Skip to main content

Advertisement

Log in

Pond-adjacent grass height and pond proximity to water influence predation risk of pond fish by amphibians in small fish ponds of Kakamega County, western Kenya

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The study investigated predation risk to pond-reared Nile Tilapia Oreochromis niloticus and African Catfish Clarias gariepinus by amphibians, whether this is driven by height of pond-side grass or pond proximity to surface-water source and how this varies with fish stocking options. Based on small-scale freshwater aquaculture farms in western Kenya, field surveys were conducted during three sampling seasons spread across 6 months. These involved the following: (1) a sociological survey of 29 fish farming households; (2) sampling of amphibians for density, species richness and encounter rates and (3) measuring grass height, pond dimensions and water-source proximity across 24 ponds. Overall, 131 individual frogs from three families were recorded in 78 encounters. Amphibian density increased with pond-side grass height, presumably increasing predation risk, but decreased with water-source proximity. Amphibian encounter rate also decreased with water-source proximity, but was unaffected by grass height, while species richness responded positively to pond-side grass height, but not to water-source proximity. Amphibian encounter likelihood was higher in tilapia-only than in catfish-only or tilapia and catfish ponds irrespective of habitat variables. We demonstrate here that management practices for mitigating fish loss to predatory amphibians should include trimming pond-side vegetation, siting ponds close-to-moderate distances from water-sources and including catfish in pond polycultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akintola, S. L. & K. A. Fakoya, 2017. Small-scale fisheries in the context of traditional post-harvest practice and the quest for food and nutritional security in Nigeria. Agriculture & Food Security 6: 34.

    Google Scholar 

  • Akpona, A. H., C. Djagoun, L. Harrington & B. Sinsin, 2015. Conflict between spotted-necked otters and fishermen in Hlan River, Benin. Journal for Nature Conservation 27: 63–71.

    Google Scholar 

  • Alasuutari, P., 1995. Researching Culture: Qualitative Method and Cultural Studies. Sage, London.

    Google Scholar 

  • AmphibiaWeb, 2020. Hoplobatrachus occipitalis: Life history, abundance, activity, and special behaviors. https://amphibiaweb.org. University of California, Berkeley, CA, USA.

  • Archard, G. A. & V. A. Braithwaite, 2011. Increased exposure to predators increases both exploration and activity level in Brachyrhaphis episcopi. Journal of Fish Biology 78(2): 593–601.

    CAS  PubMed  Google Scholar 

  • Arthington, A. H., N. K. Dulvy, W. Gladstone & I. J. Winfield, 2016. Fish conservation in freshwater and marine realms: status, threats and management. Aquatic Conservation 2695: 838857.

    Google Scholar 

  • Atobe, T., Y. Osada, H. Takeda, M. Kuroe & T. Miyashita, 2014. Habitat connectivity and resident shared predators determine the impact of invasive bullfrogs on native frogs in farm ponds. Proceedings of the Royal Society of Biological Science 281(1789): 20141289.

    Google Scholar 

  • Babbitt, K. J. & G. W. Tanner, 2000. Use of temporary wetlands by anurans in a hydrologically modified landscape. Wetlands 20: 313–322.

    Google Scholar 

  • Baguette, M., S. Blanchet, D. Legrand, V. Stevens & C. Turlure, 2012. Individual dispersal, landscape connectivity and ecological networks. Biological Reviews of the Cambridge Philosophical Society. https://doi.org/10.1111/brv.12000.

    Article  PubMed  Google Scholar 

  • Bee, M. A., 2002. Territorial male bullfrogs (Rana catesbeiana) do not assess fighting ability based on size-related variation in acoustic signals. Behavioural Ecology 13(1): 109–124.

    Google Scholar 

  • Bennet, D., 1999. Expedition Field Techniques: Reptiles and Amphibians. Royal Geographical Society, London.

    Google Scholar 

  • Bertolucci, J. A. & M. T. Rodrigues, 2002. Seasonal patterns of breeding activity of Atlantic rainforest anurans at Boracéia, southeastern Brazil. Amphibia-Reptilia 23: 161–167.

    Google Scholar 

  • Bird, D. K., 2009. The use of questionnaires for acquiring information on public perceptions of natural hazards and risk mitigation - a review of current knowledge and practice. Natural Hazards and Earth Systems Science 9: 1307–1325.

    Google Scholar 

  • Bista, J., T. Gurung & M. K. Wagle, 2012. Contribution of small-scale cage fish culture to poverty reduction and sustainable development. In Shrestha, M. K. and J. Pant, eds. Proceedings of the symposium on small-scale aquaculture for increasing resilience of rural livelihoods in Nepal, 5-6 February 2009. Institute of Agriculture and Animal Science. Kathmandu: 153-159.

  • Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. Stevens & J. S. S. White, 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology and Evolution 24: 127–135.

    PubMed  Google Scholar 

  • Boyd, S. H., 1975. Inhibition of fish reproduction by Rana catesbeiana larvae. Physiology & Zoology 48: 225–234.

    Google Scholar 

  • Bridges, R. C., R. Santori & G. Cunha, 2013. Selection of habitat by a community of anurans on a rocky coast in the Brizalian coastal Atlantic forest. Brazilian Journal of Biology. https://doi.org/10.1590/S1519-69842013000300011.

    Article  Google Scholar 

  • Bulbert, M. W., R. A. Page & X. E. Bernal, 2016. Danger comes from all fronts: Predator-dependent escape tactics of túngara frogs. PLoS ONE 10(4): e0120546.

    Google Scholar 

  • Cassini, M. H., 2013. Distribition Ecology: From Individual Habitat Use to Species Biogeographical Range. Spinger, New York.

    Google Scholar 

  • Channing, A. & K. M. Howell, 2006. Amphibians of East Africa. Chimaira Publishers, Frankfurt.

    Google Scholar 

  • Corse, W. & E. Metter, 1980. Economics, Adult Feeding and Larval Growth of Rana catesbeiana on a Fish Hatchery. Journal of Herpetology 14(3): 231–238.

    Google Scholar 

  • County Government of Kakamega, 2013. First County integrated development plan. County Secretary – Kakamega, County Government of Kakamega. pp 179.

  • Cragg, J., 2007. The effects of livestock grazing on the amphibians of British Columbia. Workterm report of Biology Co-op Program Winter 2004. British Columbia Ministry of Environment. Wildlife Working Report. No. WR-111, Victoria.

  • Dadebo, E., D. Aemro & Y. Tekle-Giorgis, 2014. Food and feeding habits of the African catfish Clarias in Lake Koka. Ethiopia. African Journal of Ecology. 52: 471–478.

    Google Scholar 

  • De Meyer, M., 2001. Biogeography, diversity and seasonality of Syrphidae in a Guineo-Congolean rainforest. Journal of East African Natural History 90: 87–101.

    Google Scholar 

  • Deeming, D. C., 2008. Capture of smooth newts (Lissotriton vulgaris) and great crested newts (Triturus cristatus) correlates with the lunar cycle. Herpetological Journal 18: 171–174.

    Google Scholar 

  • Eaden, J., M. Mayberry & J. Mayberry, 1999. Questionnaires: the use and abuse of social survey methods in medical research. Postgraduate Medical Journal 75: 397–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emerson, S. B., 1985. Skull shape in frogs: correlations with diet. Herpetologica 41: 177–188.

    Google Scholar 

  • Farwig, N., K. Böhning-Gaese & B. Bleher, 2006. Enhanced seed dispersal of Prunus africana in fragmented and disturbed forests. Oecologia 147: 238–252.

    PubMed  Google Scholar 

  • Fermon, Y., 2006. Subsistence fish farming in Africa: a technical manual. ACF International, Bagnolet.

    Google Scholar 

  • Food and Agriculture Organization of the United Nations, 2016. The state of world fisheries and aquaculture 2016: contributing to food security and nutrition for all. FAO, Rome.

    Google Scholar 

  • Galoyan, E., A. Vassilieva & N. Poyarkov, 2017. Seasonal activity of terrestrial amphibians in the monsoon lowland forest of southern Vietnam. Herpetological Journal 27: 189–199.

    Google Scholar 

  • Gaston, K. J., P. H. Williams, P. Eggleton & C. J. Humphries, 1995. Large-scale patterns of biodiversity: spatial variation in family richness. Proceedings of the Royal Society London B Biology 260: 149–154.

    Google Scholar 

  • Glaw, F. & M. Vences, 2007. Field Guide to the Amphibians and Reptiles of Madagascar, 3rd ed. Frosch Verlag Books, Koln.

    Google Scholar 

  • Guerry, A. D. & M. L. Hunter, 2002. Amphibian distributions in a landscape of forests and agriculture: an examination of landscape composition and configuration. Conservation Biology 16: 745–775.

    Google Scholar 

  • Halekoh, U. & S. Hjsgaard, 2014. A Kenward-Roger approximation and parametric bootstrap methods for tests in linear mixed models - The R Package pbkrtest. Journal of Statistical Software 58(10): 1–30.

    Google Scholar 

  • Hammer, G. P., J. B. du Prel & M. Blettner, 2009. Avoiding bias in observational studies: Part 8 in a series of articles on evaluation of scientific publications. Deutsches Arzteblatt International 106(41): 664–668.

    PubMed  PubMed Central  Google Scholar 

  • Hsu, M., Y. Kam & G. Fellers, 2005. Effectiveness of amphibian monitoring techniques in a Taiwanese sub-tropical forest. Herpetological Journal 15: 73–79.

    Google Scholar 

  • IBM Corp., 2015. IBM SPSS Statistics for Windows, Version 23.0. IBM Corp., Armonk, New York:

  • Jewell, S. D., 2011. Exploring wild south Florida. Pineapple Press Inc, Florida.

    Google Scholar 

  • Johnson, J. B. & K. S. Omland, 2004. Model selection in ecology and evolution. Trends in Ecology and Evolution 19: 101–108.

    PubMed  Google Scholar 

  • Kaliba, A. R., C. Ngigi, J. Mackambo, K. O. Osewe, E. Senkondo & S. Amisah, 2006. Potential effect of aquaculture promotion of poverty reduction in sub-Saharan Africa. Aquaculture International. https://doi.org/10.1007/s10499-007-9110-5.

    Article  Google Scholar 

  • Kane, A. S., R. Reimschuessel & M. M. Lipsky, 1992. Effect of tadpoles on warm-water fish pond production. Fisheries 17(2): 36–39.

    Google Scholar 

  • Kateregga, E. & T. Sterner, 2008. Lake Victoria fish stocks and the effects of water hyacinth. The Journal of Environment and Development 18(1): 1–24.

    Google Scholar 

  • Kawarazuka, N. & C. Bene, 2010. Linking small-scale fisheries and aquaculture to household nutritional security: An overview. Food Security 2(4): 343–357.

    Google Scholar 

  • Kenward, M. G. & J. H. Roger, 1997. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53: 983–997.

    CAS  Google Scholar 

  • Khallaf, E. A. & A. A. Alne-na-ei, 1987. Feeding ecology of Oreochromis niloticus (Linnaeus) & Tilapia Zillii (Gervias) in a Nile canal. Hydrobiologia 146: 57–62.

    Google Scholar 

  • Kipkemboi, J., 2006. Fingerponds: seasonal integrated aquaculture in East African freshwater wetlands - exploring potential for wise use. PhD dissertation, Wageningen University and UNESCO-IHE Institute for Water Education. Wageningen: Taylor & Francis/Balkema.

  • Kloskowski, J., 2010. Fish farms as amphibian habitats: factors affecting amphibian species richness and community structure at carp ponds in Poland. Environmental Conservation 37(2): 187–194.

    Google Scholar 

  • Knutson, M. G., W. B. Richardson, D. M. Reineke, B. R. Gray, J. R. Parmelee & S. E. Weick, 2004. Agricultural ponds support amphibian populations. Ecological Applications 14(3): 669–684.

    Google Scholar 

  • Kusano, T., T. Miura, S. Terui & K. Maruyama, 2015. Factors Affecting the Breeding Activity of the Japanese Common Toad, Bufo japonicus formosus (Amphibia: Bufonidae) with Special Reference to the Lunar Cycle. Current Herpetology 34(2): 101–111.

    Google Scholar 

  • Liti, D., L. Cherop, J. Munguti & L. Chihorn, 2005. Growth and economic performance of Nile Tilapia Orechromis niloticus fed on two formulated diets and two locally available feeds in fertilized ponds. Aquaculture Research 36: 746–762.

    Google Scholar 

  • Liu, X., Y. Luo, L. Chen, Y. Guo, M. Chang-M Bai & L. Yiming, 2015. Diet and prey selection of the invasive American bullfrog in southwestern China. Asian Herpetological Research 6: 34–44.

    Google Scholar 

  • Lotz, A. & C. Allen, 2007. Observer bias in anuran call surveys. Journal of Wildlife Management 71(2): 675–679.

    Google Scholar 

  • Luke, S. G., 2017. Evaluating significance in linear mixed-effects models in R. Behavioural Research 49: 1494–1502.

    Google Scholar 

  • Lupien, N. G., G. Gauthier & C. Lavoie, 2013. Effect of the invasive common reed on the abundance, richness and diversity of birds in freshwater marshes. Animal Conservation. https://doi.org/10.1111/acv.12135.

    Article  Google Scholar 

  • Manenti, R., A. Melotto & G. Ficetola, 2016. Amphibians breeding in refuge habitats have larvae with stronger anti-predatory responses. Animal Behaviour 118: 115–121.

    Google Scholar 

  • McArdle, B. H. & M. J. Anderson, 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82(1): 290–297.

    Google Scholar 

  • McNeish, D., 2016. On using Bayesian methods to address small sample problems. Structural Equation Modeling 23: 750–773.

    Google Scholar 

  • Miller, R. B. & M. J. Anderson, 2004. Remedies for pseudoreplication. Fisheries Research 70: 397–407.

    Google Scholar 

  • Muteveri, T. & B. E. Marshall, 2007. The impact of fish and drought on frog breeding in 433 temporary waters in Zimbabwe. African Zoology 42(1): 124–130.

    Google Scholar 

  • Naggar, G. E., 2007. Efficiency of African Catfish Clarias gariepinus in controlling unwanted reproduction of Nile Tilapia Oreochromis niloticus in low input production system. Egyptian Journal of Aquatic Biology & Fisheries 11(3): 1110–6131.

    Google Scholar 

  • Nichols, J. D., J. E. Hines, J. R. Sauer, F. W. Fallon, J. E. Fallon & P. J. Heglund, 2000. A double-observer approach for estimating detection probability and abundance from point counts. Auk 117: 393–408.

    Google Scholar 

  • Obiero, K.O., K. Waidbacher, B. O., Nyawanda, J. M. Munguti, J. O. Manyala & B. Kaunda-Arara, 2019. Predicting uptake of aquaculture technologies among smallholder fish farmers in Kenya. Aquaculture International 27: 1689-1707

  • Ogada, M. O., P. A. Aloo & P. M. Muruthi, 2009. The African Clawless Otter (Aonyx capensis) and its diet as an indicator of crayfish invasion dynamics in aquatic systems. African Journal of Ecology 27(1): 119–120.

    Google Scholar 

  • Omasaki, S. K., H. Charo-Karisa & I. S. Kosgey, 2013. Fish production practices of smallholder farmers in western Kenya. Livestock Research for Rural Development 25(3). http://www.lrrd.org/lrrd25/3/omas25052.htm.

  • Otieno, N. E., 2019. Economic impact of predatory piscivorous birds on small-scale aquaculture farms in Kenya. Aquaculture Reports 15: 1–9.

    Google Scholar 

  • Pearson, D. J., J. K. Webb & R. Shine, 2014. Behavioural responses of reptile predators to invasive cane toads in tropical Australia. Austral Ecology 39(4): 448–454.

    Google Scholar 

  • Pechmann, J. H., R. A. Estes, D. E. Scott & J. W. Gibbons, 2001. Amphibian colonization and use of ponds created for trial mitigation of wetland loss. Wetlands 21(1): 93–111.

    Google Scholar 

  • PRIMER-E.PERMANOVA and PRIMER v.7, 2019. Lutton, Ivybridge, UK, PRIMER-E.

  • Pusponegoro, N. H., R. N. Rachawati, K. A. Notodiputro & B. Sartono, 2017. Linear mixed model for analysing longitudinal data: a simulation study of children growth differences. Procedia Computer Science 116: 284–291.

    Google Scholar 

  • Puth, L. M. & T. F. H. Allen, 2005. Potential corridors for the rusty crayfish, Orconectes rusticus, in northern Wisconsin (USA) lakes: lessons for exotic invasions. Landscape Ecology 20: 567–577.

    Google Scholar 

  • R Core Team, 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.https://www.r-project.org/.

  • Rannap, R., A. Lõhmus & L. Briggs, 2009. Restoring ponds for amphibians: a success story. Hydrobiologia 634(1): 87–95.

    Google Scholar 

  • Smith, G. R., J. E. Rettig, G. G. Mittelbach, J. L. Valiulis & S. R. Schaack, 1999. The effects of fish on assemblages of amphibians in ponds: a field experiment. Freshwater Biology 41: 829–837.

    Google Scholar 

  • Snow, N. P. & G. Witmer, 2010. American Bullfrogs as invasive species: a review of the introduction, subsequent problems, management options, and future directions. In Tim, R. M & K. A. Fagerstone, eds. Proceedings of the 24th vertebrate pest conference. University of California Davis. https://doi.org/10.5070/V424110490.

  • Spawls, S., K. M. Howell & R. C. Drewes, 2006. Pocket guide to the reptiles and amphibians of East Africa. Christopher Helm, London.

    Google Scholar 

  • Szczygieł, H. A. & R. A. Page, 2020. When the hunter becomes the hunted: foraging bat attacked by pit viper at frog chorus. Ecology. https://doi.org/10.1002/ecy.3111.

    Article  PubMed  Google Scholar 

  • Tacon A. G., 2001. Increasing the contribution of aquaculture for food security and poverty alleviation. In: Subasinghe, R. P., P. B. Bueno & M. J. Phillips, MJ. Eds. Proceedings of the conference on aquaculture in the third millennium, Bangkok 20-25 February 2000. NACA and FAO, Bankok: 63-72. http://www.fao.org/3/ab412e/ab412e30.htm

  • Vitule, J. R., S. C. Umbria & J. Aranha, 2008. Record of native amphibian predation by the alien African catfish in the Brazilian Atlantic Rain Forest. Pan-American Journal of Aquatic Sciences 3(2): 105–107.

    Google Scholar 

  • Were, E. O., C. Ngugi & K. Veverica, 2006. Yields and economic benefits of tilapia and catfish polyculture in ponds using locally available feeds. Journal of East African Natural Resource Management 1(2): 1–10.

    Google Scholar 

  • Yilmaz, E., A. Bozkurt & K. Gokcek, 2006. Prey selection by African Catfish Clarias gariepinus (Burchell, 1822) larvae fed different feeding regimes. Turkish Journal of Zoology 30: 56–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nickson Erick Otieno.

Additional information

Handling editor: Lee B. Kats

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otieno, N.E., Wasonga, D.V. & Imboko, D. Pond-adjacent grass height and pond proximity to water influence predation risk of pond fish by amphibians in small fish ponds of Kakamega County, western Kenya. Hydrobiologia 848, 1795–1809 (2021). https://doi.org/10.1007/s10750-021-04551-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04551-8

Keywords

Navigation