Skip to main content
Log in

Staining of subfossil chironomid head capsules: a method for improving the extraction process from lake sediments and peat

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Subfossil chironomids are regarded as a useful biological proxy for palaeoenvironmental research, but picking chironomid head capsules from aquatic sediments is extremely time-consuming. This is often the case for finding and isolating small head capsules from the deflocculated sediment. In this study, two stains (aniline blue and cotton blue) were used to dye chironomid head capsules in lake and peat sediments to improve the traditional pretreatment method and boost the picking efficiency. The results suggested that: (1) there were sharp contrasts between chironomids and residues after staining, which could shorten picking time for both lake and peat samples; (2) different parts of head capsules showed distinctive colour in stained samples and thus facilitated identification and taxonomy of subfossil chironomids; (3) the dyeing effects of two stains were comparable and no significant effect of staining on chironomid composition has been observed compared with unstained samples. This study demonstrates that aniline blue and cotton blue stain can promote picking efficiency of subfossil chironomids, and can be widely applied to pretreatment of sedimentary chironomids in palaeoenvironmental studies on lakes and peatlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bickel, S. L., K. W. Tang & H. P. Grossart, 2009. Use of aniline blue to distinguish live and dead crustacean zooplankton composition in freshwaters. Freshwater Biology 54: 971–981.

    Article  Google Scholar 

  • Brooks, S. J., H. Bennion & H. J. B. Birks, 2001. Tracing lake trophic history with a chironomid-total phosphorus inference model. Freshwater Biology 46: 513–533.

    Article  CAS  Google Scholar 

  • Brooks, S. J., P. Langdon & O. Heiri, 2007. The identification and use of palaearctic Chironomidae larvae in palaeoecology. Quaternary Research Association Technical Guide 10, London: 1–276.

  • Cao, Y., P. G. Langdon, Y. Yan, S. Wang, Z. Zheng & Z. Zhang, 2019. Chironomid communities from subalpine peatlands in subtropical China as indicators of environmental change. Journal of Paleolimnology 62: 165–179.

    Article  Google Scholar 

  • Doncaster, C. P., V. A. Chávez, C. Viguier, R. Wang, E. Zhang, X. Dong, J. A. Dearing, P. G. Langdon & J. G. Dyke, 2016. Early warning of critical transitions in biodiversity from compositional disorder. Ecology 97: 3079–3090.

    Article  Google Scholar 

  • Eggermont, H., O. Heiri & D. Verschuren, 2006. Fossil Chironomidae (Insecta : Diptera) as quantitative indicators of past salinity in African lakes. Quaternary Science Reviews 25: 1966–1994.

    Article  Google Scholar 

  • Ekman, S., 1915. Die Bodenfauna des Vättern, qualitativ und quantitativ untersucht. Internationale revue der gesamten Hydrobiologie und Hydrographie 7(146–204): 275–425.

    Article  Google Scholar 

  • Epler, J. H., 2001. Identification manual for the larval Chironomidae (Diptera) of North and South Carolina. North Carolina Department of Environment and Natural Resources, Division of Water Quality.

  • Hammer, Ø., D. Harper & P. Ryan, 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologica Electronica 4: 1–9.

    Google Scholar 

  • Heinrichs, M. L., I. R. Walker, R. W. Mathewes & R. J. Hebda, 1999. Holocene chironomid-inferred salinity and paleovegetation reconstruction from Kilpoola Lake, British Columbia. Géographie Physique et Quaternaire 53: 211–221.

    Article  Google Scholar 

  • Heiri, O. & A. F. Lotter, 2001. Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. Journal of Paleolimnology 26: 343–350.

    Article  Google Scholar 

  • Heiri, O., S. J. Brooks, H. J. B. Birks & A. E. Lotter, 2012. A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. Quaternary Science Reviews 30: 3445–3456.

    Article  Google Scholar 

  • Kurek, J. & L. C. Cwynar, 2009. The potential of site-specific and local chironomid-based inference models for reconstructing past lake levels. Journal of Paleolimnology 42: 37–50.

    Article  Google Scholar 

  • Langdon, P. G., Z. Ruiz, S. Wynne, C. D. Sayer & T. A. Davidson, 2010. Ecological influences on larval chironomid communities in shallow lakes: implications for palaeolimnological interpretations. Freshwater Biology 55: 531–545.

    Article  CAS  Google Scholar 

  • Larocque-Tobler, I. & F. Oberli, 2011. The use of cotton blue stain to improve the efficiency of picking and identifying chironomid head capsules. Journal of Paleolimnology 45: 121–125.

    Article  Google Scholar 

  • Luoto, T. P. & V. P. Salonen, 2010. Fossil midge larvae (Diptera: Chironomidae) as quantitative indicators of late-winter hypolimnetic oxygen in southern Finland: a calibration model, case studies and potentialities. Boreal Environment Research 15: 1–18.

    Google Scholar 

  • Navada, K. K. & A. Kulal, 2019. Enhanced production of laccase from gamma irradiated endophytic fungus: a study on biotransformation kinetics of aniline blue and textile effluent decolourisation. Journal of Environmental Chemical Engineering 8: 103550.

    Article  Google Scholar 

  • Quinlan, R. & J. P. Smol, 2001a. Chironomid-based inference models for estimating end-of-summer hypolimnetic oxygen from south-central Ontario shield lakes. Freshwater Biology 46: 1529–1551.

    Article  CAS  Google Scholar 

  • Quinlan, R. & J. P. Smol, 2001b. Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. Journal of Paleolimnology 26: 327–342.

    Article  Google Scholar 

  • Rieradevall, M. & S. J. Brooks, 2001. An identification guide to subfossil Tanypodinae larvae (Insecta: Diptera: Chironomidae) based on caphalic setation. Journal of Paleolimnology 25: 81–99.

    Article  Google Scholar 

  • Rolland, N. & I. Larocque, 2007. The efficiency of kerosene flotation for extraction of chironomid head capsules from lake sediments samples. Journal of Paleolimnology 37: 565–572.

    Article  Google Scholar 

  • Ruiz, Z., A. G. Brown & P. G. Langdon, 2006. The potential of chironomid (Insecta: Diptera) larvae in archaeological investigations of floodplain and lake settlements. Journal of Archaeological Science 33: 14–33.

    Article  Google Scholar 

  • Seepersad, B. & R. W. Crippen, 1978. Use of aniline blue for distinguishing between live and dead freshwater zooplankton. Journal of the Fisheries Research Board of Canada 35: 1363–1366.

    Article  Google Scholar 

  • Shannon, C. E. & W. Weaver, 1963. The Mathematical Theory of Communication. University Illinois Press, Urbana.

    Google Scholar 

  • Tang, H. Q., 2006. Biosystematic study on the chironomid larvae in China (Diptera: Chironomidae). PhD thesis, Nankai University, Tianjin, China, (in Chinese).

  • ter Braak, C. J. & P. Šmilauer, 2012. Canoco reference manual and user’s guide: software for ordination, version 5.0. Microcomputer Power.

  • Velle, G. & I. Larocque, 2008. Assessing chironomid head capsule concentrations in sediment using exotic markers. Journal of Paleolimnology 40: 165–177.

    Article  Google Scholar 

  • Verschuren, D. & H. Eggermont, 2007. Sieve mesh size and quantitative chironomid paleoclimatology. Journal of Paleolimnology 38: 329–345.

    Article  Google Scholar 

  • Walker, I. R., E. M. Barley, J. Kurek, L. C. Cwynar, R. W. Mathewes, K. Gajewski & B. P. Finney, 2006. A northwest North American training set: distribution of freshwater midges in relation to air temperature and lake depth. Journal of Paleolimnology 36: 295–314.

    Article  Google Scholar 

  • Wang, R., J. A. Dearing, C. P. Doncaster, X. Yang, E. Zhang, P. G. Langdon, H. Yang, X. Dong, Z. Hu, M. Xu, Y. Zhao & J. Shen, 2019. Network parameters quantify loss of assemblage structure in human-impacted lake ecosystems. Global Change Biology 25: 3871–3882.

    Article  Google Scholar 

  • Zhang, E., Y. Cao, P. Langdon, R. Jones, X. Yang & J. Shen, 2012. Alternate trajectories in historic trophic change from two lakes in the same catchment, Huayang Basin, middle reach of Yangtze River, China. Journal of Paleolimnology 48: 367–381.

    Article  Google Scholar 

  • Zhang, E., J. Chang, Y. Cao, H. Tang, P. Langdon, J. Shulmeister, R. Wang, X. Yang & J. Shen, 2017. A chironomid-based mean July temperature inference model from the south-east margin of the Tibetan Plateau, China. Climate of the Past 13: 185–199.

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to the editors and two anonymous reviewers for their useful comments and suggestions. This study was supported by the National Natural Science Foundation of China (Grant Number: 41877428; 41402307) and the Fundamental Research Funds for National University, South-Central University for Nationalities (Grant Number: CZZ18007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanmin Cao.

Additional information

Handling editor: Jasmine Saros

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Zheng, Z., Luo, X. et al. Staining of subfossil chironomid head capsules: a method for improving the extraction process from lake sediments and peat. Hydrobiologia 848, 631–640 (2021). https://doi.org/10.1007/s10750-020-04469-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04469-7

Keywords

Navigation