Skip to main content

Eutrophication effects differ among functional groups in vernal pool invertebrate communities

Abstract

Environmental productivity and biodiversity are two intricately linked ecological concepts. One commonly observed pattern is a unimodal curve with biodiversity peaking at intermediate levels of productivity. While unimodal relationships are by no means universal, biodiversity declines at high productivity levels (eutrophication) raise serious concerns given anthropogenic nutrient inputs into waterbodies. One habitat that may be particularly vulnerable to eutrophication are California vernal pools. These ephemeral wetlands provide habitat to numerous threatened or endangered invertebrate taxa. To investigate the impact of eutrophication on invertebrates, experimental mesocosms were setup in the California State University, Sacramento Arboretum. Thirty mesocosms were inoculated with vernal pool soil and divided into five nutrient treatments in each of six blocks. Data was collected over a 21-week hydroperiod to quantify changes over a vernal pool hydroperiod. Nutrient addition increased mesocosm turbidity, chlorophyll-a, and phosphorus levels, in addition to causing larger shifts in dissolved oxygen and pH. While nutrient enrichment increased abundances of small crustaceans, there were no effects on taxa richness, or abundances of large branchiopods or insects. While these findings improve our understanding of bottom-up effects in vernal pools, questions remain over long-term nutrient inputs and interactions with other human activities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abrams, P. A., 1995. Monotonic or unimodal diversity–productivity gradients: what does competition theory predict? Ecology 76: 2019–2027.

    Google Scholar 

  2. Angeler, D. G., O. Viedma, S. Sánchez-Carrillo & M. Alvarez-Cobelas, 2008. Conservation issues of temporary wetland Branchiopoda (Anostraca, Notostraca: Crustacea) in a semiarid agricultural landscape: what spatial scales are relevant? Biological Conservation 141: 1224–1234.

    Google Scholar 

  3. Ali, A. J., S. S. S. Sarma, G. Murugan & H. J. Dumont, 1996. Effect of zooplankton type and abundance on prey consumption by the fairy shrimp, Streptocephalus proboscideus (Anostraca: Crustacea). Hydrobiologia 319: 191–202.

    CAS  Google Scholar 

  4. Balla, S. A. & J. A. Davis, 1995. Seasonal variation in the macroinvertebrate fauna of wetlands of differing water regime and nutrient status on the Swan Coastal Plain, Western Australia. Hydrobiologia 299: 147–161.

    Google Scholar 

  5. Boix, D., S. Gascón, J. Sala, A. Badosa, S. Brucet, R. López-Flores, M. Martinoy, J. Gifre & X. D. Quintana, 2008. Patterns of composition and species richness of crustaceans and aquatic insects along environmental gradients in Mediterranean waterbodies. Hydrobiologia 597: 53–69.

    Google Scholar 

  6. Buxton, M., R. N. Cuthbert, T. Dalu, C. Nyamukondiwa & R. J. Wasserman, 2020. Cattle-induced eutrophication favours disease-vector mosquitoes. Science of The Total Environment 715: 136952.

    CAS  Google Scholar 

  7. Cai, W., W. Huang, M. C. Murrell, J. C. Lehrter, S. E. Lohrenz, W. Chou, W. Zhai, J. T. Hollibaugh, Y. Wang, P. Zhao, X. Guo, K. Gundersen, M. Dai & G. Gong, 2011. Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geoscience 4: 766–770.

    CAS  Google Scholar 

  8. Calhoun, A. J. K., D. M. Mushet, K. P. Bell, D. Boix, J. A. Fitzsimons & F. Isselin-Nondedue, 2017. Temporary wetlands: challenges and solutions to conserving a “disappearing” ecosystem. Biological Conservation 211B: 3–11.

    Google Scholar 

  9. Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley & V. H. Smith, 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559–568.

    Google Scholar 

  10. Chase, J. M. & M. A. Leibold, 2002. Spatial scale dictates the productivity–biodiversity relationship. Nature 416: 427–430.

    CAS  PubMed  Google Scholar 

  11. Colburn, E. A., S. C. Weeks & S. K. Reeds, 2007. Diversity and ecology of vernal pool invertebrates. In Calhoun, A. J. K. & P. G. deMaynadier (eds), Science and Conservation of Vernal Pools in Northeastern North America. CRC Press, Boca Raton: 105–126.

    Google Scholar 

  12. Connell, J. H. & E. Orias, 1964. The ecological regulation of species diversity. The American Naturalist 98: 399–413.

    Google Scholar 

  13. Croel, R. C. & J. M. Kneitel, 2011. Cattle waste reduces plant diversity in vernal pool mesocosms. Aquatic Botany 95: 140–145.

    Google Scholar 

  14. Dodson, S., S. E. Arnott & K. L. Cottingham, 2000. The relationship in lake communities between primary productivity and species richness. Ecology 81: 2662–2679.

    Google Scholar 

  15. Epele, L. B. & L. M. Miserendino, 2015. Environmental quality and aquatic invertebrate metrics relationships at Patagonian wetlands subjected to livestock grazing pressures. PLoS ONE. https://doi.org/10.1371/journal.pone.0137873.

    Article  PubMed  PubMed Central  Google Scholar 

  16. El Madihi, M., L. Rhazi, M. Van den Broeck, M. Rhazi, A. Waterkeyn, E. R. Saber, S. Bouahim, M. Arahou, A. Zouahri, A. Guelmami & S. D. Muller, 2017. Plant community patterns in Moroccan temporary ponds along latitudinal and anthropogenic disturbance gradients. Plant Ecology & Diversity 10: 197–215.

    Google Scholar 

  17. Gannon, J. E. & R. S. Stemberger, 1978. Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Transactions of the American Microscopical Society 97: 16–35.

    Google Scholar 

  18. Gerhardt, F. & S. K. Collinge, 2003. Exotic plant invasions of vernal pools in the Central Valley of California, USA. Journal of Biogeography 30: 1043–1052.

    Google Scholar 

  19. Gong, Z. & P. Xie, 2001. Impact of eutrophication on biodiversity of the macrozoobenthos community in a shallow Chinese lake. Journal of Freshwater Ecology 16: 171–178.

    CAS  Google Scholar 

  20. Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 9.

    Google Scholar 

  21. Hildrew, A. G., D. G. Raffaelli & R. Edmonds-Brown (eds), 2007. Body Size: The Structure and Function of Aquatic Ecosystems. Cambridge University Press, Cambridge.

    Google Scholar 

  22. Hinga, K. R., 1992. Co-occurrence of dinoflagellate blooms and high pH in marine enclosures. Marine Ecology Progress Series 86: 181–187.

    Google Scholar 

  23. Corp, I. B. M., 2017. SPSS Statistics for Windows, Version 25. Armonk, New York.

    Google Scholar 

  24. Irigoien, X., J. Huisman & R. P. Harris, 2004. Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429: 863–867.

    CAS  PubMed  Google Scholar 

  25. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen & F. Landkildehus, 2000. Trophic structure, species richness, and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshwater Biology 45: 201–208.

    CAS  Google Scholar 

  26. Kassambara, A., 2019. datarium: Data Bank for Statistical Analysis and Visualization. R package version 0.1.0. https://CRAN.R-project.org/package=datarium

  27. Kassambara, A., 2020. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.4.0. https://CRAN.R-project.org/package=ggpubr

  28. Kassambara, A., 2020. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package version 0.6.0. https://CRAN.R-project.org/package=rstatix

  29. Keeley, J. E. & P. H. Zedler, 1998. Characterization and global distribution of vernal pools. In Witham, C. W., E. T. Bauder, D. Belk, W. R. Ferren Jr. & R. Ornduff (eds), Ecology, Conservation, and Management of Vernal Pool Ecosystems – Proceedings from a 1996 Conference. California Native Plant Society, Sacramento: 1–14.

    Google Scholar 

  30. King, J. L., 1998. Loss of diversity as a consequence of habitat destruction in california vernal pools. In Witham, C. W., E. T. Bauder, D. Belk, W. R. Ferren Jr. & R. Ornduff (eds), Ecology, Conservation, and Management of Vernal Pool Ecosystems – Proceedings from a 1996 Conference. California Native Plant Society, Sacramento: 119–123.

    Google Scholar 

  31. King, J. L., M. A. Simovich & R. C. Brusca, 1996. Species richness, endemism and ecology of crustacean assemblages in northern California vernal pools. Hydrobiologia 328: 85–116.

    Google Scholar 

  32. Kneitel, J. M., 2014. Inundation timing, more than duration, affects the community structure of California vernal pool mesocosms. Hydrobiologia 732: 71–83.

    CAS  Google Scholar 

  33. Kneitel, J. M., 2018. Occupancy and environmental responses of habitat specialists and generalists depend on dispersal traits. Ecosphere 9: e02143. https://doi.org/10.1002/ecs2.2143.

    Article  Google Scholar 

  34. Kneitel, J. M. & C. L. Lessin, 2010. Ecosystem–phase interactions: aquatic eutrophication decreases terrestrial plant diversity in California vernal pools. Oecologia 163: 461–469.

    PubMed  Google Scholar 

  35. Kneitel, J. M., N. Samiylenko, L. Rosas-Saenz & A. Nerida, 2017. California vernal pool endemic responses to hydroperiod, plant thatch, and nutrients. Hydrobiologia. https://doi.org/10.1007/s10750-017-3174-7.

    Article  Google Scholar 

  36. Leigh, E. G., 1965. On the relation between the productivity, biomass, diversity, and stability of a community. Proceedings of the National Academy of Sciences of the United States of America 53: 777–783.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, G., Z. Liu, Y. Li, F. Chen, B. Gu & J. M. Smoak, 2009. Effects of fish introduction and eutrophication on the claodoceran community in Lake Fuxian, a deep oligotrophic lake in southwest China. Journal of Paleolimnology 42: 427–435.

    Google Scholar 

  38. Magnusson, A. K. & D. D. Williams, 2006. The roles of natural temporal and spatial variation versus biotic influences in shaping the physicochemical environment of intermittent ponds: a case study. Archiv für Hydrobiologie 165: 537–556.

    CAS  Google Scholar 

  39. Merritt, R. W., K. W. Cummins & M. B. Berg (eds), 2008. An Introduction to the Aquatic Insects of North America, 4th ed. Kendall Hunt Publishing Company, Dubuque, Iowa.

    Google Scholar 

  40. Miracle, M., M. Sahuquillo & E. Vicente, 2008. Large branchiopods from freshwater temporary pools of Eastern Spain. Verhandlungen des Internationalen Verein Limnologie 30: 501–505.

    Google Scholar 

  41. Mittelbach, G. G., C. F. Steiner, S. M. Scheiner, K. L. Gross, H. L. Reynolds, R. B. Waide, M. R. Willig, S. I. Dodson & L. Gough, 2001. What is the observed relationship between species richness and productivity? Ecology 82: 2381–2396.

    Google Scholar 

  42. Mokany, A., J. T. Wood & S. A. Cunningham, 2008. Effect of shade and shading history on species abundances and ecosystem processes in temporary ponds. Freshwater Biology 53: 1917–1928.

    Google Scholar 

  43. Mozley, A., 1944. Temporary ponds, a neglected natural resource. Nature 154: 490.

    Google Scholar 

  44. Nevalainen, L. & T. P. Luoto, 2017. Relationship between cladoceran (Crustacea) functional diversity and lake trophic gradients. Functional Ecology 31: 488–498.

    Google Scholar 

  45. Pace, M. L., 1986. An empirical analysis of zooplankton community size structure across lake trophic gradients. Limnology and Oceanography 31: 45–55.

    Google Scholar 

  46. Peltzer, P. M., R. C. Lajmanovich, J. C. Sánchez-Hernandez, M. C. Cabagna, A. M. Attademo & A. Bassó, 2008. Effects of agricultural pond eutrophication on survival and health status of Scinax nasicus tadpoles. Ecotoxicology and Environmental Safety 70: 185–197.

    CAS  PubMed  Google Scholar 

  47. R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  48. Rosset, V., S. Angélibert, F. Arthaud, G. Bornette, J. Robin, A. Wezel, D. Vallod & B. Oertli, 2014. Is eutrophication really a major impairment for small waterbody biodiversity? Journal of Applied Ecology 51: 415–425.

    Google Scholar 

  49. RStudio Team, (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/.

  50. Sand-Jensen, K., H. H. Bruun & L. Baastrup-Spohr, 2017. Decade-long time delays in nutrient and plant species dynamics during eutrophication and re-oligotrophication of Lake Fure 1900–2015. Journal of Ecology 105: 690–700.

    Google Scholar 

  51. SAS Institute Inc., 2018. JMP® Pro Version 14.3. Cary, North Carolina.

  52. Scheffer, M. & S. R. Carpenter, 2003. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology and Evolution 18: 648–656.

    Google Scholar 

  53. Smith, D. G., 2001. Pennak’s Freshwater Invertebrates of the United States: Porifera to Crustacea, 4th ed. Wiley, New York.

    Google Scholar 

  54. Smith, V. H., 2003. Eutrophication of freshwater and coastal marine ecosystems. Environmental Science and Pollution Research 10: 123–139.

    Google Scholar 

  55. Straile, D. & W. Geller, 1998. Crustacean zooplankton in Lake Constance from 1920 to 1995: response to eutrophication and re-oligotrophication. Advances in Limnology 53: 255–274.

    Google Scholar 

  56. Stomp, M., J. Huisman, G. G. Mittelbach, E. Litchman & C. A. Klausmeier, 2011. Large-scale biodiversity patterns in freshwater phytoplankton. Ecology 92: 2096–2107.

    PubMed  Google Scholar 

  57. Thorp, J. H. & A. P. Covich (eds), 2010. Ecology and Classification of North American Freshwater Invertebrates, 3rd ed. Elsevier, Burlington.

    Google Scholar 

  58. Timm, H. T., Möls & T. Timm, 2006. Effects of long-term non-point eutrophication on the abundance and biomass of macrozoobenthos in small lakes of Estonia. Proceedings of the Estonian Academy of Science 55: 187–198.

    Google Scholar 

  59. Van den Broeck, M., A. Waterkeyn, L. Rhazi & L. Brendonck, 2015. Distribution, coexistence, and decline of Moroccan large branchiopods. Journal of Crustacean Biology 35: 355–365.

    Google Scholar 

  60. Van den Broeck, M., L. Rhazi, A. Waterkeyn, M. El Madihi, P. Grillas, J. M. Kneitel & L. Brendonck, 2019. Livestock disturbances in Mediterranean temporary ponds: a mesocosm experiment with sheep manure and simulated trampling. Freshwater Biology 64: 856–869.

    Google Scholar 

  61. Wang, S., Z. Gong & P. Xie, 2000. Environmental factors and the succession of aquatic insects in a shallow Chinese lake. Bulletin of Environmental Contamination and Toxicology 64: 701–707.

    CAS  PubMed  Google Scholar 

  62. Wellborn, G. A., D. K. Skelly & E. E. Werner, 1996. Mechanisms creating community structure across a freshwater habitat gradient. Annual Review of Ecology and Systematics 27: 337–363.

    Google Scholar 

Download references

Acknowledgements

We thank Tim Davidson, Brett Holland, and two reviewers for useful comments that greatly improved the clarity of the manuscript. We also appreciate Kayleigh Lampe and Dalton Burroughs for assistance with the sampling.

Funding

This research was supported by CSUS Department of Biological Sciences Delisle Research Fund and National Science Foundation Grant DEB 1354724 to JMK.

Author information

Affiliations

Authors

Contributions

All authors contributed to study conception and material preparation. Funding acquisition was performed by JK. Data collection and analysis were performed by RK. The first draft of the manuscript was written by RK, with all authors contributing to subsequent versions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Randall Robert Kido.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This study was sampled under USFWS Permit TE192702 to JMK.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Dani Boix

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 702 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kido, R.R., Kneitel, J.M. Eutrophication effects differ among functional groups in vernal pool invertebrate communities. Hydrobiologia 848, 1659–1673 (2021). https://doi.org/10.1007/s10750-021-04554-5

Download citation

Keywords

  • Active and passive dispersers
  • Crustaceans
  • Insects
  • Class Branchiopoda
  • Mesocosms
  • Species richness