Skip to main content

Advertisement

Log in

The role of secondary riparian forests for conserving fish assemblages in eastern Amazon streams

  • NEOTROPICAL STREAMS IN CHANGING LANDSCAPES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Riparian deforestation degrades stream habitats, altering fish assemblages’ structure, and composition. In contrast, secondary riparian forests can recover stream habitats and fish assemblages as they recover structural attributes and ecological processes. We evaluated whether the amount and condition of secondary riparian forests were important to conserve fish assemblages in 49 streams sites in eastern Amazonia. We related fish assemblage taxonomic and functional measures to riparian forest amount plus different habitat metrics using regression analysis. We compared assemblage measures among reference forests, abandoned pastures (open canopy), and secondary forests (closed canopy) using ANOVA tests. The amount of secondary forests had little influence on fish assemblages. Species richness, diversity, and functional richness were higher in pasture than in reference sites but returned to pre-disturbance conditions in secondary sites. However, functional evenness was lower in pasture streams and did not recover after secondary forest regrowth. Our results show that secondary riparian forest condition is important to recover some aspects of fish assemblages. However, streams bordered by these forests may have impoverished fish assemblages because some lost sensitive species may take longer to return. Avoiding riparian deforestation is the best strategy to reduce losses in aquatic biodiversity and ecosystem functions in tropical agricultural landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Research data are not shared.

References

  • Agostinho, A.A., Gomes, L.C., Santos, N.C.L., Ortega, J.C. & F.M. Pelicice, 2016. Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management. Fisheries Research 173:26–36.

    Article  Google Scholar 

  • Aguiar, A.P.D., Vieira, I.C.G., Assis, T.O., Dalla-Nora, E.L., Toledo, P.M., Santos-Jr., R.A.O., Batistella, M., Coelho, A.S., Savaget, E.K., Aragão, L.E.O.C., Nobre, C.A. & J.P.H. Ometto, 2016. Land use change emission scenarios: anticipating a forest transition process in the Brazilian Amazon. Global Change Biology 22:1821-1840.

    Article  Google Scholar 

  • Alencar, A.A., Brando, P.M., Asner, G.P. & F.E. Putz, 2015. Landscape fragmentation, severe drought, and the new Amazon forest fire regime. Ecological Applications 25:1493-1505.

    Article  PubMed  Google Scholar 

  • Alexandre, C.M. & P.R. Almeida, 2010. The impact of small physical obstacles on the structure of freshwater fish assemblages. River Research and Applications 26:977–994.

    Google Scholar 

  • Allmendinger, N.E., Pizzuto, J.E., Potter, N.J., Johnson, T.E. & W.C. Hession, 2005. The influence of riparian vegetation on stream width, eastern Pennsylvania, USA. Geological Society of America Bulletin 117:229-243.

    Article  Google Scholar 

  • Aragão, L.E.O.C, Anderson, L.O., Fonseca, M.G., Rosan, T.M., Vedovato, L.B., Wagner, F.H., Silva, C.V.J., Junior, C.H.L.S., Arai E., Aguiar, A.P., Barlow, J., Berenguer, E., Deeter, M.N., Domingues, L.G., Gatti, L.,Gloor, M., Malhi, Y., Marengo, J.A., Miller, J.B., Phillips, O.L. & S. Sassan, 2018. 21st Century of drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nature Communications 9:536.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barlow, J. & C.A. Peres, 2004. Ecological responses to El Niño-induced surface fires in Central Brazilian Amazonia: management implications for flammable tropical forests. Philosophical Transactions of the Royal Society of London B 359:367-380.

    Article  Google Scholar 

  • Barlow, J., Lennox, G.D., Ferreira, J., Berenguer, E., Less, A.C., Nally, R.M., Thomson, J.R., Ferraz, S.F.B., Louzada, J., Oliveira, V.H.F., Parry, L., Solar, R.R.C., Vieira, I.C.G., Aragão, L.E.O.C., Begotti, R.A., Braga, R.F., Cardoso, T.M., Oliveira Jr., R.C., Souza Jr., C.M., Moura, N.G., Nunes, S.S., Siqueira, J.V., Pardini, R., Silveira, J.M., Vaz-de-Mello, F.Z., Veiga, R.C.S., Venturieri, A. & T.A. Gardner, 2016. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535:144-147.

    Article  CAS  PubMed  Google Scholar 

  • Bastos, T.X., Pacheco, N.A., Figueiredo, R.O. & G.F.G. Silva, 2005. Características Agroclimáticas do Município de Paragominas. Documentos 228. Embrapa Amazônia Oriental, Belém.

  • Bechtold, H.A., Rosi, E.J., Warren, D.R. & W.S. Keeton, 2017. Forest age influences in-stream ecosystem processes in Northeastern US. Ecosystems 20:1058-1071.

    Article  CAS  Google Scholar 

  • Berenguer, E., Ferreira, J., Gardner, T.A., Aragão, L.E.O.C., Camargo, P.B., Cerri, C.E., Durigan, M., Oliverira Jr., R.C., Vieira, I.C.G. & J. Barlow, 2014. A large-scale field assessment of carbon stocks in human-modified tropical forests. Global Change Biology 20:3713-3726.

    Article  PubMed  Google Scholar 

  • Berenguer, E., Gardner, T.A., Ferreira, J., Aragão, L.E.O.C., Nally, R.M., Thomson, J.R., Vieira, I.C.G. & J. Barlow, 2018. Seeing the woods through the saplings: using wood density to assess the recovery of human-modified Amazonian forests. Journal of Ecology 106:2190-2203.

    Article  CAS  Google Scholar 

  • Berra, T.M. 2001. Freshwater fish distribution. Academic Press, New York.

    Google Scholar 

  • Borcard, D., Gillet, F. & P. Legendre, 2011. Numerical Ecology with R. Springer, New York.

    Book  Google Scholar 

  • Brasil, 2012. Medida Provisória no. 571 de 25/05/2012.

  • Brejão, G.L., Gerhard, P. & J. Zuanon, 2013. Functional trophic composition of the ichthyofaunal of forest streams in eastern Brazilian Amazon. Neotropical Ichthyology 11:361-373.

    Article  Google Scholar 

  • Brejão, G.L., Hoeinghaus, D.J., Pérez-Mayorga, M.A., Ferraz, S.F.B. & L. Casatti, 2018. Threshold responses of Amazonian stream fishes to timing and extent of deforestation. Conservation Biology 32:860-871.

    Article  PubMed  Google Scholar 

  • Brito, J.G., Roque, F.O., Martins, R.T., Hamada, N., Nessimian, J.L., Oliveira, V.C., Hughes, R.M., Paula, F.R. & S.F.B. Ferraz, 2020. Small forest losses degrade stream macroinvertebrate assemblages in the eastern Brazilian Amazon. Biological Conservation 241:108263.

    Article  Google Scholar 

  • Burnham, K.P. & D.R. Anderson, 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York.

    Google Scholar 

  • Cadol, D. & E. Wohl, 2010. Wood retention and transport in tropical, headwater streams, La Selva Biological station, Costa Rica. Geomorphology 123:61-73.

    Article  Google Scholar 

  • Casatti, L., Ferreira, C.P. & F.R. Carvalho, 2009. Grass-dominated stream sites exhibit low fish species diversity and dominance by guppies: an assessment of two tropical pasture river basins. Hydrobiologia 632, 273–283.

    Article  Google Scholar 

  • Casatti, L., Perez-Mayorga, M.A., Carvalho, F.R., Brejão, G. & I.D. Costa, 2013. The stream fish fauna from the Rio Machado basin, Rondônia state, Brazil. Check List 9:1496-1504.

    Article  Google Scholar 

  • Casatti, L., Teresa, F.B., Zeni, J.O., Ribeiro, M.D., Brejão, G.L. & M. Ceneviva-Bastos, 2015. More of the same: high functional redundancy in stream fish assemblages from tropical agroecosystems. Environmental Management 55:1300-1314.

    Article  PubMed  Google Scholar 

  • Casatti, L., Brejão, G., Carvalho, F.R., Silva, H.P., Perez-Mayorga, M.A., Manzotti, A.R., Zeni, J.O., Ramires, B.M.S. & F. Langeani, 2020. Stream fish from recently deforested basins in the Meridional Amazon, Mato Grosso, Brazil. Biota Neotropica 20:e20190744

    Article  Google Scholar 

  • Castello, L., McGrath, D.G., Hess, L.L., Coe, M.T., Lefebvre, P.A., Petry, P., Macedo, M.N., Renó, V.F. & C.C. Arantes, 2013. The vulnerability of Amazon freshwater ecosystems. Conservation Letters 6:217–229.

    Article  Google Scholar 

  • Chazdon, R.L. 2014. Second Growth: the promise of tropical forest regeneration in an age of deforestation. The University of Chicago Press, Chicago.

    Book  Google Scholar 

  • Chen, K., Hughes, R.M., Brito, J.G., Leal, C.G., Leitão, R.P., de Oliveira-Júnior, J.M.B., de Oliveira, V.C., Dias-Silva, K., Ferraz, S.F.B., Ferreira, J., Hamada, N., Juen, L., Nessimian, J., Pompeu, P.S, & J. Zuanon, 2017. A multi-assemblage, multi-metric biological condition index for eastern Amazon streams. Ecological Indicators 78:48-61.

    Article  Google Scholar 

  • Davies-Colley, R. J. 1997. Stream channels are narrower in pasture than in forest. New Zealand Journal of Marine and Freshwater Research 31:599-608.

    Article  Google Scholar 

  • de Carvalho, D.R., de Castro, D.M.P., Callisto, M., Moreira, M.Z. & P. S. Pompeu, 2017. The trophic structure of fish communities from streams in the Brazilian Cerrado under different land uses: an approach using stable isotopes. Hydrobiologia 795:199-217.

    Article  Google Scholar 

  • de Carvalho, D.R., de Castro, D.M.P., Callisto, M., de Moura Chaves, A.J., Moreira, M.Z. & P.S. Pompeu, 2019. Stable isotopes and stomach content analyses indicate omnivorous habits and opportunistic feeding behavior of an invasive fish. Aquatic Ecology 53:365-381.

    Article  Google Scholar 

  • De Faria, B.L., Brando, P.M., Macedo, M.N., Panday, P.K., Soares-Filho, B.S. & M.T. Coe, 2017. Current and future patterns of fire-induced forest degradation in Amazonia. Environmental Research Letters 12:095005.

    Article  Google Scholar 

  • FAO - Food and Agriculture Organization of the United Nations. 2016. Global Forest Resources Assessment 2015. How are the world’s forests changing? FAO, Rome.

    Google Scholar 

  • Fearnside, P.M. 1996. Amazonian deforestation and global warming: carbon stocks in vegetation replacing Brazil’s Amazon forest. Forest Ecology and Management 80:21-34.

    Article  Google Scholar 

  • Ferraz, S.F.B., Vettorazzi, C.A., Theobald, D.M. & M.V.R. Ballester, 2005. Landscape dynamics of Amazonian deforestation between 1984 and 2002 in central Rondônia, Brazil: assessment and future scenarios. Forest Ecology and Management 204:67-83.

    Google Scholar 

  • Ferreira, A., Paula, F.R., Ferraz, S.F.B., Gerhard, P., Kashiwaqui, E.A.L., Cyrino, J.E.P. & L.A. Martinelli, 2012. Riparian coverage affects diets of characids in neotropical streams. Ecology of Freshwater Fish 21:12–22.

    Article  Google Scholar 

  • Ferreira, J.N., Aragão, L.E.O.C., Barlow, J., Barreto, P., Berenguer, E., Bustamante, M., Gardner, T.A., Lees, A.C., Lima, A., Louzada, J.N.C., Pardini, R., Parry, L., Peres, C.A., Pompeu, P.S., Tabarelli, M. & J. Zuanon, 2014. Brazil’s environmental leadership at risk. Science 346:706-707.

    Article  CAS  PubMed  Google Scholar 

  • Gardner, T.A., Ferreira, J., Barlow, J., Less, A. et al. 2013. A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network. Philosophical Transactions of the Royal Society B: Biological Sciences 368:20120166.

    Article  Google Scholar 

  • Gerhard, P. & L.M. Verdade, 2016. Stream fish diversity in an agricultural landscape of southeastern Brazil. In: Gheler-Costa, C., Lyra-Jorge, M.C., Verdade, L.M. (eds), Biodiversity in Agricultural Landscapes of Southeastern Brazil. De Gruyter, Berlin.

  • Gregory, S.V., Swanson, F.J., McKee, W.A. & K. Cummins, 1991. An ecosystem perspective of riparian zones. BioScience 41:540-551

    Article  Google Scholar 

  • Guariguata, M.R., & R. Ostertag, 2001. Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management 148:185-206.

    Article  Google Scholar 

  • Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O. & J.R.G. Townshend, 2013. High-resolution global maps of 21st-century forest cover change. Science 342:850-853.

    Article  CAS  PubMed  Google Scholar 

  • Harding, J.S., Benfield, E.F., Bolstad, P.V., Helfman, G.S. & E.B.D. Jones III, 1998. Stream biodiversity: the ghost of land use past. Proceedings of the National Academy of Sciences of the United States of America 95:14843-14847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herlihy, A.T., Sifneos, J.C., Hughes, R.M., Peck, D.V. & R.M. Mitchell, 2020. Relation of lotic fish and benthic macroinvertebrate condition indices to environmental factors across the conterminous USA. Ecological Indicators 112:105958.

    Article  Google Scholar 

  • Hortal, J., de Bello, F., Diniz-Filho, J. A. F., Lewinsohn, T. M., Lobo, J. M., & Ladle, R. J. 2015. Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics 46(1):523–549.

    Article  Google Scholar 

  • Hothorn, T., Bretz, F. & P. Westfall, 2008. Simultaneous inference in general parametric models. Biometrical Journal 50:346-363.

    Article  PubMed  Google Scholar 

  • Houghton, R.A., Skole, D.L., Nobre, C.A., Hackler, J.L., Lawrence, K.T. & W.H. Chomentowski, 2000. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature 403:301-304.

    Article  CAS  PubMed  Google Scholar 

  • Hughes, R.M. & D.V. Peck, 2008. Acquiring data for large aquatic resource surveys: the art of compromise among science, logistics, and reality. Journal of the North American Benthological Society 27:837-859.

    Article  Google Scholar 

  • Hughes, R.M., Infante, D.M., Wang, L., Chen, K. & B.F. Terra, editors. 2019. Advances in understanding landscape influences on freshwater habitats and biological assemblages. American Fisheries Society, Symposium 90, Bethesda, Maryland.

  • Ilha, P., Schiesari, L., Yanagawa, F.I., Jankowski, K. & C.A. Navas, 2018. Deforestation and stream warming affect body size of Amazonian fishes. PloS ONE 13:e0196560.

    Article  PubMed  PubMed Central  Google Scholar 

  • INPE – Instituto Nacional de Pesquisas Espaciais, 2019. http://terrabrasilis.dpi.inpe.br/app/dashboard/deforestation/biomes/legal_amazon/rates (accessed 15 December 2019)

  • Iwata, T., Nakano, S. & M. Inoue, 2003. Impacts of past riparian deforestation on stream communities in a tropical rain forest in Borneo. Ecological Applications 13:461–473.

    Article  Google Scholar 

  • Jakovac, C.C., Penã-Claros, M., Kuyper, T.W. & F. Bongers, 2015. Loss of secondary-forest resilience by land-use intensification in the Amazon. Journal of Ecology 103:67-77.

    Article  Google Scholar 

  • Jensen, J.R. 2000. Remote sensing of the environment: an earth resource perspective. Prentice Hall, Upper Saddle River.

    Google Scholar 

  • Junk, W.J., Soares, M.G.M. & P.B. Bayley, 2007. Freshwater fishes of the Amazon River basin: their biodiversity, fisheries, and habitats. Aquatic Ecosystem Health & Management 10:153–173.

    Article  Google Scholar 

  • Kaufmann, P.R., Levine, P., Robison, E.G., Seeliger, C. & D.V. Peck, 1999. Quantifying physical habitat in wadeable streams. EPA/620/R-99/003. U.S. Environmental Protection Agency, Washington, DC.

  • Kaylor, M.J. & D.R. Warren, 2017. Linking riparian shade and the legacies of forest management to fish and vertebrate biomass in forested streams. Ecosphere 8(6):e01845.

    Article  Google Scholar 

  • Kiffney, P.M. & J.S. Richardson, 2010. Organic matter inputs into headwater streams of southwestern British Columbia as a function of riparian reserves and time since harvesting. Forest Ecology and Management 260:1931-1942.

    Article  Google Scholar 

  • Kominoski, J.S., Shah, J.J.F., Canhoto, C., Fischer, D.G., Giling, D.P., González, E., Griffiths, N.A., Larrañaga, A., LeRoy, C.J., Mineau, M.M., McElarney, Y.R., Shirley, S.M., Swan, C.M. & S.D. Tiegs, 2013. Forecasting functional implications of global changes in riparian plant communities. Frontiers in Ecology and the Environment 11:423-432.

    Article  Google Scholar 

  • Laurance, W.F. 2006. Fragments and fire: alarming synergisms among forest disturbance, local climate change, and burning in the Amazon. In: Laurance WF, Peres CA (eds). Emerging Threats to Tropical Forests. The University of Chicago Press, Chicago.

  • Laurance, W.F., J. Sayer, & K.G. Cassman, 2014. Agricultural expansion and its impacts on tropical nature. Trends in Ecology and Evolution 29:107-116.

    Article  PubMed  Google Scholar 

  • Leal, C.G., Pompeu, P.S., Gardner, T.A., Leitão, R.P., Hughes, R.M., Kaufmann, P.R., Zuanon, J., Paula, F.R., Ferraz, S.F.B., Thomson, J.R., MacNally, R., Ferreira, J. & J. Barlow, 2016. Multi-scale assessment of human-induced changes to Amazonian instream habitats. Landscape Ecology 31:1725-1745.

    Article  Google Scholar 

  • Leal, C.G., Barlow, J., Gardner, T.A., Hughes, R.M., Leitão, R.P., MacNally, R., Kaufmann, P.R., Ferraz, S.F.B., Zuanon, J., Paula, F.R., Ferreira, J., Thomson, J.R., Lennox, G.D., Dary, E.P., Ropke, C.P. & P.S. Pompeu, 2018. Is environmental legislation conserving tropical stream faunas? A large-scale assessment of local, riparian and catchment-scale influences on Amazonian fish. Journal of Applied Ecology 55:1312-1326.

    Article  PubMed  Google Scholar 

  • Leitão, R.P., Zuanon, J., Mouillot, D., Leal, C.G., Hughes, R.M., Kaufmann, P.R., Villéger, S., Pompeu, P.S., Kasper, D., Paula, F.R., Ferraz, S.F.B. & T. Gardner, 2018. Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. Ecography 41:219-232.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lennox, G.D., Gardner, T.A., Thomson, J.R., Ferreira, J., Berenguer, E., Lees, A.C., Nally, R.M., Aragão, L.E.O.C., Ferraz, S.F.B., Louzada, J., Moura, N.G., Oliveria, V.H.F., Pardini, R., Solar, R.R.C., Mello, F.Z.V., Vieira, I.C.G. & J. Barlow, 2018. Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests. Global Change Biology 24:5680-5694.

    Article  PubMed  Google Scholar 

  • Levis, C., Flores, B.M., Mazzochini, G.G., Maranhães, A.P., Campos-Silva, J.V., Amorim, P.B., Peroni, N., Hirota, M. & C.R. Clement, 2020. Help restore Brazil’s governance of globally important ecosystem services. Nature Ecology & Evolution 4:172-173.

    Article  Google Scholar 

  • Liébault, F., Gomez, B., Page, M., Marden, M., Peacock, D., Richard, D. & C.M. Trotter, 2005. Land-use change, sediment production and channel response in upland regions. River Research and Applications 21:739–756.

    Article  Google Scholar 

  • Lujan, N.K., German, D.P. & K.O. Winemiller, 2011. Do wood-grazing fishes partition their niche?: morphological and isotopic evidence for trophic segregation in Neotropical Loricariidae. Functional Ecology 25:1327-1338.

    Article  Google Scholar 

  • Maire, E., Grenouillet, G., Brosse, S. & S.Villéger. 2015. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Global Ecology and Biogeography 24:728–740.

    Article  Google Scholar 

  • Malhi, Y. & J. Wright, 2004. Spatial patterns and recent trends in the climate of tropical rainforest regions. Philosophical Transactions of the Royal Society of London B 359:311-329.

    Article  Google Scholar 

  • MapBiomas. Brazilian Annual Land Use and Land Cover Mapping Project. http://mapbiomas.org. Accessed in 15 January 2020.

  • Marengo, J.A., Tomasella, J., Alves, L.M., Soares, W.R. & D.A. Rodriguez, 2011. The drought of 2010 in the context of historical droughts in the Amazon region. Geophysical Research Letters 38:L12703.

    Article  Google Scholar 

  • McBride, M., Hession, W.C. & D.M. Rizzo, 2010. Riparian reforestation and channel change: how long does it take? Geomorphology 116:330-340.

    Article  Google Scholar 

  • Moraes, J.M., Schüller, A.E., Dunne, T., Figueiredo, R.O. & R.L. Victoria, 2006. Water storage and runoff processes in Plinthic soils under forest and pasture in Eastern Amazonia. Hydrological Processes 20:2509-2526.

    Article  Google Scholar 

  • Mouillot, D., Graham, N.A.J., Villéger, S., Mason, N.W.H. & D.R. Bellwood. 2013. A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution 28, 167–177.

    Article  Google Scholar 

  • Mukul, S. A., Herbohn, J. & J. Finn, 2016. Tropical secondary forests regenerating after shifting cultivation in the Philippines uplands are important carbon sinks. Scientific Reports 6:22483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naiman, R.J. & H. Décamps, 1997. The ecology of interfaces: riparian zones. Annual Review of Ecology and Systematics 28:621-658.

    Article  Google Scholar 

  • Nepstad, D.C., Uhl, C. & E.A.S. Serrão, 1991. Recuperation of a degraded Amazonian landscape: Forest recovery and agricultural restoration. Ambio 20:248–255.

    Google Scholar 

  • Nunes, S.S., Barlow, J., Gardner, T.A., Siqueira, J.V., Sales, M.R. & C.M. Souza Jr., 2015. A 22 year assessment of deforestation and restoration in riparian forests in the eastern Brazilian Amazon. Environmental Conservation 42:193-203.

    Article  Google Scholar 

  • Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E. & H. Wagner, 2017. vegan: Community Ecology Package. R package version 2.4-3. https://CRAN.R-project.org/package=vegan

  • Paula, F.R. 2018. Riparian forest management and regeneration: effects on forest structure and stream ecological processes in streams of eastern Amazon, Brazil. Doctoral Thesis. University of British Columbia.

  • Paula, F.R., Ferraz, S.F.B., Gerhard, P., Vettorazzi, C.A. & A. Ferreira, 2011. Large woody debris input and its influence on channel structure in agricultural lands of Southeast Brazil. Environmental Management 48:750-763.

    Article  PubMed  Google Scholar 

  • Paula, F.R., Gerhard, P., Ferraz, S.F.B. & S.J. Wenger, 2018. Multi-scale assessment of forest cover in an agricultural landscape of Southeastern Brazil: implications for management and conservation of stream habitat and water quality. Ecological Indicators 85:1181-1191.

    Article  CAS  Google Scholar 

  • Peck, D.V., Herlihy, A.T., Hill, B.H., Hughes, R.M., Kaufmann, P.R., Klemm, D.J., Lazorchak, J. M., McCormick, F. H., Peterson, S.A., Ringold, P.L., Mageeand, T. & M.R. Cappaert, 2006. Environmental Monitoring and Assessment Program-Surface Waters: Western Pilot Study field operations manual for wadeable streams. EPA/620/R-06/003. USEPA. Washington, DC.

  • Poorter, L., Bongers, F., Aide,T. M., Almeyda Zambrano, A. M., Balvanera, P., Becknell, J. M., Boukili, V., Brancalion, P. H. S., Broadbent, E. N., Chazdon, R. L., Craven, D., de Almeida-Cortez, J. S., Cabral, G. A. L., de Jong, B. H. J., Denslow, J. S., Dent, D. H., DeWalt, S. J., Dupuy, J. M., Durán, S. M., Espírito-Santo, M. M., Fandino, M. C., César, R. G., Hall, J. S., Hernandez-Stefanoni, J. L., Jakovac, C. C., Junqueira, A. B., Kennard, D., Letcher, S. G., Licona, J. C., Lohbeck, M., Marín-Spiotta, E., Martínez-Ramos, M., Massoca, P., Meave, J. A., Mesquita, R., Mora, F., Muñoz, R., Muscarella, R., Nunes, Y. R. F., Ochoa-Gaona, S., de Oliveira, A. A., Orihuela-Belmonte, E., Peña-Claros, M., Pérez-García, E. A., Piotto, D., Powers, J. S., Rodríguez-Velázquez, J. Romero-Pérez, I. E., Ruíz, J., Saldarriaga, J. G., Sanchez-Azofeifa, A., Schwartz, N. B., Steininger, M. K., Swenson, N. G., Toledo, M., Uriarte, M., van Breugel, M., van der Wal, H., Veloso, M. D. M., Vester, H. F. M., Vicentini, A., Vieira, I. C. G., Bentos, T. V., Williamson, G. B. & D. M. A. Rozendaal, 2016. Biomass resilience of Neotropical secondary forests. Nature 530:211–214.

    Article  CAS  PubMed  Google Scholar 

  • Power, M.E. 2003. Life cycles, limiting factors, and behavioral ecology of four Loricariid catfishes in a Panamanian stream. In: Arratia, G., Kapoor, B.G., Chardon, M., Diogo, R. (Eds), Catfishes. Science Publishers, Enfield.

  • Quinn, G.P. & M.J. Keough, 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • R Development Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Richardson, J.S. & R.J. Danehy, 2007. A synthesis of the ecology of headwater streams and their riparian zones in temperate forests. Forest Science 53:131-147.

    Google Scholar 

  • Richmond, A.D. & K.D. Fausch, 1995. Characteristics and function of large woody debris in subalpine Rocky Mountain streams in northern Colorado. Canadian Journal of Fisheries and Aquatic Sciences 52:1789–1802.

    Article  Google Scholar 

  • Rocha, G.P.E., Vieira, D.L.M. & M.F. Simon, 2016. Fast natural regeneration in abandoned pastures in southern Amazonia. Forest Ecology and Management 370:93-101.

    Article  Google Scholar 

  • Rosenfeld, J.S. & L. Huato, 2003. Relationship between large woody debris characteristics and pool formation in small coastal British Columbia streams. North American Journal of Fish Management 23:928-938.

    Article  Google Scholar 

  • Rozendaal D.M.A., Bongers, F., Aide, T.M.,Alvarez-Dávila, E., Ascarrunz, N., Balvanera, P., Becknell, J.M., Bentos, T.V., Brancalion, P.H.S., Cabral, G.A.L., Calvo-Rodriguez, S., Chave, Jerome., César, R.G., Chazdon, R.L., Condit, R., Dallinga, J.S., de Almeida-Cortez, J.S., de Jong, B., de Oliveira, A., Denslow, J.S., Dent, D.H., DeWalt, S.J., Dupuy, J.M.,Durán, S.M., Dutrieux, L.P., Espírito-Santo, M.M., Fandino, M.C., Fernandes, G.W., Finegan, B.,García, H., Gonzalez, N., Moser, V.G., Hall, J.S. Hernández-Stefanoni, J.L., Hubbell, S., Jakovac, C.C., Hernández, A.J., Junqueira, A.B., Kennard, D., Larpin, D.,Letcher, S.G., Licona, J.C., Lebrija-Trejos, E., Marín-Spiotta, E., Martínez-Ramos, M., Massoca, P.E.S., Meave, J.A., Mesquita, R.C.G., Mora, F., Müller,S.C., Muñoz, R., de Oliveira Neto, S.N., Norden,N., Nunes,Y.R.F., Ochoa-Gaona, S., Ortiz-Malavassi, E., Ostertag, R.,Peña-Claros, M., Pérez-García, E.A., Piotto, D., Powers, J.S., Aguilar-Cano, J., Rodriguez-Buritica ,S., Rodríguez-Velázquez, J., Romero-Romero, M.A., Ruíz, J., Sanchez-Azofeifa, A., de Almeida, A.S., Silver, W.L.,Schwartz, N.B., Thomas,W.W., Toledo, M., Uriarte, M., de Sá Sampaio, E.V., van Breugel, M., van der Wal, H., Martins43, S.V., Veloso, M.D.M., Vester, H.F.M., Vicentini, A., Vieira, I.C.G. Villa, P., Williamson, G.B., Zanini, K.J., Zimmerman, J. & L. Poorter, 2019. Biodiversity recovery of Neotropical secondary forests. Science Advances 5:eaau3114.

  • Soares-Filho, B., Rajão, R., Macedo, M., Carneiro, A., Costa, W., Coe, M., Rodrigues, H. & A. Alencar, 2014. Cracking Brazil’s Forest Code. Science 344:363-364.

    Article  CAS  PubMed  Google Scholar 

  • Tank, J.L., Rosi-Marshall, E.J., Griffiths, N.A., Entrekin, S.A. & M.L. Stephen, 2010. A review of allochthonous organic matter dynamics and metabolism in streams. Journal of the North American Benthological Society 29:118-146.

    Article  Google Scholar 

  • Teresa, F. B. & L. Casatti, 2012. Influence of forest cover and mesohabitats types on functional and taxonomic diversity of fish communities in Neotropical lowland streams. Ecology of Freshwater Fish 21:433–442.

    Article  Google Scholar 

  • Uhl, C., Buschbacher, R. & E.A.S. Serrão, 1988. Abandoned pastures in eastern Amazonia. I. Patterns of plant succession. Journal of Ecology 76:663-681.

    Article  Google Scholar 

  • USEPA - U.S. Environmental Protection Agency, 2016. National Rivers and Streams Assessment 2008–2009: a collaborative survey. EPA/841/R-16/007. Office of Water and Office of Research and Development. Washington, DC. Available at: http://www.epa.gov/national‐aquatic‐resource‐surveys/nrsa

  • Villéger, S., Mason, N.W.H. & D. Mouillot. 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301.

    Article  PubMed  Google Scholar 

  • Wang, L., Seelbach, P.W. & R. M. Hughes, 2006. Introduction to influences of landscape on stream habitat and biological assemblages. In R.M. Hughes, L. Wang, and P.W. Seelbach (eds). Landscape Influences on Stream Habitat and Biological Assemblages. American Fisheries Society, Symposium 48:1–23.

  • Warren, D.R., Kraft, C.E., Keeton, W.S., Nunery, J.S. & G.E. Likens, 2009. Dynamics of wood recruitment in streams of the northeastern US. Forest Ecology and Management 258:804-813.

    Article  Google Scholar 

  • Warren, D.R., Keeton, W.S., Kiffney, P.M., Kaylor, M.J., Bechtold, H.A. & J. Magee, 2016. Changing forests – changing streams: riparian forest stand development and ecosystem function in temperate headwaters. Ecosphere 7:e01435.https://doi.org/10.1002/ecs2.1435

    Article  Google Scholar 

  • Wasserstein, R.L., Schirm, A.L. & N.A. Lazar, 2019. Moving to a world beyond “p<0.05”. The American Statistician 73:1-19.

    Article  Google Scholar 

  • Wright, J.P. & A.S. Flecker, 2004. Deforesting the riverscape: the effects of wood on fish diversity in a Venezuelan piedmont stream. Biological Conservation 120:439–447

    Article  Google Scholar 

  • Yeung, A.C.Y., Lecerf, A. & J.S. Richardson, 2017. Assessing the long-term ecological effects of riparian management practices on headwater streams in a coastal temperate rainforest. Forest Ecology and Management 384:100-109.

    Article  Google Scholar 

  • Zarin, D.J., Davidson, E.A., Brondizio, E., Vieira, I.C.G., Sá, T., Feldpausch, T., Schuur, E.A.G., Mesquita, R., Moran, E., Delamonica, P., Ducey, M.J., Hurtt, G.C., Salimon, C. & M. Denich, 2005. Legacy of fire slows carbon accumulation in Amazonian forest regrowth. Frontiers in Ecology and the Environment 3:365-369.

    Article  Google Scholar 

  • Zeni, J.O., Pérez-Mayorga, M.A., Roa-Fuentes, C.A., Brejão, G.L. & L. Casatti, 2019. How deforestation drives stream habitat changes and the functional structure of fish assemblages in different tropical regions. Aquatic Conservation: Marine and Freshwater Ecosystems 29:1238-1252.

    Article  Google Scholar 

Download references

Acknowledgements

This is contribution # 77 of the Rede Amazônia Sustentável publication series. We thank D. Bastos, D. Carvalho, R. Duarte, T. Franco, L. Juen, K. Silva, V. Campos, J. Brito, J. M. Oliveira-Junior, M. Silva, L. Brasil, L. Silva, M. Nascimento, R. Freitas, and M. Oliveira for their assistance with field work. We also thank the workers unions and all collaborating private landowners and Paragominas for their support. N. Rabelo and S. Cunha helped with ecomorphological analyses.

Funding

This work was financially supported by: Instituto Nacional de Ciência e Tecnologia—Biodiversidade e Uso da Terra na Amazonia (574008/2008-0), Empresa Brasileira de Pesquisa Agropecuária (02.08.06.005.00), the United Kingdom government Darwin Initiative (17-023), The Nature Conservancy, Natural Environment Research Council (NE/F01614X/1, NE/G000816/1), Fundação de Amparo à Pesquisa do Estado do Amazonas (062.00202/2013), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (482209/2010-0). Individual funding included scholarships from Fundação de Amparo à Pesquisa do Estado de São Paulo (Grant 2018/12341-0) to FRP; scholarships from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (2943-13-1, PDSE 2943/13-1), Programa de Capacitação Institucional CNPq/MCTI/MPEG (300231/2016–4), and Fundação de Amparo à Pesquisa do Estado de São Paulo (Grant 2017/25383-0) to CGL; Conselho Nacional de Desenvolvimento Científico e Tecnológico (156915/2011-1, 436007/2018-5), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (PDSE 1914-13-8), and Companhia Energética de Minas Gerais (P&D ANELL/CEMIG GT-599) to RPL; productivity grant from Conselho Nacional de Desenvolvimento Científico e Tecnológico (307464/2009-1) to JZ; productivity grant from Conselho Nacional de Desenvolvimento Científico e Tecnológico (304002/2014-3) and researcher grant from Fundação de Amparo à Pesquisa do Estado de Minas Gerais (PPM-00608/15) to PSP; and a Fulbright Brasil and Amnis Opes Institute grant to RMH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Rossetti de Paula.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: David J. Hoeinghaus, Jaquelini O. Zeni, Gabriel L. Brejão, Rafael P. Leitão & Renata G. Frederico / Neotropical Stream Fish Ecology in a Changing Landscape.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 235 kb)

Supplementary material 2 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Paula, F.R., Leal, C.G., Leitão, R.P. et al. The role of secondary riparian forests for conserving fish assemblages in eastern Amazon streams. Hydrobiologia 849, 4529–4546 (2022). https://doi.org/10.1007/s10750-020-04507-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04507-4

Keywords

Navigation