Skip to main content

Advertisement

Log in

The effect of different logging regimes on the ecomorphological structure of stream fish assemblages in the Brazilian Amazon

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

A Correction to this article was published on 23 June 2021

This article has been updated

Abstract

We evaluated the effects of changes in habitat structure resulting from conventional logging (CL) and reduced-impact logging (RIL) on the ecomorphological structure of stream fish assemblages in the eastern Brazilian Amazon, investigating (1) which habitat characteristics are influenced by different logging methods, (2) the differences in the ecomorphological structure of fish assemblages between two logging methods and undisturbed forest (UF), and (3) the relationships between ecomorphological traits of fish assemblages and habitat variables. We measured 13 habitat variables and characterized 11 ecomorphological traits of 55 fish species collected in 34 sampling sites (stream stretches) located in CL, RIL, and UF. In logged areas, the streams present a fine sediment increase and reduced vegetation cover, while in the UF a greater amount of natural shelter and more cover vegetation were observed. These environmental changes selected ecomorphological traits of stream fish assemblages, recording a greater relative width of the mouth in UF, higher ventral flattening index in RIL, or greater relative head length, and higher caudal peduncle compression index in CL. In this sense, we recommend that logging practices, including RIL, should be reviewed as a means of adopting better strategies to minimize human disturbances in streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The material is available at the Ecology and Conservation Laboratory (LABECO) at the Federal University of Pará (UFPA), under the responsibility of co-author Luciano Fogaça de Assis Montag.

Code availability

Not applicable.

Consent for publication

All authors agree with the content presented in the manuscript in question.

Change history

References

  • Albrecht, G. H., 1980. Multivariate analysis and the study of form, with special reference to canonical variates analysis. American Zoologist 20: 679–693.

    Google Scholar 

  • Azevedo‐Santos, V. M., R. G. Frederico, C. K. Fagundes, P. S. Pompeu, F. M. Pelicice, A. A. Padial, M. G. Nogueira, P. M. Fearnside, L. B. Lima, V. S. Daga, F. J. M. Oliveira, J. R. S. Vitule, M. Callisto, A. A. Agostinho, F. A. Esteves, D. P. Lima-Junior, L. B. Magalhães, J. Sabino, R. P. Mormul, D. Grasel, J. Zuanon, F. S. Vilella & R. Henry, 2019. Protected areas: a focus on Brazilian freshwater biodiversity. Diversity and Distributions, 25 (3), 442-448.

    Google Scholar 

  • Barlow, J., G. D. Lennox, J. Ferreira, E. Berenguer, A. C. Lees, R. M. Nally, J. R. Thomson, S. F. D. B. Ferraz, J. Louzada, V. H. F. Oliveira, L. Parry, R. Ribeiro de Castro Solar, I. C. G. Vieira, L. E. O. C. Aragão, R. A. Begotti, R. F. Braga, T. M. Cardoso, R. C. de Oliveira, Jr, C. M. Souza Jr, N. G. Moura, S. S. Nunes, J. V. Siqueira, R. Pardini, J. M. Silveira, F. Z. Vaz-De-Mello, R. C. S. Veiga, A. Venturieri & T. A. Gardner, 2016. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535: 144–147.

    CAS  PubMed  Google Scholar 

  • Baumgarther, G., C. S. Pavanelli, D. Baumgartner, A. G. Bifi, T. Debona & V. A. Frana, 2012. Peixes do Baixo rio Iguaçu. Eduem, Maringá.

    Google Scholar 

  • Benone, N. L., R. Ligeiro, L. Juen & L. F. A. Montag, 2018. Role of environmental and spatial processes structuring fish assemblages in streams of the eastern Amazon. Marine and Freshwater Research 69: 243–252.

    Google Scholar 

  • Bicknell, J. E., M. J. Struebig & Z. G. Davies, 2015. Reconciling timber extraction with biodiversity conservation in tropical forests using reduced-impact logging. Journal of Applied Ecology 52: 379–388.

    Google Scholar 

  • Bojsen, B. H. & R. Barriga, 2002. Effects of deflorestation on fish community structure in Ecuadorian Amazon streams. Freshwater Biology 47: 2246–2260.

    Google Scholar 

  • Borcard, D., P. Legendre, C. Avois-Jacquet & H. Tuomisto, 2004. Dissecting the spatial structure of ecological data at multiple scales. Ecology 85: 1826–1832.

    Google Scholar 

  • Britski, H. A., K. Z. S. Silimon & B. S. Lopes, 2007. Peixes do Pantanal: manual de identificação, 2nd edn. Embrapa, Brasília: 228 pp.

    Google Scholar 

  • Callisto, M., C. B. M. Alves, J. M. Lopes & M. A. Castro, 2014. Condições ecológicas em bacias hidrográficas de empreendimentos hidrelétricos. Cemig, Belo Horizonte.

    Google Scholar 

  • Cantanhêde, L. G., A. Luiza-Andrade, H. Leão & L. F. A. Montag, 2020. How does conversion from forest to pasture affect the taxonomic and functional structure of the fish assemblages in Amazonian streams? Ecology of Freshwater Fish https://doi.org/10.1111/eff.12589.

    Article  Google Scholar 

  • Casatti, L. & R. M. C. Castro, 2006. Testing the ecomorphological hypothesis in a headwater riffles fish assemblage of the Rio São Francisco, southeastern Brazil. Neotropical Ichthyology 4: 203–214.

    Google Scholar 

  • Castello, L., D. G. Mcgrath, L. L. Hess, M. T. Coe, P. A. Lefebvre, P. Petry, M. N. Macedo, V. F. Renó & C. C. Arantes, 2013. The vulnerability of Amazon freshwater ecosystems. Conservation Letters 6: 217–229.

    Google Scholar 

  • Cerdeira, A. L. N., D. R. Fernandes, G. P. Aguiar, H. V. P. Dolabella, J. B. Lima & K. G. Dilva, 2019. Plano anual de outorga florestal 2019. Sfb, Brasília.

    Google Scholar 

  • Chippari-Gomes, A. R., M. N. Paula-Silva, A. L. Val, J. E. P. Bicudo & V. M. Almeida-Val, 2000. Hypoxia tolerance in Amazon cichlids. In “Proceedings of the IV International Congress on the Biology of Fish”, Eds. VMF Almeida-Val, R. Gonzales & D. MacKinlay. Proc. Int. Symp. Congress on the Biology of Fish. Aberdeen, Scothland 1: 43–54.

  • Dias, M. S., W. E. Magnusson & J. Zuanon, 2009. Effects of reduced-impact logging on fish assemblages in central Amazonia: contributed paper. Conservation Biology 24: 278–286.

    PubMed  Google Scholar 

  • Espada, A. L. V., I. P. Pires, M. A. W. Lentini & P. R. G. Bittencourt, 2015. Manejo florestal e exploração de impacto reduzido em florestas naturais de produção da Amazônia. Ift, Belém.

    Google Scholar 

  • Fittkau, E. J., W. Junk, H. Klinge & H. Sioli, 1975. Substrate and vegetation in the Amazon region. In “Vegetation und Substrat”, Berichte der Internationalen Vereinungung fur Vegetationskunde. A. R. Gantner Verlag, Vaduz, Liechtenstein 73–90.

  • Frissell, C. A., W. J. Liss, C. E. Warren & M. D. Hurley, 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environmental Management 10: 199–214.

    Google Scholar 

  • Furtado-Junior, I., R. A. L. Souza, E. T. Santos, A. C. P. Souza, J. R. Carvalho-Júnior & A. H. M. Oliveira, 2016. Avaliação dos estoques da ictiofauna na barragem da mina de Sossego em Canaã dos Carajás (Amazônia Oriental), capturados com uso de tarrafa, antes do depósito de rejeitos. Biota Amazônia 6: 26–31.

    Google Scholar 

  • Gatz Jr., J. A., 1979. Community organization in fishes as indicated by morphological features. Ecology 60: 711–718.

    Google Scholar 

  • Géry, J., 1977. Characoids of the World. T.F.H., Neptune City.

    Google Scholar 

  • Hammer, O., 2002. Morphometrics – brief notes. Paläontologisches Institut und Museum, Zürich 50 [available on internet at http://folk.uio.no/ohammer/past/morphometry.pdf]. Accessed February 2020.

  • Holmes, T. P., G. M. Blate, J. C. Zweede, R. Pereira, Jr, P. Barreto, F. Boltz & R. Bauch, 2002. Financial and ecological indicators of reduced impact logging performance in the eastern Amazon. Forest Ecology and Management 163: 93–110.

    Google Scholar 

  • Hora, S. L., 1930. Ecology, bionomics and evolution of the torrential fauna, with special reference to the organs of attachment. Philosophical Transactions of the Royal Society of London B: Biological Sciences 218: 171–282.

    Google Scholar 

  • Köppen, W., 1948. Climatologia: con un estudio de los climas de la tierra. Fondo de Cultura Economica, México: 478 pp.

    Google Scholar 

  • Kormos, C. F. & B. L. Zimmerman, 2014. Response to: Putz et al., sustaining conservation values in selectively logged tropical forests: the attained and the attainable. Conservation Letters 7: 143–144.

    Google Scholar 

  • Kreutzweiser, D. P., S. S. Capell & K. P. Good, 2005. Effects of fine sediment inputs from a logging road on stream insect communities: a large-scale experimental approach in a Canadian headwater stream. Aquatic Ecology 39: 55–66.

    Google Scholar 

  • Kullander, S. O., 1986. Cichlid Fishes of the Amazon River Drainage of Peru. Swedish Museum of Natural History, Stockholm.

    Google Scholar 

  • Laliberte, E. & P. Legendre, 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91: 299–305.

    PubMed  Google Scholar 

  • Lavorel, S., K. Grigulis, S. McIntyre, N. S. G. Williams, D. Garden, J. Dorrough, S. Berman, F. Quétier, A. Thébault & A. Bonis, 2008. Assessing functional diversity in the field-methodology matters! Functional Ecology 22: 134–147.

    Google Scholar 

  • Leal, C. G., P. S. Pompeu, T. A. Gardner, R. P. Leitão, R. M. Hughes, P. R. Kaufmann, J. Zuanon, F. R. de Paula, S. F. B. Ferraz, J. R. Thomson, R. Mac Nally, J. Ferreira & J. Barlow, 2016. Multi-scale assessment of human-induced changes to Amazonian instream habitats. Landscape Ecology 31: 1725–1745.

    Google Scholar 

  • Leal, C. G., G. D. Lennox, S. F. B. Ferraz, J. Ferreira, T. A. Gardner, J. R. Thomson, E. Berenguer, A. C. Lees, R. M. Hughes, R. Mac-Nally, L. E. O. C. Aragão, J. G. deBrito, L. Castello, R. D. Garrett, N. Hamada, L. Juen, R. P. Leitão, J. Louzada, T. F. Morello, N. G. Moura, J. L. Nessimian, J. M. B. Oliveira-Junior, V. H. F. de Oliveira, V. C. de Oliveira, L. Parry, P. S. Pompeu, R. R. C. Solar, J. Zuanon & J. Barlow, 2020. Integrated terrestrialfreshwater planning doubles conservation of tropical aquatic species. Science, 370.6512: 117–121.

  • Leão, H., T. Siqueira, N. R. Torres, & L. F. A. Montag, 2020. Ecological uniqueness of fish communities from streams in modified landscapes of Eastern Amazonia. Ecological Indicators 111: 106039.

    Google Scholar 

  • Leitão, R. P., J. Zuanon, D. Mouillot, C. G. Leal, R. M. Hughes, P. R. Kaufmann, S. Villéger, P. S. Pompeu, D. Kasper, F. R. Paula, S. F. B. Ferraz & T. A. Gardner, 2018. Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. Ecography 41: 219–232.

    PubMed  PubMed Central  Google Scholar 

  • Macpherson, A. J., M. D. Schulze, D. R. Carter & E. Vidal, 2010. A model for comparing reduced impact logging with conventional logging for an Eastern Amazonian Forest. Forest Ecology and Management 260: 2002–2011.

    Google Scholar 

  • Mahon, R., 1984. Divergent structure in fish Taxocenes of North Temperate streams. Canadian Journal of Fisheries and Aquatic Sciences 41: 330–350.

    Google Scholar 

  • Meijaard, E., D. Sheil, R. Nasi, D. Augeri, B. Rosenbaum, D. Iskandar, T. Setyawati, M. Lammertink, I. Rachmatika, A. Wong, T. Soehartono, S. Stanley & T. O’Brien, 2005. Life after logging: reconciling wildlife conservation and production forestry in Indonesian Borneo. Cifor, Jakarta: 370 pp.

    Google Scholar 

  • Montag, L. F. A., H. Leão, Y. Quintana, K. O. Winemiller, F. W. Keppeler, N. L. Benone, L. M. Bower, N. R. Torres, L. Juen, B. S. Prudente, D. E. Saenz, E. O. Lopez-delgado & D. J. Hoeinghaus, 2019. Land cover, riparian zones and instream habitat influence stream fish assemblages in the eastern Amazon. Ecology of Freshwater Fish 317–329.

  • Nogueira, D. S., L. B. Calvão, L. F. A. Montag, L. Juen & P. Marco, 2016. Little effects of reduced-impact logging on insect communities in eastern Amazonia. Environmental Monitoring and Assessment 188: 1–20.

    Google Scholar 

  • O’Neill, R. V., A. R. Johnson & A. W. King, 1989. A hierarchical framework for the analysis of scale. Landscape Ecology 3: 193–205.

    Google Scholar 

  • Ohlberger, J., G. Staaks & F. Hölker, 2006. Swimming efficiency and the influence of morphology on swimming costs in fishes. Journal of Comparative Physiology B: Biochemical, Systemic and Environmental Physiology 176: 17–25.

    CAS  Google Scholar 

  • Oliveira, D. C. & S. T. Bennemann, 2005. Ictiofauna, recursos alimentares e relações com as interferências antrópicas em um riacho urbano no sul do Brasil. Biota Neotropica 5: 95–107.

    Google Scholar 

  • Panfil, S. N. & C. A. Harvey, 2016. REDD+ and biodiversity conservation: a review of the biodiversity goals, monitoring methods, and impacts of 80 REDD+ projects. Conservation Letters 9: 143–150.

    Google Scholar 

  • Peck, D. V., A. T. Herlihy, B. H. Hill, R. M. Hughes, P. R. Kaufmann, D. J. Klemm, J. M. Lazorchak, F. H. McCormick, S. A. Peterson, P. L. Ringold, T. Magee & M. R. Cappaert, 2006. Environmental Monitoring and Assessment Program-Surface Waters Western Pilot Study: Field Operations Manual for Wadeable Streams. Washington: 332 pp.

  • Peel, M. C., B. L. Finlayson & T. A. McMahon, 2007. Updated world map of the Köppen–Geiger climate classification. Hydrology and Earth System Sciences Discussions 4: 439–473.

    Google Scholar 

  • Poff, N. L., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16: 391–409.

    Google Scholar 

  • Prudente, B. S., P. S. Pompeu, L. Juen & L. F. A. Montag, 2017. Effects of reduced-impact logging on physical habitat and fish assemblages in streams of Eastern Amazonia. Freshwater Biology 62: 303–316.

    Google Scholar 

  • Prudente, B. S., P. S. Pompeu & L. F. A. Montag, 2018. Using multimetric indices to assess the effect of reduced impact logging on ecological integrity of Amazonian streams. Ecological Indicators 91: 315–323.

    Google Scholar 

  • Putz, F. E., P. Sist, T. Fredericksen & D. Dykstra, 2008. Reduced-impact logging: challenges and opportunities. Forest Ecology and Management 256: 1427–1433.

    Google Scholar 

  • Putz, F. E., P. A. Zuidema, T. Synnott, M. Peña-Claros, M. A. Pinard, D. Sheil, J. K. Vanclay, P. Sist, S. Gourlet-Fleury, B. Griscom, J. Palmer & R. Zagt, 2012. Sustaining conservation values in selectively logged tropical forests: the attained and the attainable. Conservation Letters 5: 296–303.

    Google Scholar 

  • R Core Team, 2020. R: A Language and Environment for Statistical Computing (Version 3.6). R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Rasband, W. S., 2012. ImageJ: image processing and analysis in Java. Astrophysics Source Code Library.

  • Sabogal, C., J. N. M. Silva, J. Zweede, R. Pereira Júnior, P. Barreto & C. A. Guerreiro, 2000. Diretrizes técnicas para a exploração de impacto reduzido em operações florestais de terra firme na Amazônia Brasileira. Cifor-Embrapa, Belém: 24 pp.

    Google Scholar 

  • Santos, G. M. & F. J. G. Ferreira, 1999. Peixes da Bacia Amazônica Estudos ecológicos de comunidades de peixes tropicais. Edusp, São Paulo.

    Google Scholar 

  • Santos, L. L., R. B. Barthem, N. L. Benone & L. F. A. Montag, 2019. Trait–environment relationships in Amazon stream fish assemblages. Ecology of Freshwater Fish 28: 424– 433.

    Google Scholar 

  • Schulze, M. & J. Zweede, 2006. Canopy dynamics in unlogged and logged forest stands in the eastern Amazon. Forest Ecology and Management 236: 56–64.

    Google Scholar 

  • Serejo, E. S., A. C. C. Vieira, A. L. V. Espada & I. P. Pires, 2017. Marco estratégico: um método organizacional para estruturação de empreendimentos florestais comunitários. Ift, Belém: 12 pp.

    Google Scholar 

  • Shine, R., 1989. Ecological causes for the evolution of sexual dimorphism: a review of the evidence. The Quarterly Review of Biology 64: 419–461.

    CAS  PubMed  Google Scholar 

  • Silva, C. P. D., 1993. Alimentação e distribuição espacial de algumas espécies de peixes do igarapé do Candirú, Amazonas, Brasil. Acta Amazonica 23: 271–285.

    Google Scholar 

  • Skole, D. L., W. H. Chomentowski & A. D. Nobre, 1994. Physical and human dimensions of deforestation in Amazonia. BioScience 44: 314–322.

    Google Scholar 

  • Southwood, T. R. E., 1977. Habitat, the templet for ecological strategies? Journal of Animal Ecology 46: 336–365.

    Google Scholar 

  • Statsoft, Inc. 2005. Statistica for Windows: Data Analysis Software System. Version 7.1. Statsoft, Inc., Tulsa [available on internet at http://www.statsoft.com]. Accessed December 2019.

  • Strahler, A. N., 1957. Quantitative analysis of watershed geomorphology. American Geophysical Union Transactions 36: 913–920.

    Google Scholar 

  • Teresa, F. B. & L. Casatti, 2010. Importância da vegetação ripária em região intensamente desmatada no sudeste do Brasil: um estudo com peixes de riacho. Pan-American Journal of Aquatic Sciences 5: 444–453.

    Google Scholar 

  • Teresa, F. B. & L. Casatti, 2012. Influence of forest cover and mesohabitat types on functional and taxonomic diversity of fish communities in Neotropical lowland streams. Ecology of Freshwater Fish 21.3: 433-442.

    Google Scholar 

  • Teresa, F. B., L. Casatti & M. V. Cianciaruso, 2015. Functional differentiation between fish assemblages from forested and deforested streams. Neotropical Ichthyology 13: 361–370.

    Google Scholar 

  • Teresa, F. B. & L. Casatti, 2017. Trait-based metrics as bioindicators: responses of stream fish assemblages to a gradient of environmental degradation. Ecological Indicators 75: 249-258.

    Google Scholar 

  • Tonn, W. M., J. J. Magnuson, M. Rask & J. Toivonen, 1990. Intercontinental comparison of small-lake fish assemblages: the balance between local and regional processes. American Naturalist 136: 345–375.

    Google Scholar 

  • Van-Kuijk, M., R. J. Zagt & F. E. Putz, 2009. Effects of Certification on Forest Biodiversity. Report commissioned by Netherlands Environmental Assessment Agency. Tropenbos International, Wageningen: 71 pp.

    Google Scholar 

  • Vari, R. P., & C. J. Ferraris-Jr, 2006. The catfish genus Tetranematichthys (Auchenipteridae). Copeia 2006: 168–180.

    Google Scholar 

  • Veloso, H. P., A. L. R. Rangel Filho & J. C. A. Lima, 1991. Classificação da vegetação brasileira adaptada a um sistema universal. Ibge, Rio de Janeiro.

    Google Scholar 

  • Veríssimo, A., P. Barreto, M. Mattos, R. Tarifa & C. Uhl, 2002. Impactos da atividade madeireira e perspectivas para o manejo sustentável da floresta numa velha fronteira da Amazônia: o caso de Paragominas. In Barros, A., & A. Veríssimo (eds) A expansao madeireira na Amazônia: impactos e perspectivas para o desenvolvimento sustentável do Pará, 2nd edn. Imazon, Belém.

  • Watrin, O. S. & A. M. A. Rocha, 1992. Levantamento da Vegetação Natural e do Uso da Terra no Município de Paragominas (PA) utilizando imagens TM/Landsat. Embrapa, Belém: 40 pp.

    Google Scholar 

  • Watson, D. J. & E. K. Balon, 1984. Ecomorphological analysis of fish taxocenes in rainforest streams of northern Borneo. Journal of Fish Biology 25: 371–384.

    Google Scholar 

  • Zuanon, J., F. P. Mendonça, H. M. V. E. Santo, M. S. Dias, A. V. Galuch & A. Akama, 2015. Guia de Peixes da Reserva Adolpho Ducke. Inpa, Manaus: 155 pp.

    Google Scholar 

Download references

Acknowledgements

We are grateful to the companies CIKEL Ltda., 33 Forest Capital, and Tropical Forest Institute (IFT) for the financial and logistic support during part of this study. The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—for granting scholarship for LLJ (Process: 00.889.834/0001-08). We also thank the National Council for Scientific and Technological Development (CNPq) for granting Scholarships and Productivity Grants for BSP (Process: 140160/2013-2) and LFAM (Process: 302406/2019-0).

Funding

This study was partially funded by Cikel Brasil Verde Madeiras LTDA., Instituto Floresta Tropical (IFT), the Coordination for the Improvement of Higher Education Personnel: Brazil (CAPES), and the National Council for Scientific and Technological Development: Brazil (CNPq) for granting scholarships and productivity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laís L. Jacob.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Declaration

Not applicable.

Ethical approval

Approved by the Ethics Committee of the Federal University of Pará (CEUA nº 8293020418).

Informed consent

Not applicable.

Additional information

Handling editor: Fernando M. Pelicice

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to a retrospective Open Access cancellation.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacob, L.L., Prudente, B.S., Montag, L.F.A. et al. The effect of different logging regimes on the ecomorphological structure of stream fish assemblages in the Brazilian Amazon. Hydrobiologia 848, 1027–1039 (2021). https://doi.org/10.1007/s10750-020-04508-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04508-3

Keywords

Navigation