., J. Windolf & E. Jeppesen, 1996. Phosphorus fractions and profiles in the sediment of shallow Danish lakes as related to phosphorus load, sediment composition and lake chemistry. Water Research 30(4): 992–1002.
Stumpf, R. P., T. T. Wynne, D. B. Baker & G. L. Fahnenstiel, 2012. Interannual variability of cyanobacterial blooms in Lake Erie. PLoS ONE 7(8): e42444.
Tu, L., K. A. Jarosch, T. Schneider & M. Grosjean, 2019. Phosphorus fractions in sediments and their relevance for historical lake eutrophication in the Ponte Tresa basin (Lake Lugano, Switzerland) since 1959. Science of the Total Environment 685: 806–817.
Turner, C. B., 2010. Influence of zebra (Dreissena polymorpha) and quagga (Dreissena rostriformis) mussel invasions on benthic nutrient and oxygen dynamics. Canadian Journal of Fisheries and Aquatic Sciences 67(12): 1899–1908.
Williams, J. D. H., J. M. Jaquet & R. L. Thomas, 1976a. Forms of phosphorus in the surficial sediments of Lake Erie. Journal of Fisheries Research Board of Canada 33(3): 413–429.
Williams, J. D. H., T. P. Murphy & T. Mayer, 1976b. Rates of accumulation of phosphorus forms in Lake Erie sediments. Journal of Fisheries Research Board of Canada 33(3): 430–439.
Williamson, F. & T. Ozersky, 2019. Lake characteristics, population properties and invasion history determine impact of invasive bivalves on lake nutrient dynamics. Ecosystems 22(8): 1721–1735.
Yuan, F., J. D. Chaffin, B. Xue, N. Wattrus, Y. X. Zhu & Y. Sun, 2018. Contrasting sources and mobility of trace metals in recent sediments of western Lake Erie. Journal of Great Lakes Research 44(5): 1026–1034.
Yuan, F., R. Depew & C. Soltis-Muth, 2014. Ecosystem regime change inferred from the distribution of trace metals in Lake Erie sediments. Scientific Reports 4: 1–7.
Yuan, F., H. Li, R. Kakarla, C. Kasden, S. Yao, B. Xue & Y. Sun, 2020. Variability of sedimentary phosphorus fractions in the western and Sandusky basins of Lake Erie. Journal of Great Lakes Research 46(4): 976–988.
Acknowledgements
We acknowledge the logistic support from the Northeast Ohio Regional Sewer District and J. Chaffin, D. Friedman, M. Matteson, and N. Wattrus for their assistance in the field survey and sampling efforts. We gratefully acknowledge Christopher Kasden and Huawen Li for their assistances with the sample preparation. This work was supported by a Research Award from the Ohio Sea Grant College Program and an Undergraduate Summer Research Award from Cleveland State University.
Funding
This work was supported by the Ohio Sea Grant College Program and Cleveland State University.
Author information
Authors and Affiliations
Contributions
FY conceived the study. AW, FY, and RK collected the mussel data. FY and RK conducted the data analysis, prepared all the figures and tables, and wrote the manuscript. All authors contributing to interpreting the results and editing the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
We declare no competing financial interests.
Ethical approval
We did not work with animals by their definition as invasive dreissenids are not animals from a research ethics protocol.
Informed consent
All authors agree to participate in the work.
Additional information
Handling editor: Manuel Lopes-Lima
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Yuan, F., Krebs, R.A. & Wagner, A.N. Identifying the influence of zebra and quagga mussels on sedimentary phosphorus dynamics in western Lake Erie. Hydrobiologia 848, 1897–1909 (2021). https://doi.org/10.1007/s10750-021-04565-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10750-021-04565-2