Skip to main content

Rapid assessment of Dreissena population in Lake Erie using underwater videography

Abstract

Dreissenid bivalves (Dreissena polymorpha and D. rostriformis bugensis) are considered the most aggressive freshwater invaders inflicting profound ecological and economic impacts on the waterbodies that they colonize. Severity of these impacts depends on dreissenid population sizes which vary dramatically across space and time. We developed a novel method that analyzes video recorded using a Benthic Imaging System (BIS) in near real-time to assess dreissenid distribution and density across large waterbodies and tested it on Lake Erie. Lake Erie basins differ dramatically in morphometry, turbidity, and productivity, as well as in Dreissena distribution, density, and length-frequency distribution, providing an excellent model to test the applicability of our method across large and dynamic environmental gradients. Results of rapid assessment were subsequently compared with dreissenid density obtained from Ponar grab samples collected at the same sites. In the eastern and central basins, the differences in basin-wide density estimations from BIS and Ponar were 3% and 23%, respectively. In the western basin, this method had limited application due to high turbidity and abundance of small (< 10 mm length) mussels. By substantially reducing the time required to assess dreissenids across large areas, rapid assessment could be a useful and cost-effective addition for monitoring their populations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ackerman, J. D., M. R. Loewen & P. F. Hamblin, 2001. Benthic–pelagic coupling over a zebra mussel reef in western Lake Erie. Limnology and Oceanography 46: 892–904.

    Article  Google Scholar 

  2. Angradi, T. R., 2018. A field observation of rotational feeding by Neogobius melanostomus. Fishes. 3(1): 5.

    Article  Google Scholar 

  3. Babarro, J. M. F. & E. Carrington, 2013. Attachment strength of the mussel Mytilus galloprovincialis: effect of habitat and body size. Journal of Experimental Marine Biology and Ecology 443: 188–196.

    Article  Google Scholar 

  4. Barbiero, R. P. & M. L. Tuchman, 2004. Long-term dreissenid impacts on water clarity in Lake Erie. Journal of Great Lakes Research 30: 557–565.

    Article  Google Scholar 

  5. Barbiero, R., B. M. Lesht, G. J. Warren, L. G. Rudstam, J. M. Watkins, E. D. Reavie, K. E. Kovalenko & A. Y. Karatayev, 2018. A comparative examination of recent changes in nutrients and lower food web structure in Lake Michigan and Lake Huron. Journal of Great Lakes Research 44: 573–589.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Bocaniov, S. A. & D. Scavia, 2016. Temporal and spatial dynamics of large lake hypoxia: integrating statistical and three-dimensional dynamic models to enhance lake management criteria. Water Resources Research 52: 4247–4263.

    CAS  Article  Google Scholar 

  7. Boyce, F. M., F. Chiocchio, B. Eid, F. Penicka & F. Rosa, 1980. Hypolimnion flow between the central and eastern basins of Lake Erie during 1977 (inter-basin hypolimnion flows). Journal of Great Lakes Research 6: 290–306.

    Article  Google Scholar 

  8. Bridgeman, T. B., D. W. Schloesser & A. E. Krause, 2006. Recruitment of Hexagenia mayfly nymphs in western Lake Erie linked to environmental variability. Ecological Applications 16: 601–611.

    PubMed  Article  PubMed Central  Google Scholar 

  9. Bunnell, D. B., R. P. Barbiero, S. A. Ludsin, C. P. Madenjian, G. J. Warren, D. M. Dolan, T. O. Brenden, R. Briland, O. T. Gorman, Ji X. He, T. H. Johengen, B. F. Lantry, B. M. Lesht, T. F. Nalepa, S. C. Riley, C. M. Riseng, T. J. Treska, I. Tsehaye, M. G. Walsh, D. M. Warner & B. C. Weidel, 2014. Changing ecosystem dynamics in the Laurentian Great Lakes: bottom-up and top-down regulation. BioScience 64: 26–39.

    Article  Google Scholar 

  10. Burlakova, L. E., R. P. Barbiero, A. Y. Karatayev, S. E. Daniel, E. K. Hinchey & G. J. Warren, 2018. The benthic community of the Laurentian Great Lakes: analysis of spatial gradients and temporal trends from 1998 to 2014. Journal of Great Lakes Research 44: 600–617.

    PubMed  PubMed Central  Article  Google Scholar 

  11. Burlakova L. E., A. Y. Karatayev, E. K. Hinchey, K. Mehler, S. E. Daniel, A. Hrycik & J. Nestlerode. In preparation. Exploring Great Lakes benthoscapes: can we visually delineate freshwater benthic communities?

  12. Conroy, J. D., D. D. Kane, D. M. Dolan, W. J. Edwards, M. N. Charlton & D. A. Culver, 2005. Temporal trends in Lake Erie plankton biomass: roles of external phosphorus loading and dreissenid mussels. Journal of Great Lakes Research 31(Suppl. 2): 89–110.

    CAS  Article  Google Scholar 

  13. Custer, C. M. & T. W. Custer, 1997. Occurrence of zebra mussels in nearshore areas of western Lake Erie. Journal of Great Lakes Research 23: 108–115.

    CAS  Article  Google Scholar 

  14. Daloğlu, I., K. H. Cho & D. Scavia, 2012. Evaluating causes of trends in long-term dissolved reactive phosphorus loads to Lake Erie. Environmental Science & Technology 46(19): 10660–10666.

    Article  CAS  Google Scholar 

  15. Demott, R. & J. Dow, 2008. Changing benthic fauna of Lake Erie between 1993 and 1998. In Munawar, M. & R. Heath (eds), Checking the Pulse of Lake Erie. Goodwords Books, New Delhi: 409–438.

    Google Scholar 

  16. Diaz, R. J., G. R. Cutter Jr. & K. W. Able, 2003. The importance of physical and biogenic structure to juvenile fishes on the shallow inner continental shelf. Estuaries 26: 12–20.

    Article  Google Scholar 

  17. Egg, L., J. Pander, M. Mueller & J. Geist, 2018. Comparison of sonar-, camera- and net-based methods in detecting riverine fish-movement patterns. Marine and Freshwater Research 69: 1905–1912.

    Article  Google Scholar 

  18. Fahnenstiel, G., S. Pothoven, T. Nalepa, H. Vanderploeg, D. Klarer & D. Scavia, 2010. Recent changes in primary production in the offshore region of southeastern Lake Michigan. Journal of Great Lakes Research 36(Suppl. 3): 20–29.

    Article  Google Scholar 

  19. Ferrari, R., E. M. Marzinelli, C. R. Ayroza, A. Jordan, W. F. Figueira, M. Byrne, H. A. Malcolm, S. B. Williams & P. D. Steinberg, 2018. Large-scale assessment of benthic communities across multiple marine protected areas using an autonomous underwater vehicle. PLoS ONE. https://doi.org/10.1371/journal.pone.0193711.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gascoigne, J. C., H. A. Beadman, C. Saurel & M. J. Kaiser, 2005. Density dependence, spatial scale and patterning in sessile biota. Oecologia 145: 371–381.

    PubMed  Article  PubMed Central  Google Scholar 

  21. Higgins, S. N. & M. J. Vander Zanden, 2010. What a difference a species makes: a meta-analysis of dreissenid mussel impacts on freshwater ecosystems. Ecological Monographs 80: 179–196.

    Article  Google Scholar 

  22. Hunter, R. D. & K. A. Simons, 2004. Dreissenids in Lake St. Clair in 2001: evidence for population regulation. Journal of Great Lakes Research 30: 528–537.

    Article  Google Scholar 

  23. Jarvis, P., J. Dow, R. Dermott & R. Bonnell, 2000. Zebra (Dreissena polymorpha) and quagga mussel (Dreissena bugensis) distribution and density in Lake Erie, 1992–1998. Canadian Technical Report of Fisheries and Aquatic Sciences 2304: 1–46.

    Google Scholar 

  24. Kannappan, P., J. H. Walker, A. Trembanis & H. G. Tanner, 2014. Identifying sea scallops from benthic camera images. Limnology and Oceanography. https://doi.org/10.4319/lom.2014.12.680.

    Article  Google Scholar 

  25. Karatayev, A. Y., L. E. Burlakova & D. K. Padilla, 1997. The effects of Dreissena polymorpha (Pallas) invasion on aquatic communities in Eastern Europe. Journal of Shellfish Research 16: 187–203.

    Google Scholar 

  26. Karatayev, A. Y., L. E. Burlakova & D. K. Padilla, 1998. Physical factors that limit the distribution and abundance of Dreissena polymorpha (Pall.). Journal of Shellfish Research 17: 1219–1235.

    Google Scholar 

  27. Karatayev, A. Y., L. E. Burlakova & D. K. Padilla, 2002. Impacts of zebra mussels on aquatic communities and their role as ecosystem engineers. In Leppäkoski, E., S. Gollach & S. Olenin (eds), Invasive aquatic species of Europe: distribution, impacts and management. Kluwer Academic Publishers, Dordreicht: 433–446.

    Chapter  Google Scholar 

  28. Karatayev, A. Y., D. K. Padilla, D. Minchin, D. Boltovskoy & L. E. Burlakova, 2007a. Changes in global economies and trade: the potential spread of exotic freshwater bivalves. Biological Invasions 9: 161–180.

    Article  Google Scholar 

  29. Karatayev, A. Y., D. Boltovskoy, D. K. Padilla & L. E. Burlakova, 2007b. The invasive bivalves Dreissena polymorpha and Limnoperna fortunei: parallels, contrasts, potential spread and invasion impacts. Journal of Shellfish Research 26: 205–213.

    Article  Google Scholar 

  30. Karatayev, A. Y., L. E. Burlakova, V. A. Karatayev & D. Boltovskoy, 2010. Limnoperna fortunei vs. Dreissena polymorpha: population densities and benthic community impacts of two invasive freshwater bivalves. Journal of Shellfish Research 29: 975–985.

    Article  Google Scholar 

  31. Karatayev, A. Y., L. E. Burlakova, C. Pennuto, J. Ciborowski, V. A. Karatayev, P. Juette & M. Clapsadl, 2014. Twenty five years of changes in Dreissena spp. populations in Lake Erie. Journal of Great Lakes Research 40: 550–559.

    Article  Google Scholar 

  32. Karatayev, A. Y., L. E. Burlakova & D. K. Padilla, 2015. Zebra versus quagga mussels: a review of their spread, population dynamics, and ecosystem impacts. Hydrobiologia 746: 97–112.

    CAS  Article  Google Scholar 

  33. Karatayev, A. Y., L. E. Burlakova, K. Mehler, E. K. Hinchey & G. Warren, 2018a. Benthic video image analysis facilitates monitoring of Dreissena populations across spatial scales. Journal of Great Lakes Research 44: 629–638.

    PubMed  PubMed Central  Article  Google Scholar 

  34. Karatayev, A. Y., L. E. Burlakova, K. Mehler, R. P. Barbiero, E. K. Hinchey, P. D. Collingsworth, K. E. Kovalenko & G. Warren, 2018b. Life after Dreissena: the decline of exotic suspension feeder may have significant impacts on lake ecosystems. Journal of Great Lakes Research 44: 650–659.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Karatayev, A. Y., L. E. Burlakova, K. Mehler, S. A. Bocaniov, P. D. Collingsworth, G. Warren, R. T. Kraus & E. K. Hinchey, 2018c. Biomonitoring using invasive species in a large lake: Dreissena distribution maps hypoxic zones. Journal of Great Lakes Research 44: 639–649.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Karatayev, A. Y., V. A. Karatayev, L. E. Burlakova, M. D. Rowe, K. Mehler & M. D. Clapsadl, 2018d. Food depletion regulates the demography of invasive dreissenid mussels in a stratified lake. Limnology and Oceanography 63: 2065–2079.

    Article  Google Scholar 

  37. Karatayev, A. Y., L. E. Burlakova, K. Mehler, S. E. Daniel, A. K. Elgin & T. F. Nalepa, 2020. Lake Huron Benthos Survey Cooperative Science and Monitoring Initiative 2017. Technical Report. USEPA-GLRI GL00E02254. Great Lakes Center, SUNY Buffalo State, Buffalo, NY. Available at: https://greatlakescenter.buffalostate.edu/sites/greatlakescenter.buffalostate.edu/files/uploads/Documents/Publications/LakeHuronBenthosSurveyCSMI2017FinalReport.pdf.

  38. Karatayev, A. Y., L. E. Burlakova, K. Mehler, L. G. Rudstam, J. M. Watkins & M. Wick, in press. Dreissena in Lake Ontario 30 years post-invasion. Journal of Great Lakes Research. https://doi.org/10.1016/j.jglr.2020.11.010

  39. Kemp, A. L. W., G. A. MacInnis & N. S. Harper, 1977. Sedimentation rates and a revised sediment budget for Lake Erie. Journal of Great Lakes Research 3: 221–233.

    Article  Google Scholar 

  40. Kraus, R. T., C. T. Knight, T. M. Farmer, A. M. Gorman, P. D. Collingsworth, G. J. Warren, P. M. Kocovsky & J. D. Conroy, 2015. Dynamic hypoxic zones in Lake Erie compress fish habitat, altering vulnerability to fishing gears. Canadian Journal of Fisheries and Aquatic Sciences 72: 797–806.

    CAS  Article  Google Scholar 

  41. Lietz, J. E., J. R. Kelly, J. V. Scharold & P. M. Yurista, 2015. Can a rapid underwater video approach enhance the benthic assessment capability of the national coastal condition assessment in the Great Lakes? Environ. Manage. 55: 1446–1456.

    PubMed  Article  PubMed Central  Google Scholar 

  42. Liu, Q.-X., P. M. J. Herman, W. M. Mooij, J. Huisman, M. Scheffer, H. Olff & J. van de Koppel, 2014. Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems. Nature Communications. https://doi.org/10.1038/ncomms6234.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mehler, K., L. E. Burlakova, A. Y. Karatayev, Z. Biesinger, A. Valle-Levinson, C. Castiglione & D. Gorsky, 2018. Sonar technology and underwater imagery analysis can enhance invasive Dreissena distribution assessment in large rivers. Hydrobiologia 810: 119–131.

    CAS  Article  Google Scholar 

  44. McMahon, R. F. & A. F. Bogan, 2001. Mollusca: bivalvia. In Thorp, J. H. & A. P. Covich (eds), Ecology and classification of North American freshwater invertebrates. Academic Press, New York: 331–430.

    Chapter  Google Scholar 

  45. Mortimer, C. H., 1987. Fifty years of physical investigations and related limnological studies on Lake Erie, 1928–1977. Journal of Great Lakes Research 13: 407–435.

    CAS  Article  Google Scholar 

  46. Nakano, D. & D. Strayer, 2014. Biofouling animals in fresh water: ecology, impacts, and ecological engineering. Frontiers in Ecology and the Environment 12: 167–175.

    Article  Google Scholar 

  47. Nalepa, T. F. & D. W. Schloesser, 1993. Zebra Mussels Biology, Impacts, and Control. Lewis Publishers, Boca Raton.

    Google Scholar 

  48. Nalepa, T. F., D. L. Fanslow & S. A. Pothoven, 2010. Recent changes in density, biomass, recruitment, size structure, and nutritional state of Dreissena populations in southern Lake Michigan. Journal of Great Lakes Research 36: 5–19.

    CAS  Article  Google Scholar 

  49. O’Neill, CR. Jr., 2008. The Silent Invasion: Finding Solutions to Minimize the Impacts of Invasive Quagga Mussels on Water Rates, Water Infrastructure and the Environment. Hearing of the U.S. House of Representatives Committee on Natural Resources–Subcommittee on Water and Power, Washington, DC Available at: http://naturalresources.house.gov/uploadedfiles/oneilltestimony06.24.08.pdf.

  50. Ozersky, T., S. Y. Malkin, D. R. Barton & R. E. Hecky, 2009. Dreissenid phosphorus excretion can sustain C. glomerata growth along a portion of Lake Ontario shoreline. Journal of Great Lakes Research 35: 321–328.

    CAS  Article  Google Scholar 

  51. Ozersky, T., D. R. Barton, D. C. Depew, R. E. Hecky & S. J. Guildford, 2011. Effects of water movement on the distribution of invasive dreissenids mussels in Lake Simcoe, Ontario. Journal of Great Lakes Research 37: 46–54.

    Article  Google Scholar 

  52. Ożgo, M., M. Urbańska, P. Hoos, H. K. Imhof, M. Kirschenstein, J. Mayr, F. Michl, R. Tobiasz, M. von Wesendonk, S. Zimmermann & J. Geist, 2020. Invasive zebra mussel (Dreissena polymorpha) threatens an exceptionally large population of the depressed river mussel (Pseudanodonta complanata) in a postglacial lake. Ecology and Evolution 10: 4918–4927.

    PubMed  PubMed Central  Article  Google Scholar 

  53. Patterson, M. W. R., J. J. H. Ciborowski & D. R. Barton, 2005. The distribution and abundance of Dreissena species (Dreissenidae) in Lake Erie, 2002. Journal of Great Lakes Research 31: 223–237.

    Article  Google Scholar 

  54. Pergl, J., P. Pyšek, F. Essl, J. M. Jeschke, F. Courchamp, J. Geist, M. Hejda, I. Kowarik, A. Mill, C. Musseau, P. Pipek, W. C. Saul, M. von Schmalensee & D. Strayer, 2020. Need for routine tracking of biological invasions. Conservation Biology 34: 1311–1314.

    PubMed  Article  PubMed Central  Google Scholar 

  55. Richards, R. P., D. B. Baker, J. P. Crumrine & A. M. Stearns, 2010. Unusually large loads in 2007 from the Maumee and Sandusky Rivers, tributaries to Lake Erie. Journal of Soil and Water Conservation 65: 450–462.

    Article  Google Scholar 

  56. Rietkerk, M. & J. van de Koppel, 2008. Regular pattern formation in real ecosystems. Trends in Ecology and Evolution 23: 169–175.

    PubMed  Article  PubMed Central  Google Scholar 

  57. Scavia, D., J. D. Allan, K. K. Arend, S. Bartell, D. Beletsky, N. S. Bosch, S. B. Brandt, R. D. Briland, I. Daloglu, J. V. DePinto, D. M. Dolan, M. A. Evans, T. M. Farner, D. Goto, H. Han, T. O. Hook, R. Knight, S. A. Ludsin, D. M. Mason, A. M. Michalak, R. P. Richards, J. J. Roberts, D. K. Rucinski, E. S. Rutherford, D. J. Schwab, T. Sesterhenn, H. Zhang & Y. Zhou, 2014. Assessing and addressing the re-eutrophication of Lake Erie: central basin hypoxia. Journal of Great Lakes Research 40: 226–246.

    CAS  Article  Google Scholar 

  58. Strayer, D. L., B. V. Adamovich, R. Adrian, D. C. Aldridge, C. Balogh, L. E. Burlakova, H. Fried-Petersen, L. G. Tóth, A. L. Hetherington, T. S. Jones, A. Y. Karatayev, J. B. Madill, O. A. Makarevich, J. E. Marsden, A. L. Martel, D. Minchin, T. F. Nalepa, R. Noordhuis, T. J. Robinson, L. G. Rudstam, A. N. Schwalb, D. R. Smith, A. D. Steinman & J. M. Jeschke, 2019. Long-term population dynamics of dreissenid mussels (Dreissena polymorpha and D. rostriformis): a cross-system analysis. Ecosphere. https://doi.org/10.1002/ecs2.2701.

    Article  Google Scholar 

  59. US EPA, 2014. SOP LG100, Standard Operating Procedure for General Shipboard Scientific Operation, Revision 05, March 2014. Great Lakes National Program Office, U.S. Environmental Protection Agency, Chicago, IL.

  60. US EPA, 2015. SOP LG407, Standard Operating Procedure for Benthic Invertebrate Laboratory Analysis, Revision 09, April 2015. Great Lakes National Program Office, U.S. Environmental Protection Agency, Chicago, IL.

  61. US EPA, 2019. SOP LG406, Standard Operating Procedure for Benthic Invertebrate Field Sampling, Revision 13, March 2019. Great Lakes National Program Office, U.S. Environmental Protection Agency, Chicago, IL.

  62. US EPA, 2019. SOP LG410, Standard Operating Procedure for Collection and Processing of Drop-Down Camera Images for Dreissena spp. and round goby (Neogobius melanostomus) monitoring, Revision 0, July 2019. Great Lakes National Program Office, U.S. Environmental Protection Agency, Chicago, IL.

  63. van de Koppel, J., M. Rietkerk, N. Dankers & P. M. J. Herman, 2005. Scale-dependent feedback and regular spatial patterns in young mussel beds. The American Naturalist 165: E66–E77.

    PubMed  Article  PubMed Central  Google Scholar 

  64. van de Koppel, J., J. C. Gascoigne, G. Theraulaz, M. Rietkerk, W. M. Mooij & P. M. J. Herman, 2008. Experimental evidence for spatial self-organization and its emergent effects in mussel bed ecosystems. Science 322: 739–742.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  65. Vanderploeg, H. A., S. A. Ludsin, S. A. Ruberg, T. O. Höök, S. A. Pothoven, S. B. Brandt, G. A. Lang, J. R. Liebig & J. F. Cavaletto, 2009. Hypoxia affects spatial distributions and overlap of pelagic fish, zooplankton, and phytoplankton in Lake Erie. Journal of Experimental Marine Biology and Ecology 381: 92–107.

    Article  Google Scholar 

  66. van der Velde, G., S. Rajagopal & A. bij de Vaate, 2010. The Zebra Mussel in Europe. Backhaus Publishers, Leiden.

    Google Scholar 

  67. Watkins, J. M., R. Dermott, S. J. Lozano, E. L. Mills, L. G. Rudstam & J. V. Scharold, 2007. Evidence for remote effects of dreissenids mussels on the amphipod Diporea: analysis of Lake Ontario benthic surveys, 1997-2003. Journal of Great Lakes Research 33: 642–657.

    Article  Google Scholar 

  68. Wick, M., T. R. Angradi, M. Pawlowski, D. Bolgrien, R. Debbout, J. Launspach & M. Nord, 2020. Deep Lake Explorer: a web application for crowdsourcing the classification of benthic underwater video from the Laurentian Great Lakes. Journal of Great Lakes Research 46: 1469–1478.

    PubMed  Article  PubMed Central  Google Scholar 

  69. Williams, A., F. Althaus & T. A. Schlacher, 2015. Towed camera imagery and benthic sled catches provide different views of seamount benthic diversity. Limnology and Oceanography 13: 62–73.

    Google Scholar 

Download references

Acknowledgments

This study was funded by US EPA through the Great Lakes Restoration Initiative under Prime Agreement with Cornell University, Department of Natural Resources Award GL00E02254 “Great Lakes Long-Term Biological Monitoring 2017–2022” (PI Lars Rudstam) and Subaward # 82839-10916 to SUNY Buffalo State and supports the 2019 Lake Erie Cooperative Science and Monitoring Imitative. We appreciate the assistance of the captain and crew of the US EPA R/V Lake Guardian, including marine technicians Maxwell Morgan, Kathryn Johncock, Alex Hamm, and scientists Shivakumar Shivarudrappa (SUNY Buffalo State, Great Lakes Center), Matt Pawlowski (US EPA GLNPO), Ted Angradi (US EPA GLTED), and Paul Glyshaw (NOAA GLERL) for help with sample collection. We thank Great Lakes Center research scientist Susan Daniel, technicians Erik M. Hartnett and Brianne Tulumello, and SUNY Buffalo State student technicians Emily Burch, Megan Kocher, Christina Perry, Jared Powell, Benjamin Z. Szczygiel, and Abby Mathew for help with sample processing. We also would like to thank SUNY Buffalo State, Great Lakes Center Administrative Assistant Susan Dickinson for proofreading the manuscript. Natalia Mrozińska and Martyna Bąkowska would like to thank the Polish Ministry of Science for financing the internship trip under the name “Regional Initiative of Excellence” in 2019–2022 (project 008/RID/2018/19). Any views expressed in this publication are those of the authors and do not necessarily represent the views or policies of the US EPA. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US EPA.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lyubov E. Burlakova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Katya E. Kovalenko, Fernando M. Pelicice, Lee B. Kats, Jonne Kotta & Sidinei M. Thomaz / Aquatic Invasive Species III

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karatayev, A.Y., Burlakova, L.E., Mehler, K. et al. Rapid assessment of Dreissena population in Lake Erie using underwater videography. Hydrobiologia 848, 2421–2436 (2021). https://doi.org/10.1007/s10750-020-04481-x

Download citation

Keywords

  • Remote sensing
  • Dreissena rostriformis bugensis
  • Lake Erie
  • Underwater video
  • Rapid assessment
  • Hypoxia