Skip to main content

Advertisement

Log in

From introduction to nuisance growth: a review of traits of alien aquatic plants which contribute to their invasiveness

  • INVASIVE SPECIES III
  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Invasive alien aquatic plant species (IAAPs) cause serious ecological and economic impact and are a major driver of changes in aquatic plant communities. Their invasive success is influenced by both abiotic and biotic factors. Here, we summarize the existing knowledge on the biology of 21 IAAPs (four free-floating species, eight sediment-rooted, emerged or floating-leaved species, and nine sediment-rooted, submerged species) to highlight traits that are linked to their invasive success. We focus on those traits which were documented as closely linked to plant invasions, including dispersal and growth patterns, allelopathy and herbivore defence. The traits are generally specific to the different growth forms of IAAPs. In general, the species show effective dispersal and spread mechanisms, even though sexual and vegetative spread differs strongly between species. Moreover, IAAPs show varying strategies to cope with the environment. The presented overview of traits of IAAPs will help to identify potential invasive alien aquatic plants. Further, the information provided is of interest for developing species-specific management strategies and effective prevention measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adamec, L., A. Kučerová & S. Janeček, 2020. Mineral nutrients, photosynthetic pigments and storage carbohydrates in turions of 21 aquatic plant species. Aquatic Botany 165: 103238.

    Article  Google Scholar 

  • Agami, M. & Y. Weisel, 1986. The role of mallard ducks (Anas platyrhynchos) in distribution and germination of seeds of the submerged hydrophyte Najas marina L. Oecologia 68: 473–475.

    Article  PubMed  Google Scholar 

  • Agami, M. & K. R. Reddy, 1990. Competition for space between Eichhornia crassipes (Mart.) Solms and Pistia stratiotes L. cultured in nutrient-enriched water. Aquatic Botany 38: 195–208.

    Article  Google Scholar 

  • Aiken, S. G., P. R. Newroth & I. Wile, 1979. The biology of Canadian weeds. 34. Myriophyllum spicatum L. Canadian Journal of Plant Science 59: 201–215.

    Article  Google Scholar 

  • Albano Pérez, E., J. A. Coetzee, T. Ruiz-Téllez & M. P. Hill, 2011. A first report of water hyacinth (Eichhornia crassipes) soil seed banks in South Africa. South African Journal of Botany 77: 795–800.

    Article  Google Scholar 

  • Aliotta, G., P. Monaco, G. Pinto, A. Pollio & L. Previtera, 1991. Potential allelochemicals from Pistia stratiotes L. Journal of Chemical Ecology 17: 2223–2234.

    Article  CAS  PubMed  Google Scholar 

  • Alpert, P., F. R. Warembourg & J. Roy, 1991. Transport of carbon among connected ramets of Eichhornia crassipes (Pontederiaceae) at normal and high levels of CO2. American Journal of Botany 78: 1459–1466.

    Article  CAS  Google Scholar 

  • Anderson, L.W.J., 1998. Dissipation and movement of Sonar and Komeen following typical applications for control of Egeria densa in the Sacramento–San Joaquin Delta and Production and viability of E. densa fragments following mechanical harvesting (1997/1998). Davis, CA U.S. Department of Agriculture–Agricultural Research Service, Environmental Impact Report for California Department of Boating and Waterways. 79.

  • Arthaud, F., D. Vallod, J. Robin & G. Bornette, 2012. Eutrophication and drought disturbance shape functional diversity and life-history traits of aquatic plants in shallow lakes. Aquatic Sciences 74: 471–481.

    Article  Google Scholar 

  • Ayi, Q., B. Zeng, K. Yang, F. Lin, X. Zhang, P. van Bogedom & J. H. C. Cornelissen, 2019. Similar growth performance but contrasting biomass allocation of root-flooded terrestrial plant Alternanthera philoxeroides (Mart.) Griseb. in response to nutrient versus dissolved oxygen stress. Frontiers in Plant Science 10: 111.

    Article  PubMed  PubMed Central  Google Scholar 

  • Azan, S., M. Bardecki & A. E. Laursen, 2015. Invasive aquatic plants in the aquarium and ornamental pond industries: a risk assessment for southern Ontario (Canada). Weed Research 55: 249–259.

    Article  Google Scholar 

  • Bais, H. P., 2010. Correction: allelopathy and exotic plant invasion: From molecules and genes to species interactions. Science 327: 781.

    Google Scholar 

  • Bais, H. P., R. Vepachedu, S. Gilroy, R. M. Callaway & J. M. Vivanco, 2003. Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301: 1377–1380.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin, D. S. & A. M. Mitchell, 2000. The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river-floodplain systems. River Research and Applications 16: 457–467.

    Google Scholar 

  • Baniszewski, J., J. P. Cuda, S. A. Gezan, S. Sharma & E. N. I. Weeks, 2016. Stem fragment regrowth of Hydrilla verticillata following desiccation. Journal of Aquatic Plant Management 54: 53–60.

    Google Scholar 

  • Barko, J. W. & R. M. Smart, 1981. Comparative influences of light and temperature on the growth and metabolism of selected submersed freshwater macrophytes. Ecological Monographs 51: 219–235.

    Article  Google Scholar 

  • Barnes, M. A., C. L. Jerde, D. Keller, W. L. Chadderton, J. G. Howeth & D. M. Lodge, 2013. Viability of aquatic plant fragments following desiccation. Invasive Plant Science and Management 6: 320–325.

    Article  Google Scholar 

  • Barrat-Segretain, M. H., 2001. Biomass allocation in three macrophyte species in relation to the disturbance level of their habitat. Freshwater Biology 46: 935–945.

    Article  Google Scholar 

  • Barrat-Segretain, M. H. & B. Cellot, 2007. Response of invasive macrophyte species to drawdown: the case of Elodea sp. Aquatic Botany 87: 255–261.

    Article  Google Scholar 

  • Bickel, T. O., 2012. Ecology of the submersed aquatic weed Cabomba caroliniana in Australia. In: Eldershaw, V. (ed.), Eighteenth Australasian Weeds Conference, Melbourne, 8–11 October 2012. Weed Society of Victoria: 21–24.

  • Bickel, T. O., 2015. A boat hitchhiker’s guide to survival: Cabomba caroliniana desiccation resistance and survival ability. Hydrobiologia 746: 123–134.

    Article  Google Scholar 

  • Bickel, T. O., 2017. Processes and factors that affect regeneration and establishment of the invasive aquatic plant Cabomba caroliniana. Hydrobiologia 788: 157–168.

    Article  CAS  Google Scholar 

  • Bickel, T. O. & S. S. Schooler, 2015. Effect of water quality and season on the population dynamics of Cabomba caroliniana in subtropical Queensland, Australia. Aquatic Botany 123: 64–71.

    Article  Google Scholar 

  • Blair, A. C., S. J. Nissen, G. R. Brunk & R. A. Hufbauer, 2006. A lack of evidence for an ecological role of the putative allelochemical (±)-catechin in spotted knapweed invasion success. Journal of Chemical Ecology 32: 2327–2331.

    Article  CAS  PubMed  Google Scholar 

  • Boedeltje, G., J. P. Bakker, R. M. Bekker, J. M. Van Groenendael & M. Soesbergen, 2003. Plant dispersal in a lowland stream in relation to occurrence and three specific life-history traits of the species in the species pool. Journal of Ecology 91: 855–866.

    Article  Google Scholar 

  • Botts, P. S., J. M. Lawrence, B. W. Witz & C. W. Kovach, 1990. Plasticity in Morphology, proximate composition, and energy content of Hygrophila polysperma (Roxb.) Anders. Aquatic Botany 36: 207–214.

    Article  Google Scholar 

  • Bowes, G., 2011. Single-cell C4 photosynthesis in aquatic plants. In: Photosynthesis and related CO2 concentrating mechanisms In: A.S. Rhagavendra & R.F. Sage (eds), pp. 63–80.

  • Bowmer, K. H., S. W. L. Jacobs & G. R. Sainty, 1995. Identification, biology and management of Elodea canadensis, hydrocharitaceae. Journal of Aquatic Plant Management 33: 13–19.

    Google Scholar 

  • Brochet, A. L., J. B. Mouronval, P. Aubry, M. Gauthier-Clerc, A. J. Green, H. Fritz & M. Guillemain, 2012. Diet and feeding habitats of Camargue dabbling ducks: what has changed since the 1960s? Waterbirds 35: 555–576.

    Article  Google Scholar 

  • Brock, M.A., Nielsen, D.L., Shiel, R.J., Green, J.D. & J.D. Langley, 2003. Drought and aquatic community resilience: the role of eggs and seeds in sediments of temporary wetlands. Freshwater Biology 48: 1207–1218

    Article  Google Scholar 

  • Brouwer, E., L. Denys, E. C. H. E. T. Lucassen, M. Buiks & T. Onelinx, 2017. Competitive strength of Australian swamp stonecrop (Crassula helmsii) invading moorland pools. Aquatic Invasions. https://doi.org/10.3391/AI.2017.12.3.06.

    Article  Google Scholar 

  • Brouwer, P., H. Schluepmann, K. G. J. Nierop, J. Elderson, P. K. Kijl, I. van der Meer, W. de Visser, G. J. Reichart, S. Smeekens & A. van der Werf, 2018. Growing Azolla to produce sustainable protein feed: the effect of differing species and CO2 concentrations on biomass productivity and chemical composition. Journal of the Science of Food and Agriculture 98: 4759–4768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruckerhoff, L., J. Havel & S. Knight, 2015. Survival of invasive aquatic plants after air exposure and implications for dispersal by recreational boats. Hydrobiologia 746: 113–121.

    Article  Google Scholar 

  • Brundu, G., 2015. Plant invaders in European and Mediterranean inland waters: profiles, distribution, and threats. Hydrobiologia 746: 61–79.

    Article  Google Scholar 

  • Brunel, S., 2009. Pathway analysis: aquatic plants imported in 10 EPPO countries. EPPO Bulletin 39: 201–213.

    Article  Google Scholar 

  • Buchanan, A. L., 2013. Damage by Neochetina weevils (Coleoptera: Curculionidae) induces resistance in Eichhornia crassipes (Commelinales: Pontederiacea). Florida Entomologist 96: 458–462.

    Article  Google Scholar 

  • Cabrera Walsh, G., M. Dalto, F. M. Mattioli, R. I. Carruthers & L. W. Anderson, 2013. Biology and ecology of Brazilian elodea (Egeria densa) and its specific herbivore, Hydrellia sp., in Argentina. BioControl 58: 133–147.

    Article  Google Scholar 

  • Caffrey, J. M. & C. Monahan, 2006. Control of Myriophyllum verticillatum L. in Irish canals by turion removal. Hydrobiologia 570: 211–215.

    Article  Google Scholar 

  • Caffrey, J. M., M. Millane, S. L. Evers & H. Moran, 2011. Management of Lagarosiphon major (Ridley) Moss in Lough Corrib: a review. Biology and Environment 111: 205–212.

    Article  Google Scholar 

  • Calvo, C., R. P. Mormul, B. R. S. Figueiredo, E. R. Cunha, S. M. Thomaz & M. Meerhoff, 2019. Herbivory can mitigate, but not counteract, the positive effects of warming on the establishment of the invasive macrophyte Hydrilla verticillata. Biological Invasions 21: 59–66.

    Article  Google Scholar 

  • Casanova, M. T. & M. A. Brock, 2000. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecology 147: 237–250.

    Article  Google Scholar 

  • Cattaneo, A. & J. Kalff, 1980. The relative contribution of aquatic macrophytes and their epiphytes to the production of macrophyte beds. Limnology and Oceanography 25: 280–289.

    Article  Google Scholar 

  • Center, T. D. & N. R. Spencer, 1981. The phenology and growth of water hyacinth (Eichhornia crassipes (Mart.) Solms) in a eutrophic north-central Florida lake. Aquatic Botany 10: 1–32.

    Article  Google Scholar 

  • Chadwell, T. B. & K. A. M. Engelhardt, 2008. Effects of pre-existing submersed vegetation and propagule pressure on the invasion success of Hydrilla verticillata. Journal of Applied Ecology 45: 515–523.

    Article  Google Scholar 

  • Champion, P. D. & J. S. Clayton, 2001. Border control for potential aquatic weeds: Stage 2: Weed risk assessment. Science for Conservation 185: 30.

    Google Scholar 

  • Champion, P. D., J. S. Clayton & D. E. Hofstra, 2010. Nipping aquatic plant invasions in the bud: weed risk assessment and the trade. Hydrobiologia 656: 167–172.

    Article  Google Scholar 

  • Choi, C., C. Bareiss, O. Walenciak & E. M. Gross, 2002. Impact of polyphenols on growth of the aquatic herbivore Acentria ephemerella. Journal of Chemical Ecology 28: 2245–2256.

    Article  CAS  PubMed  Google Scholar 

  • Chun, Y. J., M. L. Collyer, K. A. Moloney & J. D. Nason, 2007. Phenotypic plasticity of native vs. invasive purple loosestrife: a two-state multivariate approach. Ecology 88: 1499–1512.

    Article  PubMed  Google Scholar 

  • Clayton, J. S., 1996. Aquatic weeds and their control in New Zealand lakes. Journal of Lake and Reservoir Management 12: 477–486.

    Article  Google Scholar 

  • Coetzee, J. A., M. P. Hill, T. Ruiz-Téllez, U. Starfinger & S. Brunel, 2017. Monographs on invasive plants in Europe N° 2: Eichhornia crassipes (Mart.) Solms. Botany Letters 164: 303–326.

    Article  Google Scholar 

  • Cook, C. D. K. & R. Lüönd, 1982. A revision of the genus Hydrilla (Hydrocharitaceae). Aquatic Botany 13: 485–504.

    Article  Google Scholar 

  • Cook, C. D. K. & K. Urmi-König, 1985. A revision of the genus Elodea (Hydrocharitaceae). Aquatic Botany 21: 111–156.

    Article  Google Scholar 

  • Cornacchia, L., D. van der Wal, J. van de Koppel, S. Puijalon, G. Wharton & T. J. Bouma, 2019. Flow-divergence feedbacks control propagule retention by in-stream vegetation: the importance of spatial patterns for facilitation. Aquatic Sciences 81: 17.

    Article  Google Scholar 

  • Coughlan, N. E., T. C. Kelly & M. A. K. Jansen, 2015. Mallard duck (Anas platyrhynchos)-mediated dispersal of Lemnaceae: a contributing factor in the spread of invasive Lemna minuta? Plant Biology 17: 108–114.

    Article  PubMed  Google Scholar 

  • Coughlan, N. E., R. N. Cuthbert, T. C. Kelly & M. A. K. Jansen, 2018. Parched plants: survival and viability of invasive aquatic macrophytes following exposure to various desiccation regimes. Aquatic Botany 150: 9–15.

    Article  Google Scholar 

  • Creed, R. P. & S. P. Sheldon, 1995. Weevils and watermilfoil: did a North American herbivore cause the decline of an exotic plant? Ecological Applications 5: 1113–1121.

    Article  Google Scholar 

  • Creed, R. P., S. P. Sheldon & D. M. Cheer, 1992. The effect of herbivore feeding on the buoyancy of Eurasian watermilfoil. Journal of Aquatic Plant Management 30: 75–76.

    Google Scholar 

  • Cronin, G., D. M. Lodge, M. E. Hay, M. Miller, A. M. Hill, T. Horvath, R. C. Bolser, N. Lindquist & M. Wahl, 2002. Crayfish feeding preferences for fresh water macrophytes: the influence of plant structure and chemistry. Journal of Crustacean Biology 22: 708–718.

    Article  Google Scholar 

  • Dai, H., X. Lu, J. Zhang & J. Ding, 2014. Responses of a native beetle to novel exotic plant species with varying invasion history. Ecological Entomology 39: 118–124.

    Article  Google Scholar 

  • Dandelot, S., R. Verlaque, A. Dutartre & A. Cazaubon, 2005. Ecological, dynamic and taxonomic problems due to Ludwigia (Onagraceae) in France. Hydrobiologia 551: 131–136.

    Article  Google Scholar 

  • Dandelot, S., C. Robles, N. Pech, A. Cazaubon & R. Verlaque, 2008. Allelopathic potential of two invasive alien Ludwigia spp. Aquatic Botany 88: 311–316.

    Article  Google Scholar 

  • Dawson, W., M. Fischer & M. van Kleunen, 2010. The maximum relative growth rate of common UK plant species is positively associated with their global invasiveness. Global Ecology and Biogeography 20: 299–306.

    Article  Google Scholar 

  • Della Greca, M., R. Lanzetta, L. Mangoni, P. Monaco & L. Previtera, 1991. A bioactive benzoindenone from Eichhornia crassipes Solms. Bioorganic & Medicinal Chemistry Letters 1: 599–600.

    Article  CAS  Google Scholar 

  • Della Greca, M., R. Lanzetta, A. Molinaro, P. Monaco & L. Previtera, 1992. Phenalene metabolites from Eichhornia crassipes. Bioorganic & Medicinal Chemistry Letters 2: 311–314.

    Article  CAS  Google Scholar 

  • Della Greca, M., A. Fiorentino, P. Monaco & L. Previtera, 1994. Polyoxygenated oleanane triterpenes from Hydrocotyle ranunculoides. Phytochemistry 35: 201–204.

    Article  CAS  Google Scholar 

  • Della Greca, M., A. Fiorentino, P. Monaco, G. Pinto, A. Pollio, L. Previtera & A. Zarrelli, 1998. Structural characterization and antialgal activity of compounds from Pistia stratiotes exudates. Allelopathy Journal 5: 53–66.

    Google Scholar 

  • De Wilde, M., N. Sebei, S. Puijalon & G. Bornette, 2014. Responses of macrophytes to dewatering: effects of phylogeny and phenotypic plasticity on species performance. Evolutionary Ecology 28: 1155–1167.

    Article  Google Scholar 

  • Denys, L., J. Packet, W. Jambon & K. Scheers, 2014. Dispersal of the non-native invasive species Crassula helmsii (Crassulaceae) may involve seeds and endozoochorous transport by birds. New Journal of Botany 4: 104–106.

    Article  Google Scholar 

  • D’hondt, B., L. Denys, W. Jambon, R. de Wilde, T. Adriaens, J. Packet & J. L. H. C. van Valkenburg, 2016. Reproduction of Crassula helmsii by seed in western Europe. Aquatic Invasions 11: 125–130.

    Article  Google Scholar 

  • Dong, B. C., P. Alpert, W. Guo & F. H. Yu, 2012. Effects of fragmentation on the survival and growth of the invasive, clonal plant Alternanthera philoxeroides. Biological Invasions 14: 1101–1110.

    Article  Google Scholar 

  • Doyle, R. D., M. D. Francis & R. M. Smart, 2003. Interference competition between Ludwigia repens and Hygrophila polysperma: two morphologically similar aquatic plant species. Aquatic Botany 77: 223–234.

    Article  Google Scholar 

  • Dugdale, T. M., D. Clements, T. D. Hunt & K. L. Butler, 2010. Alligatorweed produces viable stem fragments in response to herbicide treatment. Journal of Aquatic Plant Management 48: 84–91.

    Google Scholar 

  • Dugdale, T. M., D. Clements, T. D. Hunt & K. L. Butler, 2012. Survival of a submerged aquatic weed (Egeria densa) during lake drawdown within mounds of stranded vegetation. Lake and Reservoir Management 28: 153–157.

    Article  CAS  Google Scholar 

  • Dugdale, M., K. M. Butler, D. Clements & T. D. Hunt, 2013. Survival of cabomba (Cabomba caroliniana) during lake drawdown within mounds of stranded vegetation. Lake and Reservoir Management 29: 61–67.

    Article  Google Scholar 

  • Dülger, E. & A. Hussner, 2017. Differences in the growth and physiological response of eight Myriophyllum species to carbon dioxide depletion. Aquatic Botany 139: 25–31.

    Article  CAS  Google Scholar 

  • Dülger, E., P. Heidbüchel, T. Schumann, T. Mettler-Altmann & A. Hussner, 2017. Interactive effects of nitrate concentration and carbon dioxide on the stoichiometry, biomass allocation and growth rate of submerged aquatic plants. Freshwater Biology 62: 1094–1104.

    Article  CAS  Google Scholar 

  • Edwards, D. & C. J. Musil, 1975. Eichhornia crassipes in South Africa: a general review. Journal of the Limnological Society of Southern Africa 1: 23–27.

    Article  CAS  Google Scholar 

  • Elakovich, S. D., 1989. Allelopathic aquatic plants for aquatic weed management. Biologia Plantarum 31: 479–486.

    Article  Google Scholar 

  • EPPO, 2007. Crassula helmsii. EPPO Bulletin 37: 225–229.

    Article  Google Scholar 

  • EPPO, 2016a. Alternanthera philoxeroides (Mart.) Griseb. EPPO Bulletin 46: 8–13.

    Article  Google Scholar 

  • EPPO, 2016b. Myriophyllum heterophyllum Michaux. EPPO Bulletin 46: 20–24.

    Article  Google Scholar 

  • EPPO, 2017a. Salvinia molesta D.S. Mitch. EPPO Bulletin 47: 531–536.

    Article  Google Scholar 

  • EPPO, 2017b. Pest risk analysis for Hygrophila polysperma. EPPO, Paris: 51.

    Google Scholar 

  • EPPO, 2017c. Pistia stratiotes L. EPPO Bulletin 47: 537–543.

    Article  Google Scholar 

  • Erhard, D. & E. M. Gross, 2006. Allelopathic activity of Elodea canadensis and Elodea nuttallii against epiphytes and phytoplankton. Aquatic Botany 85: 203–211.

    Article  Google Scholar 

  • Erhard, D., G. Pohnert & E. M. Gross, 2007. Chemical defense in Elodea nuttallii reduces feeding and growth of aquatic herbivorous Lepidoptera. Journal of Chemical Ecology 33: 1646–1661.

    Article  CAS  PubMed  Google Scholar 

  • Espinosa-Rodriguez, C., L. Rivera-De la Parra, A. Martinez-Tellez, G. C. Gomez-Cabral, S. S. S. Sarma & S. Nandini, 2016. Allelopathic interactions between the macrophyte Egeria densa and plankton (alga, Scenedesmus acutus and cladocerans, Simocephalus spp.): a laboratory study. Journal of Limnology 75: 151–160.

    Article  Google Scholar 

  • Eusebio Malheiro, A. C., P. Jahns & A. Hussner, 2013. CO2 availability rather than light and temperature determines growth and phenotypical responses in submerged Myriophyllum aquaticum. Aquatic Botany 110: 31–37.

    Article  Google Scholar 

  • Evans, C. A., D. L. Kelting, K. M. Forrest & L. E. Steblen, 2011. Fragment viability and rootlet formation in Eurasian watermilfoil after desiccation. Journal of Aquatic Plant Management 49: 57–62.

    Google Scholar 

  • Fan, S., H. Yu, D. Yu, Y. Han & L. Wang, 2015. The effects of complete submergence on the morphological and biomass allocation response of the invasive plant Alternanthera philoxeroides. Hydrobiologia 746: 159–169.

    Article  CAS  Google Scholar 

  • Fast, B. J., C. J. Gray, J. A. Ferrell, G. E. MacDonald & F. M. Fishel, 2008. Water regimen and depth affect Hygrophila growth and establishment. Journal of Aquatic Plant Management 46: 97–99.

    Google Scholar 

  • Fornoff, F. & E. M. Gross, 2014. Induced defense mechanisms in an aquatic angiosperm to insect herbivory. Oecologia 175: 173–185.

    Article  PubMed  Google Scholar 

  • Fernández-Zamudioa, R., P. García-Murilloa & S. Cirujano, 2010. Germination characteristics and sporeling success of Azolla filiculoides Lamarck, an aquatic invasive fern, in a Mediterranean temporary wetland. Aquatic Botany 93: 89–92.

    Article  Google Scholar 

  • Figuerola, J. & A. J. Green, 2002. Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshwater Biology 47: 483–494.

    Article  Google Scholar 

  • Fleming, J. P. & E. D. Dibble, 2015. Ecological mechanisms of invasion success in aquatic macrophytes. Hydrobiologia 746: 23–37.

    Article  Google Scholar 

  • Franceschi, V. R. & P. A. Nakata, 2005. Calcium oxalate in plants: formation and function. Annual Review of Plant Biology 56: 41–71.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Álvarez, A., C. H. A. Van Leeuwen, C. J. Luque, A. Hussner, A. Velez-Martin, A. Perez-Vasquez, A. J. Green & E. M. Castellanos, 2015. Internal transport of alien Ludwigia and Spartina seeds by geese and ducks. Freshwater Biology 60: 1316–1329.

    Article  Google Scholar 

  • Ge, Y., Q. Wang, L. Wang, W. Liu, X. Liu, Y. Huang & P. Christie, 2018. Response of soil enzymes and microbial communities to root extracts of the alien Alternanthera philoxeroides. Archives of Agronomy and Soil Science 64: 708–717.

    Article  CAS  Google Scholar 

  • Geng, Y. P., X. Y. Pan, C. Y. Xu, W. J. Zhang, B. Li & J. K. Chen, 2006. Phenotypic plasticity of invasive Alternanthera philoxeroides in relation to different water availability, compared to its native congener. Acta Oecologia 30: 380–385.

    Article  Google Scholar 

  • Gillard, M., G. Thiébaut & B. Leroy, 2017a. Present and future distribution of three aquatic plant taxa across the world: decreases in native and increases in invasive ranges. Biological Invasions 19: 2159–2170.

    Article  Google Scholar 

  • Gillard, M., B. J. Grewell, C. J. Futrell, C. Deleu & G. Thiebaut, 2017b. Germination and seedling growth of water primroses: a cross experiment between two invaded ranges with contrasting climates. Frontiers in Plant Science 8: 1677.

    Article  PubMed  PubMed Central  Google Scholar 

  • Glisson, W. J., C. K. Wagner, M. R. Verhoeven, R. Muthukrishnan, R. Contreras-Rangel & D. J. Larkin, 2020. Desiccation tolerance of the invasive alga starrystonewort (Nitellopsis obtusa) as an indicator of overland spread risk. Journal of Aquatic Plant Management 58: 7–18.

    Google Scholar 

  • Global Invasive Species Database (GISD), 2020. Species profile: Lagarosiphon major. Downloaded from http://www.iucngisd.org/gisd/species.php?sc=403 on 25 Apr 2020.

  • Glover, R., R. E. Drenovsky, C. J. Futrell & B. J. Grewell, 2015. Clonal integration in Ludwigia hexapetala under different light regimes. Aquatic Botany 122: 40–46.

    Article  Google Scholar 

  • Goodwin, B. J., A. J. McAllister & L. Fahrig, 1999. Predicting invasiveness of plant species based on biological information. Conservation Biology 13: 422–426.

    Article  Google Scholar 

  • Gopal, B., 1987. Water Hyacinth. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Gordon, D. R., C. A. Gantz, C. L. Jerde, W. L. Chadderton, R. P. Keller & P. D. Champion, 2012. Weed risk assessment for aquatic plants: modification of a New Zealand system for the United States. PLOS ONE. https://doi.org/10.1371/journal.pone.0040031.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gratani, L., 2014. Plant phenotypic plasticity as a response to environmental factors. Advances in Botany 2014: 208747.

    Article  Google Scholar 

  • Greulich, S. & G. Bornette, 1999. Competitive abilities and related strategies in four aquatic plant species from an intermediately disturbed habitat. Freshwater Biology 41: 493–506.

    Article  Google Scholar 

  • Greulich, S. & G. Bornette, 2003. Being evergreen in an aquatic habitat with attenuated seasonal contrasts: a major competitive advantage? Plant Ecology 167: 9–18.

    Article  Google Scholar 

  • Gross, E. M., 2003. Allelopathy of aquatic autotrophs. Critical Reviews in Plant Science 22: 313–339.

    Article  Google Scholar 

  • Gross, E. M., 2009. Allelochemical Reactions. Encyclopedia of Inland Waters 20: 715–726.

    Article  Google Scholar 

  • Gross, E. M. & E. S. Bakker, 2012. The role of plant secondary metabolites in freshwater macrophyte-herbivore interactions: limited or unexplored chemical defences? In Iason, G. R., M. Dicke & S. E. Hartley (eds), The Integrative Role of Plant Secondary Metabolites in Ecological Systems. BES-British Ecological Society, Sussex.

    Google Scholar 

  • Gross, E. M., H. Meyer & G. Schilling, 1996. Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum. Phytochemistry 41: 133–138.

    Article  CAS  Google Scholar 

  • Gross, E.M., Erhard, D. & E. Iványi, 2003. Allelopathic activity of Ceratophyllum demersum L. and Najas marina ssp. intermedia (Wolfgang) Casper. Hydrobiologia 506: 583–589.

    Article  Google Scholar 

  • Gross, E. M., H. Groffier, C. Pestelard & A. Hussner, 2020. Ecology and environmental impact of Myriophyllum heterophyllum, an aggressive invasive in European waterways. Diversity 12: 127.

    Article  Google Scholar 

  • Groth, A. T., L. Lovett-Doust & J. Lovett-Doust, 1996. Population density and module demography in Trapa natans (Trapaceae), an annual, clonal aquatic macrophyte. American Journal of Botany 83: 1406–1415.

    Article  Google Scholar 

  • Grutters, B. M. C., E. M. Gross & E. S. Bakker, 2016. Insect herbivory on native and exotic aquatic plants: phosphorus and nitrogen drive insect growth and nutrient release. Hydrobiologia 778: 209–220.

    Article  CAS  Google Scholar 

  • Grutters, B. M. C., Y. O. A. Roijendijk, W. C. E. P. Verberk & E. S. Bakker, 2017a. Plant trait and plant biogeography control the biotic resistance provided by generalist herbivores. Functional Ecology 31: 1184–1192.

    Article  Google Scholar 

  • Grutters, B. M. C., E. M. Gross, E. van Donk & E. S. Bakker, 2017b. Periphyton density is similar on native and non-native plant species. Freshwater Biology 62: 906–915.

    Article  CAS  Google Scholar 

  • Grutters, B. M. C., B. Saccomanno, E. M. Gross, D. B. Van de Waal, E. van Donk & E. S. Bakker, 2017c. Growth strategy, phylogeny and stoichiometry determine the allelopathic potential of native and non-native plants. Oikos 126: 1770–1779.

    Article  CAS  Google Scholar 

  • Halstead, J. M., J. Michaud, S. Hallas-Burt & P. Gibbs, 2003. Hedonic analysis of effects of a nonnative invader (Myriophyllum heterophyllum) on New Hampshire (USA) lakefront properties. Environmental Management 32: 391–398.

    Article  PubMed  Google Scholar 

  • Haramoto, T. & I. Ikusima, 1988. Life cycle of Egeria densa Planch., an aquatic plant naturalized in Japan. Aquatic Botany 30: 389–403.

    Article  Google Scholar 

  • Hartleb, F. C., J. D. Madsen & C. W. Boylen, 1993. Environmental factors affecting seed germination in Myriophyllum spicatum L. Aquatic Botany 45: 15–25.

    Article  Google Scholar 

  • Hegi, G., 1975. Illustrierte Flora von Mitteleuropa, V/2. Verlag Paul Parey, Berlin.

    Google Scholar 

  • Heidbüchel, P. & A. Hussner, 2019. Fragment type and water depth determine the regeneration and colonization success of submerged aquatic plants. Aquatic Sciences 81: 6.

    Article  CAS  Google Scholar 

  • Heidbüchel, P. & A. Hussner, 2020. Falling into pieces: Influence of discharge on fragmentation rates of submerged aquatic plants in lowland streams. Aquatic Botany 160.

  • Heidbüchel, P., K. Kuntz & A. Hussner, 2016. Alien aquatic plants do not have higher fragmentation rates than native species: a field study from the River Erft. Aquatic Sciences 78: 767–777.

    Article  CAS  Google Scholar 

  • Heidbüchel, P., M. Sachs, N. Stanik & A. Hussner, 2019a. Species-specific fragmentation rates and colonization potential partly explain the successful spread of aquatic plants in lowland streams. Hydrobiologia 843: 107–123.

    Article  Google Scholar 

  • Heidbüchel, P., P. Jahns & A. Hussner, 2019b. Chlorophyll fluorometry sheds light on the role of desiccation resistance for vegetative overland dispersal of aquatic plants. Freshwater Biology 64: 1401–1415.

    Article  CAS  Google Scholar 

  • Heidbüchel, P., Sachs, M., Hamzehian, N. & A. Hussner, 2020. Go with the flow: Fragment retention patterns shape the vegetative dispersal of aquatic plants in lowland streams. Freshwater Biology 65: 1936–1949.

    Article  CAS  Google Scholar 

  • Hellmann, J. J., J. E. Byers, B. G. Bierwagen & J. S. Dukes, 2008. Five potential consequences of climate change for invasive species. Conservation Biology 22: 534–543.

    Article  PubMed  Google Scholar 

  • Henry-Silva, G. G., A. F. M. Camargo & M. M. Pezzato, 2008. Growth of free-floating aquatic macrophytes in different concentrations of nutrients. Hydrobiologia 610: 153–160.

    Article  CAS  Google Scholar 

  • Higgins, S. I. & D. M. Richardson, 2014. Invasive plants have broader physiological niches. Proceeding of the National Academy of Sciences of the United States of America 29: 10610–10614.

    Article  CAS  Google Scholar 

  • Hill, M. P., 2003. The impact and control of alien aquatic vegetation in South African aquatic ecosystems. African Journal of Aquatic Sciences 28: 19–24.

    Article  Google Scholar 

  • Hill, M. P. & A. J. McConnachie, 2009. Azolla filiculoides Lamarck (Azollaceae). In Muniappan, R., G. V. P. Reddy & A. Raman (eds), Biological Control of Tropical Weeds using Arthropods. Cambridge University Press, Cambridge: 74–87.

    Chapter  Google Scholar 

  • Hill, M.P., Coetzee, J.A., Martin, G.D., Smith, R. & E.F. Strange, 2020. Invasive Alien Aquatic Plants in South African Freshwater Ecosystems. In: van Wilgen B., Measey J., Richardson D., Wilson J. & T. Zengeya (eds) Biological Invasions in South Africa. Invading Nature - Springer Series in Invasion Ecology, vol 14. Springer, Cham, pp. 97-114. https://doi.org/10.1007/978-3-030-32394-3_4

  • Hofmann, H., A. Lorke & F. Peeters, 2008. Wave-induced variability of the underwater light climate in the littoral zone. Verhandlungen des Internationalen Vereins der Limnolologie 30: 627–632.

    Google Scholar 

  • Hofstra, D. E., J. S. Clayton & J. D. Green, 1999. Distribution and density of vegetative Hydrilla propagules in the sediments of two New Zealand lakes. Journal of Aquatic Plant Management 37: 41–44.

    Google Scholar 

  • Holm, L. G., L. W. Weldon & R. D. Blackburn, 1969. Aquatic Weeds. Science 166: 699–709.

    Article  CAS  PubMed  Google Scholar 

  • Howard-Williams, C. & J. Davies, 1988. The invasion of Lake Taupo by the submerged water weed Lagarosiphon major and its impact on the native flora. New Zealand Journal of Ecology 11: 13–19.

    Google Scholar 

  • Huang, Y., Y. Ge, Q. Wang, H. Zhou, W. Liu & P. Christie, 2017. Allelopathic effects of aqueous extracts of Alternanthera philoxeroides on the growth of Zoysia matrella. Polish Journal of Environmental Studies 26: 97–105.

    Article  Google Scholar 

  • Hummel, M. & E. Kiviat, 2004. Review of world literature on Water Chestnut with implications for management in North America. Journal of Aquatic Plant Management 42: 17–28.

    Google Scholar 

  • Hussner, A., 2008. Zur Ökologie und Ökophysiologie aquatischer Neophyten in Nordrhein-Westfalen. PhD thesis, Heinrich-Heine-University, Düsseldorf

  • Hussner, A., 2009. Growth and photosynthesis of four invasive aquatic plant species in Europe. Weed Research 49: 506–515.

    Article  Google Scholar 

  • Hussner, A., 2010. Growth response and root system development of the invasive Ludwigia grandiflora and Ludwigia peploides to nutrient availability and water level. Fundamental and Applied Limnology 177: 189–196.

    Article  Google Scholar 

  • Hussner, A., 2012. Alien aquatic plants in European countries. Weed Research 52: 397–406.

    Article  Google Scholar 

  • Hussner, A., 2014. Long-term macrophyte mapping documents a continuously shift from native to non-native aquatic plant dominance in the thermally abnormal River Erft (North Rhine-Westphalia, Germany). Limnologica 48: 39–45.

    Article  Google Scholar 

  • Hussner, A. 2019. Information on measures and related costs in relation to the species included on the Union list - Lagarosiphon major. Technical note prepared by IUCN for the European Commission.

  • Hussner, A. & R. Lösch, 2005. Alien aquatic plants in a thermally abnormal river and their assembly to neophyte-dominated macrophyte stands (River Erft, Northrhine-Westphalia). Limnologica 35: 18–30.

    Article  Google Scholar 

  • Hussner, A. & C. Meyer, 2009. The influence of water level on growth and photosynthesis of Hydrocotyle ranunculoides L.fil. Flora 204: 755–761.

    Article  Google Scholar 

  • Hussner, A. & P. Jahns, 2015. European native Myriophyllum spicatum showed a higher HCO -3 use capacity than alien invasive Myriophyllum heterophyllum. Hydrobiologia 746: 171–182.

    Article  CAS  Google Scholar 

  • Hussner, A., C. Meyer & J. Busch, 2009. Influence of water level on growth and root system development of Myriophyllum aquaticum (Vell.) Verdcourt. Weed Research 49: 73–80.

    Article  CAS  Google Scholar 

  • Hussner, A., K. van de Weyer, E. M. Gross & S. Hilt, 2010. Comments on increasing number and abundance of non-indigenous aquatic macrophyte species in Germany. Weed Research 50: 519–526.

    Article  Google Scholar 

  • Hussner, A., D. Hofstra & P. Jahns, 2011. Diurnal courses of net photosynthesis and photosystem II quantum efficiency of submerged Lagarosiphon major under natural light conditions. Flora 206: 904–909.

    Article  Google Scholar 

  • Hussner, A., S. Nehring & S. Hilt, 2014a. From first reports to successful control: a plea for improved management of alien aquatic plant species in Germany. Hydrobiologia 737: 321–331.

    Article  Google Scholar 

  • Hussner, A., P. Heidbüechel & S. Heiligtag, 2014b. Vegetative overwintering and reproduction by seeds explains the establishment of invasive Pistia stratiotes within the River Erft system (North Rhine-Westphalia, Germany). Aquatic Botany 119: 28–32.

    Article  Google Scholar 

  • Hussner, A., H. van Dam, J. E. Vermaat & S. Hilt, 2014c. Comparison of native and neophytic aquatic macrophyte developments in a geothermally warmed river and thermally normal channels. Fundamental and Applied Limnology 185: 155–166.

    Article  Google Scholar 

  • Hussner, A., Hofstra, D., Jahns, P. & J. Clayton, 2015. Response capacity to CO2 depletion rather than temperature and light effects explain the growth success of three alien Hydrocharitaceae compared with native Myriophyllum triphyllum in New Zealand. Aquatic Botany 120: 205–211

    Article  Google Scholar 

  • Hussner, A., M. Windhaus & U. Starfinger, 2016a. From weed biology to successful control: an example of successful management of Ludwigia grandiflora in Germany. Weed Research 56: 434–441.

    Article  Google Scholar 

  • Hussner, A., T. Mettler-Altmann, A. P. M. Weber & K. Sand-Jensen, 2016b. Acclimation of photosynthesis to supersaturated CO2 in aquatic plant bicarbonate users. Freshwater Biology 61: 1720–1732.

    Article  CAS  Google Scholar 

  • Hussner, A., I. Stiers, M. J. J. M. Verhofstad, E. S. Bakker, B. M. C. Grutters, J. Haury, J. L. C. H. van Valkenburg, G. Brundu, J. Newman, J. S. Clayton, L. W. J. Anderson & D. Hofstra, 2017. Management and control methods of invasive alien aquatic plants: a review. Aquatic Botany 136: 113–137.

    Article  Google Scholar 

  • Hussner, A., R. Smith, T. Mettler-Altmann, M. Hill & J. Coetzee, 2019. Simulated global increase in atmospheric CO2 alter the tissue composition, but not the growth of some submerged aquatic plant bicarbonate users growing in DIC rich waters. Aquatic Botany 153: 44–50.

    Article  Google Scholar 

  • Jacobs, M. J. & H. J. MacIsaac, 2009. Modelling spread of the invasive macrophyte Cabomba caroliniana. Freshwater Biology 54: 296–305.

    Article  Google Scholar 

  • James, C. S., J. W. Eaton & K. Hardwick, 2006. Responses of three invasive aquatic macrophytes to nutrient enrichment do not explain their observed field displacements. Aquatic Botany 84: 347–353.

    Article  CAS  Google Scholar 

  • Janauer, G. A., 1981. Elodea canadensis and its dormant apices: an investigation of organic and mineral constituents. Aquatic Botany 11: 231–243.

    Article  CAS  Google Scholar 

  • Janes, R., 1998a. Growth and survival of Azolla filiculoides in Britain. II. Sexual reproduction. New Phytologist 138: 377–384.

    Article  PubMed  Google Scholar 

  • Janes, R., 1998b. Growth and survival of Azolla filiculoides in Britain. I. Vegetative reproduction. New Phytologist 138: 367–375.

    Article  PubMed  Google Scholar 

  • Johnson, L.E., Ricciardi, A. & J.T. Carlton, 2001. Overland dispersal of aquatic invasive species: A risk assessment of transient recreational boating. Ecological Applications 11: 1789–1799.

    Article  Google Scholar 

  • Julien, M. H., M. P. Hill & P. W. Tipping, 2009. Salvinia molesta DS Mitchell (Salviniaceae). In Muniappan, R., G. V. Reddy & A. Raman (eds), Biological Control of Tropical Weeds using Arthropods. Cambridge University Press, Cambridge: 378–407.

    Chapter  Google Scholar 

  • Kadono, Y., 2004. Alien aquatic plants naturalized in Japan: history and present status. Global Environmental Research 8: 163–169.

    Google Scholar 

  • Kato-Noguchi, H., M. Moriyasu, O. Ohno & K. Suenaga, 2014. Growth limiting effects on various terrestrial plant species by an allelopathic substance, loliolide, from water hyacinth. Aquatic Botany 117: 56–61.

    Article  CAS  Google Scholar 

  • Kattge, J., S. Diaz, S. Lavorel, I. C. Prentice, P. Leadley, G. Bönisch, E. Garnier, et al., 2011. TRY: a global database of plant traits. Global Change Biology 17: 2905–2935.

    Article  PubMed Central  Google Scholar 

  • Keane, R. M. & M. J. Crawley, 2002. Exotic plant invasions and the enemy release hypothesis. Trends in Ecology and Evolution 17: 164–170.

    Article  Google Scholar 

  • Klavsen, S. K. & S. C. Maberly, 2009. Crassulacean acid metabolism contributes significantly to the in situ carbon budget in a population of the invasive aquatic macrophyte Crassula helmsii. Freshwater Biology 54: 105–118.

    Article  CAS  Google Scholar 

  • Kleinowski, A. M., G. A. Ribeiro, C. Milech & E. J. B. Braga, 2016. Potential allelopathic and antibacterial activity from Alternanthera philoxeroides. Hoehnea 43: 533–540.

    Article  Google Scholar 

  • Kolar, C. S. & D. M. Lodge, 2001. Progress in invasion biology: predicting invaders. Trends in Ecology & Evolution 16: 199–204.

    Article  Google Scholar 

  • Kozhova, O. M. & L. A. Izhboldina, 1993. Spread of Elodea canadensis in Lake Baikal. Hydrobiologia 259: 203–211.

    Article  Google Scholar 

  • Kulshretha, M. & B. Gopal, 1983. Allelopathic influence of Hydrilla verticillata (L.F.) Royle on the distribution of Ceratophyllum species. Aquatic Botany 16: 207–209.

    Article  Google Scholar 

  • Kuntz, K., P. Heidbüchel & A. Hussner, 2014. Effects of water nutrients on regeneration capacity of submerged aquatic plant fragments. Annales de Limnologie 50: 155–162.

    Article  Google Scholar 

  • Lal, C. & B. Gopal, 1993. Production and germination of seeds in Hydrilla verticillata. Aquatic Botany 45: 257–261.

    Article  Google Scholar 

  • Langeland, K. A. & D. L. Sutton, 1980. Regrowth of Hydrilla from axillary buds. Journal of Aquatic Plant Management 18: 27–29.

    Google Scholar 

  • Langeland, K. A. & C. B. Smith, 1984. Hydrilla produces viable seed in North Carolina lakes. Aquatics 6: 20–22.

    Google Scholar 

  • Leu, E., A. Krieger-Liszkay, C. Goussias & E. M. Gross, 2002. Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II. Plant Physiology 130: 2011–2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, M., F. Zhou, X. Pan, Z. Zhang, M. B. Traw & B. Li, 2018. Specificity of herbivore- induced responses in an invasive species, Alternanthera philoxeroides (alligator weed). Ecology and Evolution 8: 59–70.

    Article  PubMed  Google Scholar 

  • Loop, J.M.M., Tjampens, J., Vogels, J.J., van Kleef, H.H., Lamers, L.P.M. & R.S.E.W. Leuven, 2020. Reducing nutrient availability and enhancing biotic resistance limits settlement and growth of the invasive Australian swamp stonecrop (Crassula helmsii). Biological Invasions 22: 3391–3402.

    Article  Google Scholar 

  • Lumpkin, T. A. & D. L. Plucknett, 1980. Azolla: botany, physiology, and use as a green manure. Economic Botany 34: 111–153.

    Article  CAS  Google Scholar 

  • Maberly, S. C. & T. V. Madsen, 2002. Freshwater angiosperm carbon concentrating mechanisms: processes and patterns. Functional Plant Biology 29: 393–405.

    Article  CAS  PubMed  Google Scholar 

  • Madsen, J. D., 1993. Growth and biomass allocation patterns during waterhyacinth mat development. Journal of Aquatic Plant Management 31: 134–137.

    Google Scholar 

  • Madsen, T. V. & K. Sand-Jensen, 1991. Photosynthetic carbon assimilation in aquatic macrophytes. Aquatic Botany 41: 5–40.

    Article  CAS  Google Scholar 

  • Madsen, T. V. & K. Sand-Jensen, 1994. The interactive effects of light and inorganic carbon on aquatic plant growth. Plant, Cell and Environment 17: 955–962.

    Article  CAS  Google Scholar 

  • Madsen, J. D. & D. H. Smith, 1999. Vegetative spread of dioecious Hydrilla colonies in experimental ponds. Journal of Aquatic Plant Management 37: 25–29.

    Google Scholar 

  • Maki, K. & S. Galatowitsch, 2004. Movement of invasive aquatic plants into Minnesota (USA) through horticultural trade. Biological Conservation 118: 389–396.

    Article  Google Scholar 

  • Martin, G. & J. A. Coetzee, 2011. Pet stores, aquarists and the internet trade as modes of introduction and spread of invasive macrophytes in South Africa. Water SA 37: 371–380.

    Article  Google Scholar 

  • Matthews, J., Koopman, K.R., Beringen, R., Odé, B., Pot, R., van der Velde, G., van Valkenburg, J.L.H.C. & R.S.E.W. Leuven, 2014. Knowledge document for risk analysis of the non-native Brazilian waterweed (Egeria densa) in the Netherlands. Reports Environmental Science 468: 58.

    Google Scholar 

  • McFarland, D.G., Nelson, S.L., Grodowitz, M.J., Smart, R.M. & C.S. Owens, 2004. Salvinia molesta D.S. Mitchell (Giant Salvinia) in the United States: A review of species ecology and approaches to management. Aquatic Plant Control Research Program. US Army Engineer Research and Development Center, Environmental Laboratory, Vicksbury.

  • Menzel, A. & P. Fabian, 1999. Growing season extend in Europe. Nature 397: 659.

    Article  CAS  Google Scholar 

  • Methe, B. A., R. J. Soracco, J. D. Madsen & C. W. Boylen, 1993. Seed production and growth of waterchestnut as influenced by cutting. Journal Aquatic Plant Management 31: 154–157.

    Google Scholar 

  • Middelboe, A. L. & S. Markager, 1997. Depth limits and minimum light requirements of freshwater macrophytes. Freshwater Biology 37: 553–568.

    Article  Google Scholar 

  • Millane, M. & J. Caffrey, 2014. Risk Assessment of Ludwigia spp. (Water Primroses). Report prepared for Inland Fisheries Ireland and the National Biodiversity Data Centre.

  • Mitchell, D. S. & N. M. Tur, 1975. The rate of growth of Salvinia molesta (S. auriculata Auct.) in laboratory and natural conditions. Journal of Applied Ecology 12: 213–225.

    Article  Google Scholar 

  • Mikulyuk, A. & M.E. Nault, 2009. Water Chestnut (Trapa natans): A Technical Review of Distribution, Ecology, Impacts, and Management. Wisconsin Department of Natural Resources Bureau of Science Services, PUB-SS-10542009. Madison, Wisconsin.

  • Morrsion, W. E. & M. E. Hay, 2011. Induced chemical defenses in a freshwater macrophyte suppress herbivore fitness and the growth of associated microbes. Oecologia 165: 427–436.

    Article  Google Scholar 

  • Murphy, K., A. Efremov, T. A. Davidson, E. Molina-Navarro, K. Fidanza, E. M. C. Betiol, P. Chambers, et al., 2019. World distribution, diversity and endemism of aquatic macrophytes. Aquatic Botany 158: 103127.

    Article  Google Scholar 

  • Nakai, S., Y. Inoue, M. Hosomi & A. Murakami, 1999. Growth inhibition of blue-green algae by allelopathic effects of macrophyte. Water Science and Technology 39(8): 47–53.

    Article  Google Scholar 

  • Nault, M.E. & A. Mikulyuk, 2009a. East Indian Hygrophila (Hygrophila polysperma): A Technical Review of Distribution, Ecology, Impacts, and Management. Wisconsin Department of Natural Resources Bureau of Science Services, PUB-SS-10492009. Madison, Wisconsin.

  • Nault, M.E. & A. Mikulyuk, 2009b. African Elodea (Lagarosiphon major): A Technical Review of Distribution, Ecology, Impacts, and Management. Wisconsin Department of Natural Resources Bureau of Science Services, PUB-SS-10502009. Madison, Wisconsin.

  • Newman, R. M., 1991. Herbivory and detritivory on fresh-water macrophytes by invertebrates: a review. Journal of the North American Benthological Society 10: 89–114.

    Article  Google Scholar 

  • Netherland, M. D., 1997. Turion ecology of Hydrilla. Journal of Aquatic Plant Management 35: 1–10.

    Google Scholar 

  • Netten, J. J. C., G. H. P. Arts, R. Gylstra, E. H. Van Nes, M. Scheffer & R. M. M. Roijackers, 2010. Effect of temperature and nutrients on the competition between free-floating Salvinia natans and submerged Elodea nuttallii in mesocosms. Fundamental and Applied Limnology 177: 125–132.

    Article  Google Scholar 

  • Netten, J. J. C., J. Van Zuidam, S. Kosten & E. T. H. M. Peeters, 2011. Differential response to climatic variation of free-floating and submerged macrophytes in ditches. Freshwater Biology 56: 1761–1768.

    Article  Google Scholar 

  • Nielsen, S. L. & K. Sand-Jensen, 1991. Variation in growth rates of submerged rooted macrophytes. Aquatic Botany 39: 109–120.

    Article  Google Scholar 

  • Neuenschwander, P., M. H. Julien, T. D. Center & M. P. Hill, 2009. Pistia stratiotes L. (Araceae). In Muniappan, R., G. V. P. Reddy & R. Raman (eds), Biological Control of Tropical Weeds Using Arthropods. Cambridge University Press, Cambridge: 332–352.

    Chapter  Google Scholar 

  • Ostrofsky, M. L. & E. R. Zettler, 1986. Chemical defences in aquatic plants. Journal of Ecology 74: 279–287.

    Article  CAS  Google Scholar 

  • Owens, C. S. & J. D. Madsen, 1995. Low temperature limits of Waterhyacinth. Journal of Aquatic Plant Management 33: 63–68.

    Google Scholar 

  • Owens, C. S., J. D. Madsen, R. M. Smart & R. M. Stewart, 2001. Dispersal of native and nonnative aquatic plant species in the San Marcos River, Texas. Journal of Aquatic Plant Management 39: 75–79.

    Google Scholar 

  • Owens, C. S., R. M. Smart & R. M. Stewart, 2004. Low temperature limits of giant Salvinia. Journal of Aquatic Plant Management 42: 91–94.

    Google Scholar 

  • Parker, J. D. & M. E. Hay, 2005. Biotic resistance to plant invasions? Native herbivores prefer non-native plants. Ecology Letters 8: 959–967.

    Article  PubMed  Google Scholar 

  • Pedersen, O., T. D. Colmer & K. Sand-Jensen, 2013. Underwater photosynthesis of submerged plants: recent advances and methods. Frontiers in Plant Science 4: 140.

    Article  PubMed  PubMed Central  Google Scholar 

  • Petruzzella, A., B. M. C. Grutters, S. M. Thomaz & E. S. Bakker, 2017. Potential for biotic resistance from herbivores to tropical and subtropical plant invasions in aquatic ecosystems. Aquatic Invasions 12: 343–353.

    Article  Google Scholar 

  • Phartyal, S. S., S. Rosbakh & P. Poschlod, 2018. Seed germination ecology in Trapa natans L., a widely distributed freshwater macrophyte. Aquatic Botany 147: 18–23.

    Article  Google Scholar 

  • Pieterse, A. H., L. Delange & L. Verhagan, 1981. A study of certain aspects of seed germination and growth of Pistia stratiotes L. Acta Botanica Neerlandica 30: 47–58.

    Article  Google Scholar 

  • Poovey, A. G. & S. H. Kay, 1998. The potential of a summer drawdown to manage monoecious Hydrilla. Journal of Aquatic Plant Management 36: 127–130.

    Google Scholar 

  • Prinz, M., C. Peppler-Lisbach, A. Weidhüner & H. Freund, 2019. Crassula helmsii (T. Kirk) Cockayne–Habitat requirements, distribution and vegetation community composition of an alien invasive species on Norderney. Tuexenia 39: 267–286.

    Google Scholar 

  • Pulzatto, M. M., L. A. Lolis, N. Louback-Franco & R. P. Mormul, 2018. Herbivory on freshwater macrophytes from the perspective of biological invasions: a systematic review. Aquatic Ecology 52: 297–309.

    Article  CAS  Google Scholar 

  • Qiu, J. W. & K. L. Kwong, 2009. Effects of macrophytes on feeding and life-history traits of the invasive apple snail Pomacea canaliculata. Freshwater Biology 54: 1720–1730.

    Article  Google Scholar 

  • Rao, P. N. & A. S. Reddy, 1984. Studies on the population biology of water lettuce: Pistia stratiotes L. Hydrobiologia 119: 15–19.

    Article  Google Scholar 

  • Rascio, N., 2002. The underwater life of secondarily aquatic plants: some problems and solutions. Critical Reviews in Plant Sciences 21(4): 401–427.

    Article  Google Scholar 

  • Rattray, M. R., C. Howard-Williams & J. M. A. Brown, 1991. Sediment and water as sources of nitrogen and phosphorus for submerged rooted aquatic macrophytes. Aquatic Botany 40: 225–237.

    Article  Google Scholar 

  • Rector, P. R., P. J. Nitzsche & S. S. Mangiafico, 2015. Temperature and herbicide impacts on germination of water chestnut seeds. Journal of Aquatic Plant Management 53: 105–112.

    Google Scholar 

  • Reddy, K. R. & W. F. DeBusk, 1983. Growth characteristics of aquatic macrophytes cultured in nutrient-enriched water: I. Water Hyacinth, Water Lettuce, and Pennywort. Economic Botany 38: 229–239.

    Article  Google Scholar 

  • Reddy, K. R., M. Agami & J. C. Tucker, 1990. Influence of phosphorus on growth and nutrient storage by water hyacinth (Eichhornia crassipes (Mart.) Solms) plants. Aquatic Botany 37: 355–365.

    Article  CAS  Google Scholar 

  • Redekop, P., D. Hofstra & A. Hussner, 2016. Elodea canadensis shows a higher dispersal capacity via fragmentation than Egeria densa and Lagarosiphon major. Aquatic Botany 130: 45–49.

    Article  Google Scholar 

  • Redekop, P., E. M. Gross, A. Nuttens, D. Hofstra, J. S. Clayton & A. Hussner, 2018. Hygraula nitens, the only native aquatic caterpillar in New Zealand, prefers an alien submerged plant. Hydrobiologia 812: 13–25.

    Article  CAS  Google Scholar 

  • Reichard, S. H. & P. White, 2001. Horticulture as a pathway of invasive plant introductions in the United States. BioScience 51: 103–113.

    Article  Google Scholar 

  • Rejmànková, E., 1992. Ecology of creeping macrophytes with special reference to Ludwigia peploides (H. B. K.) Raven. Aquatic Botany 43: 283–299.

    Article  Google Scholar 

  • Reynolds, C., N. A. Miranda & G. S. Cumming, 2015. The role of waterbirds in the dispersal of aquatic alien and invasive species. Diversity and Distributions 21: 744–754.

    Article  Google Scholar 

  • Riede, W., 1920. Untersuchungen über Wasserpflanzen. Flora 114: 1–118.

    Google Scholar 

  • Riis, T., T. V. Madsen & R. S. H. Sennels, 2009. Regeneration, colonisation and growth rates of allofragments in four common stream plants. Aquatic Botany 90: 209–212.

    Article  Google Scholar 

  • Riis, T., C. Lambertini, B. Olesen, J. S. Clayton, H. Brix & B. K. Sorrell, 2010. Invasion strategies in clonal aquatic plants: are phenotypic differences caused by phenotypic plasticity or local adaptation? Annals of Botany 106: 813–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riis, T., B. Olesen, J. S. Clayton, C. Lambertini, H. Brix & B. K. Sorrell, 2012. Growth and morphology in relation to temperature and light availability during the establishment of three invasive aquatic plant species. Aquatic Botany 102: 56–64.

    Article  Google Scholar 

  • Room, P. M., 1992. Equations relying growth and uptake of nitrogen by Salvinia molesta to temperature and the availability of nitrogen. Aquatic Botany 24: 43–59.

    Article  Google Scholar 

  • Ruaux, B., S. Greulich, J. Haury & J. P. Berton, 2009. Sexual reproduction of two alien invasive Ludwigia (Onagraceae) on the middle Loire River, France. Aquatic Botany 90: 143–148.

    Article  Google Scholar 

  • Rybicki, N. B., D. G. McFarland, H. A. Ruhl, J. T. Reel & J. W. Barko, 2001. Investigations of the availability and survival of submersed aquatic vegetation propagules in the tidal Potomac River. Estuaries 24: 407–424.

    Article  Google Scholar 

  • Šajna, N., M. Haler, S. Škornik & M. Kaligarič, 2007. Survival and expansion of Pistia stratiotes L. in a thermal stream in Slovenia. Aquatic Botany 87: 75–79.

    Article  Google Scholar 

  • Saito, K., M. Matsumoto, T. Sekine, I. Murakoshi, N. Morisaki & S. Iwasaki, 1989. Inhibitory substances from Myriophyllum. Journal of Natural Products 52: 1221–1226.

    Article  CAS  Google Scholar 

  • Salvucci, M. E. & G. Bowes, 1982. Photosynthetic and photorespiratory responses of the aerial and submerged leaves of Myriophyllum brasiliense (Myriophyllum aquaticum). Aquatic Botany 13: 147–164.

    Article  CAS  Google Scholar 

  • Sand-Jensen, K., 1989. Environmental variables and their effects on photosynthesis of aquatic plant communities. Aquatic Botany 34: 5–25.

    Article  CAS  Google Scholar 

  • Sand-Jensen, K. & H. Frost-Christensen, 1999. Plant growth and photosynthesis in the transition zone between land and stream. Aquatic Botany 63: 23–35.

    Article  CAS  Google Scholar 

  • Santamaria, L., 2002. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologia 23: 137–154.

    Article  Google Scholar 

  • Santos, M. J., L. W. Anderson & S. L. Ustin, 2011. Effects of invasive species on plant communities: an example using submerged aquatic plants at the regional scale. Biological Invasions 13: 443–457.

    Article  Google Scholar 

  • Sarneel, J. M., 2013. The dispersal capacity of vegetative propagules of riparian fen species. Hydrobiologia 710: 219–225.

    Article  Google Scholar 

  • Schooler, S., 2012. Alternanthera philoxeroides (Martius) Grisebach (alligator weed). In Francis, R. A. (ed.), A Handbook of Global Freshwater Invasive Species. Earthscan Publisher, London: 25–35.

    Google Scholar 

  • Sculthorpe, C. D., 1967. The Biology of Aquatic Vascular Plants. Arnold, London.

    Google Scholar 

  • Silva, G. G., A. J. Green, V. Weber, P. Hoffmann, A. Lovas-Kiss, C. Stenert & L. Maltchik, 2018. Whole angiosperms Wolffia columbiana disperse by gut passage through wildfowl in South America. Biology Letters 14: 20180703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simberloff, D., in press. Maintenance management and eradication of established aquatic invaders. Hydrobiologia. https://doi.org/10.1007/s10750-020-04352-5

  • Smida, I., C. Charpy-Roubaud, S. Y. Cherif, F. Torre, G. Audran, S. Smiti & J. Le Petit, 2015. Antibacterial properties of extracts of Ludwigia peploides subsp montevidensis and Ludwigia grandiflora subsp hexapetala during their cycle of development. Aquatic Botany 121: 39–45.

    Article  Google Scholar 

  • Smith, T. & P. Buckley, 2020. Biological Flora of the British Isles: Crassula helmsii. Journal of Ecology 108: 797–813.

    Article  Google Scholar 

  • Sousa, W. T. Z., 2011. Hydrilla verticillata (Hydrocharitaceae), a recent invader threatening Brazil’s freshwater environments: a review of the extent of the problem. Hydrobiologia 669: 1–20.

    Article  Google Scholar 

  • Spencer, W. & G. Bowes, 1985. Limnophila and Hygrophila: a review and physiological assessment of their weed potential in Florida. Journal of Aquatic Plant Management 23: 7–16.

    Google Scholar 

  • Spencer, W. & G. Bowes, 1990. Ecophysiology of the world’s most troublesome aquatic weeds. In Pieterse, A. H. & K. J. Murphy (eds), Aquatic Weeds – The Ecology and Management of Nuisance Aquatic Vegetation. Oxford University Press, Oxford: 39–73.

    Google Scholar 

  • Stiers, I., N. Crohain, G. Josens & L. Triest, 2011a. Impact of three aquatic invasive species on native plants and macroinvertebrates in temperate ponds. Biological Invasions 13: 2715–2726.

    Article  Google Scholar 

  • Stiers, I., J. Njambuya & L. Triest, 2011b. Competitive abilities of invasive Lagarosiphon major and native Ceratophyllum demersum in monocultures and mixed cultures in relation to experimental sediment dredging. Aquatic Botany 95: 161–166.

    Article  Google Scholar 

  • Storrs, M. J. & M.H. Julien, 1996. Salvinia: A Handbook for the Integrated Control of Salvinia molesta in Kakadu National Park. Northern Landscapes Occasional Papers No. 1. Darwin, Australia: Australian Nature Conservation Agency, 58 pp.

  • Thiebaut, G. & L. Martinez, 2015. An exotic macrophyte bed may facilitate the anchorage of exotic propagules during the first stage of invasion. Hydrobiologia 746: 183–196.

    Article  CAS  Google Scholar 

  • Thiebaut, G., H. Rodriguez-Perez & O. Jambon, 2019. Reciprocal interactions between the native Mentha aquatica and the invasive Ludwigia hexapetala in an outdoor experiment. Aquatic Botany 157: 17–23.

    Article  Google Scholar 

  • Thiele, J. & A. Otte, 2008. Invasion patterns of Heracleum mantegazzianum in Germany on the regional and landscape scales. Journal for Nature Conservation 16: 61–71.

    Article  Google Scholar 

  • Thomas, P. A. & P. M. Room, 1986. Taxonomy and control of Salvinia molesta. Nature 320: 581–584.

    Article  Google Scholar 

  • Thomaz, S. M., R. P. Mormul & T. S. Michelan, 2015. Propagule pressure, invasibility of freshwater ecosystems by macrophytes and their ecological impacts: a review of tropical freshwater ecosystems. Hydrobiologia 746: 39–59.

    Article  Google Scholar 

  • Thouvenot, L., J. Haury & G. Thiebaut, 2013a. Seasonal plasticity of Ludwigia grandiflora under light and water depth gradients: an outdoor mesocosm experiment. Flora 208: 430–437.

    Article  Google Scholar 

  • Thouvenot, L., J. Haury & G. Thiebaut, 2013b. A success story: water primroses, aquatic plant pests. Aquatic Conservation: Marine and Freshwater Ecosystems 23: 790–803.

    Google Scholar 

  • Thouvenot, L., C. Puech, L. Martinez, J. Haury & G. Thiébaut, 2013c. Strategies of the invasive macrophyte Ludwigia grandiflora in its introduced range: competition, facilitation or coexistence with native and exotic species? Aquatic Botany 107: 8–16.

    Article  Google Scholar 

  • Thouvenot, L., B. Gauzens, J. Haury & G. Thiebaut, 2019. Response of macrophyte traits to herbivory ad neighbouring species: integration of the functional trait framework in the context of ecological invasions. Frontiers in Plant Science 9: 1981.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tipping, P.W., 2004. Giant Salvinia. In: Coombs, E.M., Clark, J.K., Piper, G.L. & A.F. Cofrancesco (eds): Biological control of invasive plants in the United States. Oregon State University Press, Corvallis, pp. 174–177.

  • Touchette, B. W., L. R. Iannacone, E. T. Gwendolyn & A. R. Frank, 2007. Drought tolerance versus drought avoidance: a comparison of plant-water relations in herbaceous wetland plants subjected to water withdrawal and repletion. Wetlands 27: 656–667.

    Article  Google Scholar 

  • Umetsu, C. A., H. B. A. Evangelista & S. M. Thomaz, 2012. The colonization, regeneration, and growth rates of macrophytes from fragments: a comparison between exotic and native submerged aquatic species. Aquatic Ecology 46: 443–449.

    Article  Google Scholar 

  • van Kleunen, M., W. Dawson & P. Dostal, 2011. Research on invasive-plant traits tells us a lot. Trends in Ecology & Evolution 26: 317.

    Article  Google Scholar 

  • Venter, N., B. W. Cowie, E. T. F. Witkowski, G. C. Snow & M. J. Byrne, 2017. The amphibious invader: Rooted water hyacinth’s morphological and physiological strategy to survive stranding and drought events. Aquatic Botany 143: 41–48.

    Article  Google Scholar 

  • Vilà, M. & J. Weiner, 2004. Are invasive plant species better competitors than native plant species? - evidence from pair-wise experiments. Oikos 105: 229–238.

    Article  Google Scholar 

  • Walenciak, O., W. Zwisler & E. M. Gross, 2002. Influence of Myriophyllum spicatum-derived tannins on gut microbiota of its herbivore Acentria ephemerella. Journal of Chemical Ecology 28: 2045–2056.

    Article  CAS  PubMed  Google Scholar 

  • Wang, N., F. H. Yu, P. X. Li, W. M. He, F. H. Liu, J. M. Liu & M. Dong, 2008. Clonal integration affects growth, photosynthetic efficiency and biomass allocation, but not the competitive ability, of the alien invasive Alternanthera philoxeroides under severe stress. Annals of Botany 101: 671–678.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, P., Y. S. Xu, B. C. Dong, W. Xue & F. H. Yu, 2014. Effects of clonal fragmentation on intraspecific competition of a stoloniferous floating plant. Plant Biology 16: 1121–1126.

    CAS  PubMed  Google Scholar 

  • Wang, P., P. Alpert & F. H. Yu, 2016a. Clonal integration increases relative competitive ability in an invasive aquatic plant. American Journal of Botany 103: 2079–2086.

    Article  PubMed  Google Scholar 

  • Wang, Y. J., Y. F. Bai, S. Q. Zeng, B. Yao, W. Wang & F. L. Luo, 2016b. Heterogeneous water supply affects growth and benefits of clonal integration between co-existing invasive and native Hydrocotyle species. Scientific Reports 6: 29420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y. J., H. Müller-Schärer, M. van Kleunen, A. M. Cai, P. Zhang, R. Yan, B. C. Dong & F. H. Yu, 2017. Invasive alien plants benefit more from clonal integration in heterogeneous environments than natives. New Phytologist 216: 1072–1078.

    Article  PubMed  Google Scholar 

  • Wei, G. W., Q. Shu, F. L. Luo, Y. H. Chen, B. C. Dong, L. C. Mo, W. J. Huang & F. H. Yu, 2018. Separating effects of clonal integration on plant growth during submergence and de-submergence. Flora 246–247: 118–125.

    Article  Google Scholar 

  • Wells, C. L. & M. Pigliucci, 2000. Adaptive phenotypic plasticity: the case of heterophylly in aquatic plants. Perspectives in Plant Ecology, Evolution and Systematics 3: 1–18.

    Article  Google Scholar 

  • Wells, R., M. de Winton & J. S. Clayton, 1997. Successive macrophyte invasions within the submerged flora of Lake Tarawera, Central North Island, New Zealand. New Zealand Journal of Marine and Freshwater Research 31: 449–459.

    Article  CAS  Google Scholar 

  • Wersal, R. M. & J. D. Madsen, 2011. Comparative effects of water level variations on growth characteristics of Myriophyllum aquaticum. Weed Research 51: 386–393.

    Article  Google Scholar 

  • Wersal, R. M., J. D. Madsen & P. D. Gerard, 2013. Survival of parrotfeather following simulated drawdown events. Journal of Aquatic Plant Management 51: 22–26.

    Google Scholar 

  • Wheeler, G. S., T. K. Van & T. D. Center, 1998. Herbivore adaptations to a low-nutrient food: weed biological control specialist Spodoptera pectinicornis (Lepidoptera: Noctuidae) fed the floating aquatic plant Pistia stratiotes. Environmental Entomology 27(4): 993–1000.

    Article  Google Scholar 

  • Wilson, C. E., S. J. Darbyshire & R. Jones, 2007. The biology of invasive alien plants in Canada. 7. Cabomba caroliniana A. Gray. Canadian Journal of Plant Science 87: 615–638.

    Google Scholar 

  • Winkel, A. & J. Borum, 2009. Use of sediment CO2 by submersed rooted plants. Annals of Botany 103: 1015–1023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfer, S. & D. Straile, 2012. To share or not to share: clonal integration in a submerged macrophyte in response to light stress. Hydrobiologia 684: 261–269.

    Article  Google Scholar 

  • Wong, P. K., Y. Liang, N. Y. Liu & J.-W. Qiu, 2010. Palatability of macrophytes to the invasive freshwater snail Pomacea canaliculata: differential effects of multiple plant traits. Freshwater Biology 55: 2023–2031.

    Article  Google Scholar 

  • Wright, A.D. & M.F. Purcell, 1995. Eichhornia crassipes (Mart.) Solms-Laubach. In: Groves R.H., R.C.H. Shepherd & R.G. Richardson (eds) The Biology of Australian Weeds. R.G. & F.J. Richardson, Melbourne. pp. 111–121.

  • Wu, H. & J. Ding, 2019. Global change sharpens the double-edged sword effect of aquatic alien plants in China and beyond. Frontiers in Plant Science 10: 787.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, X., H. Wu, J. R. Chen & J. Y. Ye, 2013. Effects of allelochemical extracted from water lettuce (Pistia stratiotes Linn.) on the growth, microcystin production and release of Microcystis aeruginosa. Environmental Science and Pollution Research 20: 8192–8201.

    Article  CAS  PubMed  Google Scholar 

  • Wu, X., H. Wu, J. Y. Ye & B. Zhong, 2015. Study on the release routes of allelochemicals from Pistia stratiotes Linn., and its anti-cyanobacteria mechanisms on Microcystis aeruginosa. Environmental Science and Pollution Research 22: 18994–19001.

    Article  CAS  PubMed  Google Scholar 

  • Wu, X. X., Z. Y. Zhang & Y. G. Jin, 2019. Physiological mechanism of Eichhornia crassipes in inhibiting the growth of Microcytis aeruginosa. Russian Journal of Plant Physiology 66: 433–439.

    Article  CAS  Google Scholar 

  • Xiao, K., D. Yu, X. Xu & W. Xiong, 2007. Benefits of clonal integration between interconnected ramets of Vallisneria spiralis in heterogeneous light environments. Aquatic Botany 86: 76–82.

    Article  Google Scholar 

  • Xiao, T., H. Yu, Y.-B. Song, Y.-P. Jiang, B. Zeng & M. Dong, 2019. Nutrient enhancement of allelopathic effects of exotic invasive on native plant species. Plos One 14: e0206165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, Y. & D. Yu, 2003. The significance of lateral roots in phosphorus (P) acquisition of water hyacinth (Eichhornia crassipes). Aquatic Botany 75: 311–321.

    Article  Google Scholar 

  • Xie, D., R. Hu, R. P. Mormul, H. Ruan, Y. Feng & M. Zhang, 2018. Fragment type and water nutrient interact and affect the survival and establishment of Myriophyllum aquaticum. Hydrobiologia 817: 205–213.

    Article  CAS  Google Scholar 

  • Xue, B. K. & S. Leibler, 2018. Benefits of phenotypic plasticity for population growth in varying environments. Proceedings of the National Academy of Sciences of the United States of America 115: 12745–12750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarrow, M., V. H. Marin, M. Finlayson, A. Tironi, L. E. Delgado & F. Fischer, 2009. The ecology of Egeria densa Planchon (Liliopsida: Alismatales): A wetland ecosystem engineer? Revista Chilena de Historia Natural 82: 299–313.

    Article  Google Scholar 

  • Ye, X. Q., J. L. Meng, B. Zeng, M. Wu, Y. Y. Zhang & X. P. Zhang, 2016. Submergence causes similar carbohydrate starvation but faster post-stress recovery than darkness in Alternanthera philoxeroides plants. PLoS One 11: e0165193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin, L., W. Li, T. V. Madsen, S. C. Maberly & G. Bowes, 2017. Photosynthetic inorganic carbon acquisition in 30 freshwater macrophytes. Aquatic Botany 140: 48–54.

    Article  CAS  Google Scholar 

  • You, W., D. Yu, C. Liu, D. Xie & W. Xiong, 2013. Clonal integration facilitates invasiveness of the alien aquatic plant Myriophyllum aquaticum L. under heterogeneous water availability. Hydrobiologia 718: 27–39.

    Article  Google Scholar 

  • You, W. H., C. M. Han, L. X. Fang & D. L. Du, 2016a. Propagule pressure, habitat conditions and clonal integration influence the establishment and growth of an invasive clonal plant, Alternanthera philoxeroides. Frontiers in Plant Science 7: 1–11.

    Article  Google Scholar 

  • You, W. H., C. M. Han, C. H. Liu & D. Yu, 2016b. Effects of clonal integration on the invasive clonal plant Alternanthera philoxeroides under heterogeneous and homogeneous water availability. Scientific Reports 6: 29767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, L. Q., Y. Fujii, Y. J. Zhou, J. P. Zhang, Y. L. Lu & S. N. Xuan, 2007. Response of exotic invasive weed Alternanthera philoxeroides to environmental factors and its competition with rice. Rice Science 14: 49–55.

    Article  Google Scholar 

  • Yu, H., N. Shen, D. Yu & C. Liu, 2019. Clonal integration increases growth performance and expansion of Eichhornia crassipes in littoral zones: a simulation study. Environmental and Experimental Botany 159: 13–22.

    Article  Google Scholar 

  • Xiong, W., D. Yu, Q. Wang, C. Liu & L. Wang, 2008. A snail prefers native over exotic freshwater plants: implications for the enemy release hypotheses. Freshwater Biology 53: 2256–2263.

    Google Scholar 

  • Xu, C-Y., Schooler, S.S. & R.D. van Klinken, 2010. Effects of clonal integration and light availability in the gowth and physiology of two invasive herbs. Journal of Ecology 98: 833–844.

    Article  Google Scholar 

  • Zuo, S., Y. Ma & I. Shinobu, 2012a. Differences in ecological and allelopathic traits among Alternanthera philoxeroides populations. Weed Biology and Management 12: 123–130.

    Article  Google Scholar 

  • Zuo, S., H. Mei, L. Ye, J. Wang & S. Ma, 2012b. Effects of water quality characteristics on the algicidal property of Alternanthera philoxeroides (Mart.) Griseb. in an aquatic ecosystem. Biochemical Systematics and Ecology 43: 93–100.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We heartily acknowledge the helpful comments of the editor S. Thomaz and two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Hussner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Katya E. Kovalenko, Fernando M. Pelicice, Lee B. Kats, Jonne Kotta & Sidinei M. Thomaz / Aquatic Invasive Species III

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussner, A., Heidbüchel, P., Coetzee, J. et al. From introduction to nuisance growth: a review of traits of alien aquatic plants which contribute to their invasiveness. Hydrobiologia 848, 2119–2151 (2021). https://doi.org/10.1007/s10750-020-04463-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04463-z

Keywords

Navigation