Skip to main content
Log in

The effect of riverine networks on fish β-diversity patterns in a Neotropical system

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We investigated how the riverine network influences taxonomic and functional beta diversity patterns of fish assemblages in the mainstem/headwater (lateral) and upstream/downstream (longitudinal) gradients in a Neotropical river system. We investigated the following questions: which component (turnover or nestedness) explains taxonomic and functional beta diversity in both gradients? Is this component a consistent pattern for different lateral sections of the river basin? Is this component influenced by the spatial extent? Finally, how are taxonomic and functional beta diversity structured by space and environment along the longitudinal gradient? Taxonomic and functional turnover were the main patterns found for the lateral gradient and they were consistent for all lateral sections considered. Taxonomic and functional turnover were also the main patterns for the longitudinal gradient, increasing with the spatial extent increase and being structured by space and spatially structured environments. Our study demonstrates that the dendritic nature of riverine systems constrains species and traits occurrence along lateral and longitudinal gradients in a Neotropical region, generating taxonomic and functional turnover patterns due to the influence of space and spatially structured environments on niche- and dispersal-based processes. These results show that Neotropical riverine systems conservation must go beyond traditional approaches and consider the metacommunity perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Altermatt, F., 2012. Metacommunity dynamics. In Gibson, D. (ed.), Oxford Bibliographies Online: Ecology. Oxford University Press, New York.

    Google Scholar 

  • Altermatt, F., 2013. Diversity in riverine metacommunities: a network perspective. Aquatic Ecology 47: 365–377.

    Google Scholar 

  • Altermatt, F., M. Seymour & N. Martinez, 2013. River network properties shape a-diversity and community similarity patterns of aquatic insect communities across major drainage basins. Journal of Biogeography 40: 2249–2260.

    Google Scholar 

  • Azevedo, M. C. C., F. G. Araújo, A. G. Cruz-Filho, A. L. M. Pessanha, M. A. Silva & A. P. P. Guedes, 2007. Demersal fishes in a tropical bay in southeastern Brazil: partitioning the spatial, temporal and environmental components of ecological variation. Estuarine, Coastal and Shelf Science 75: 468–480.

    Google Scholar 

  • Barbalho, M. G. S., A. C. Leal, J. O. R. Nunes, C. G. Moraes & J. C. Peixoto, 2018. Unidades da paisagem da bacia do Rio das Almas, microrregião de Ceres/GO. Planeta Amazônia 10: 153–166.

    Google Scholar 

  • Baselga, A., 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19: 134–143.

    Google Scholar 

  • Baselga, A., 2012. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecology and Biogeography 21: 1223.

    Google Scholar 

  • Baselga, A., D. Orme, S. Villéger, J. De Bortoli, & F. Leprieur, 2018. Betapart: Partitioning beta diversity into turnover and nestedness components. R package version 1.3. Available at: https://cran.r-project.org/web/packages/betapart/.

  • Bertolo, A., F. G. Blanchet, P. Magnan, P. Brodeur, M. Mingelbier & P. Legendre, 2012. Inferring processes from spatial patterns: the role of directional and non-directional forces in shaping fish larvae distribution in a freshwater lake system. PLoS ONE 7: e50239.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blanchet, F. G., P. Legendre & D. Borcard, 2008. Modelling directional spatial processes in ecological data. Ecological Modelling 215: 325–336.

    Google Scholar 

  • Blanchet, F. G., R. Maranger, D. Monti & P. Pepin, 2011. Modelling the effect of directional spatial ecological processes at different scales. Oecologia 166: 357–368.

    PubMed  Google Scholar 

  • Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055. https://doi.org/10.2307/1940179.

    Article  Google Scholar 

  • Borges, P. P., M. S. Dias, F. R. Carvalho, L. Casatti, P. S. Pompeu, M. Cetra, F. L. Tejerina-Garro, Y. R. Súarez, J. C. Nabout & F. B. Teresa, 2020. Stream fish metacommunity organisation across a Neotropical ecoregion: the role of environment, anthropogenic impact and dispersal-based processes. PLoS ONE 15: e0233733.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, B. L. & C. M. Swan, 2010. Dendritic network structure constrains metacommunity properties in riverine ecosystems. Journal of Animal Ecology 79: 571–580.

    CAS  Google Scholar 

  • Brown, B. L., E. R. Sokol, J. Skelton & B. Tornwall, 2016. Making sense of metacommunities: dispelling the mythology of a metacommunity typology. Oecologia 183: 643–652.

    PubMed  Google Scholar 

  • Cardoso, M. R. D., F. F. N. Marcuzzo & J. R. Barros, 2014. Classificação Climática de Köppen-Geiger para o Estado de Goiás e o Distrito Federal. Acta Geographica 8(16): 40–55.

    Google Scholar 

  • Carrara, F., F. Altermatt, I. Rodriguez-Iturbe & A. Rinaldo, 2012. Dendritic connectivity controls biodiversity patterns in experimental metacommunities. Proceedings of the National Academy of Sciences of the United States of America 109: 5761–5766.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho, R. A. & F. L. Tejerina-Garro, 2015. Environmental and spatial processes: what controls the functional structure of fish assemblages in tropical rivers and headwater streams? Ecology of Freshwater Fish 24: 317–328.

    Google Scholar 

  • Carvalho, R. A., H. T. Santana, & F. L. Tejerina-Garro, 2020. Environmental influence on higher fish taxonomic levels: relationships in tropical headwater streams. Studies on Neotropical Fauna and Environment.

  • Cetra, M., M. Petrere Jr. & W. Barrela, 2017. Relative influences of environmental and spatial factors on stream fish assemblages in Brazilian Atlantic rainforest. Fisheries Management and Ecology 24: 139–145.

    Google Scholar 

  • Costa e Silva, T., 2015. Revisão taxonômica das espécies do gênero Pimelodus Lacépède, 1803 (Siluriformes: Pimelodidae) na drenagem do rio Tocantins, Brasil. Programa de Pós-Graduação em Ecologia de Ecótonos. Universidade Federal do Tocantins.

  • Diniz-Filho, J. A. F., T. Siqueira, A. A. Padial, T. F. Rangel, V. L. Landeiro & L. M. Bini, 2012. Spatial autocorrelation analysis allows disentangling the balance between neutral and niche processes in metacommunities. Oikos 121: 201–210.

    Google Scholar 

  • Dorman, D. F., J. Elith, S. Bacher, C. Buchmann, G. Carl, G. Carré, et al., 2012. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 27–46.

    Google Scholar 

  • Dray, S. & A. Dufour, 2007. The ade4 Package: implementing the Duality Diagram for Ecologists. Journal of Statistical Software 22(4): 1–20.

    Google Scholar 

  • Dray, S., D. Bauman, G. Blanchet, D. Borcard, S. Clappe, G. Guenard, et al., 2019. adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3-7. https://CRAN.R-project.org/package=adespatial.

  • Erős, T., 2017. Scaling fish metacommunities in stream networks: synthesis and future research avenues. Community Ecology 18: 72–86.

    Google Scholar 

  • Finn, D. S., N. Bonada, C. Múrria & J. M. Hughes, 2011. Small but mighty: headwaters are vital to stream network biodiversity at two levels of organization. Journal of the North American Benthological Society 30: 963–980.

    Google Scholar 

  • Frimpong, E. A. & P. L. Angermeier, 2010. Trait-based approaches in the analysis of stream fish communities. American Fisheries Society Symposium 73(109–136): 2010.

    Google Scholar 

  • Froese, R., & D. Pauly, 2019. FishBase. World Wide Web electronic publication. Available in: www.fishbase.org, version (08/2019).

  • Gianuca, A. T., S. A. J. Declerck, P. Lemmens & L. Meester, 2017. Effects of dispersal and environmental heterogeneity on the replacement and nestedness components of β-diversity. Ecology 98(2): 525–533.

    PubMed  Google Scholar 

  • Gilbert, B. & M. J. Lechowicz, 2004. Neutrality, niches, and dispersal in a temperate forest understory. Proceedings of the National Academy of Sciences of the United States of America 101: 7651–7656.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grant, E. H. C., W. H. Lowe & W. F. Fagan, 2007. Living in the branches: population dynamics and ecological processes in dendritic networks. Ecology Letters 10: 165–175.

    Google Scholar 

  • Gravel, D., C. Albouy & W. Thuiller, 2016. The meaning of functional trait composition of food webs for ecosystem function. Philosophical Transactions of Royal Society B 371: 20150268.

    Google Scholar 

  • Grenouillet, G., D. Pont & C. Herissé, 2004. Within-basin fish assemblage structure: the relative influence of habitat versus stream spatial position on local species richness. Canadian Journal of Fisheries and Aquatic Sciences 61: 93–102.

    Google Scholar 

  • Heino, J., A. S. Melo, T. Siqueira, J. Soininen, S. Valanko & L. M. Bini, 2015. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology 60: 845–869.

    Google Scholar 

  • Henriques-Silva, R., M. Logez, N. Reynaud, P. A. Tedesco, S. Brosse, S. R. Januchowski-Hartley, T. Oberdorff & C. Argillier, 2019. A comprehensive examination of the network position hypothesis across multiple river metacommunities. Ecography 42: 284–294.

    Google Scholar 

  • Holmlund, C. M. & M. Hammer, 1999. Ecosystem services generated by fish populations. Ecological Economics 29: 253–268.

    Google Scholar 

  • Huang, L., J. Huang, Z. Wu, Y. Mo, Q. Zou, E. Jeppesen & N. Wu, 2019. Beta diversity partitioning and drivers of variations in fish assemblages in a headwater stream: Lijiang River, China. Water 11: 1–16.

    Google Scholar 

  • Jackson, D. A., P. R. Peres-Neto & J. D. Olden, 2001. What controls who is where in freshwater fish communities—the roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences 58: 157–170.

    Google Scholar 

  • Keck, B. P., Z. H. Marion, D. J. Martin, J. C. Kaufman, C. P. Harden, J. S. Schwartz & R. J. Strange, 2014. Fish functional traits correlated with environmental variables in a temperate biodiversity hotspot. PLoS ONE 9: e93237.

    PubMed  PubMed Central  Google Scholar 

  • Kembel, S. W., P. D. Cowan, M. R. Helmus, W. K. Cornwell, H. Morlon, D. D. Ackerly, et al., 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26: 1463–1464.

    CAS  Google Scholar 

  • Legendre, P., & L. Legendre, 2012. Numerical Ecology. 3rd English ed. Elsevier.

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.

    Google Scholar 

  • Leprieur, F., P. A. Tedesco, B. Hugueny, O. Beauchard, H. H. Dürr, S. Brosse & T. Oberdorff, 2011. Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecology Letters 14: 325–334.

    PubMed  Google Scholar 

  • Lima, A. C., C. S. Agostinho, D. Sayanda, F. M. Pelicice, A. M. V. M. Soares & K. A. Monaghan, 2016. The rise and fall of fish diversity in a neotropical river after impoundment. Hydrobiologia 763: 207–221.

    Google Scholar 

  • Logez, M., P. Bady, A. Melcher & D. Pont, 2013. A continental-scale analysis of fish assemblage functional structure in European rivers. Ecography 36: 080–091.

    Google Scholar 

  • Logue, J. B., N. Mouquet, H. Peter, H. Hillebrand, P. Declerck, A. Flohre, S. Gantner, N. Gülzow, P. Hörtnagl, S. Meier & B. Pecceu, 2011. Empirical approaches to metacommunities: a review and comparison with theory. Trends in Ecology and Evolution 26: 482–491.

    PubMed  Google Scholar 

  • Lynch, H. J., E. H. C. Grant, R. Muneepeerakul, M. Arunachalam, I. Rodriguez-Iturbe & W. F. Fagan, 2011. How restructuring river connectivity changes freshwater fish biodiversity and biogeography. Water Resources Research 47: W05531.

    Google Scholar 

  • Mazzoni, R., N. Fenerich-Verani & E. P. Caramaschi, 2000. Electrofishing a sampling technique for coastal stream fish populations and communities in the southeast of Brazil. Revista Brasileira de Biologia 60: 205–216.

    CAS  PubMed  Google Scholar 

  • Medeiros, E. S. F., M. J. Silva, B. R. S. Figueiredo, T. P. A. Ramos & R. T. C. Ramos, 2010. Effects of fishing technique on assessing species composition in aquatic systems in semi-arid Brazil. Brazilian Journal of Biology 70: 255–262.

    CAS  Google Scholar 

  • Medina Torres, K. M. M. & C. L. Higgins, 2016. Taxonomic and functional organization in metacommunity structure of stream-fish assemblages among and within river basin in Texas. Aquatic Ecology 50: 247–259.

    CAS  Google Scholar 

  • Meyer, J. L., D. L. Strayer, J. B. Wallace, S. L. Eggert, G. S. Helfman & N. E. Leonard, 2007. The contribution of headwater streams to biodiversity in river networks. Journal of the American Water Resources Association 43: 86–103.

    Google Scholar 

  • Nimer, E., 1989. Climatologia do Brasil. IBGE, Rio de Janeiro: 421.

    Google Scholar 

  • Massicotte, P., A. Bertolo, P. Brodeur, C. Hudon, M. Mingelbier & P. Magnan, 2015. Influence of the aquatic vegetation landscape on larval fish abundance. Journal of Great Lakes Research 41: 873–880.

    Google Scholar 

  • Meffe, G. K. & W. L. Minkley, 1987. Persistence and stability of fish and invertebrate assemblages in a repeatedly disturbed Sonoran Desert stream. American Midland Naturalist 117: 177–191.

    Google Scholar 

  • Muneepeerakul, R., E. Bertuzzo, H. J. Lynch, W. F. Fagan, A. Rinaldo & I. Rodriguez-Iturbe, 2008. Neutral metacommunity models predict fish diversity patterns in Mississippi-Missouri basin. Nature 453: 220–222.

    CAS  PubMed  Google Scholar 

  • Münkemüller, T., F. Bello, C. N. Meynard, D. Gravel, S. Lavergne, D. Mouillot, N. Mouquet & W. Thuiller, 2012. From diversity indices to community assembly processes: a test with simulated data. Ecography 35: 468–480.

    Google Scholar 

  • Nakagawa, H., 2014. Contribution of environmental and spatial factors to the structure of stream fish assemblages at different spatial scales. Ecology of Freshwater Fish 23: 208–223.

    Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, et al., 2019. Package “vegan”. R package version 2.5-6. Available at: https://cran.r-project.org/web/packages/vegan/.

  • Oliveira, L. G. & P. C. Bispo, 2001. Ecologia de comunidades das larvas de Trichoptera Kirby (Insecta) em dois córregos de primeira ordem da Serra dos Pirineus, Pirenópolis, Goiás, Brasil. Revista Brasileira de Zoologia 18: 1245–1252.

    Google Scholar 

  • Pavoine, S. & M. B. Bonsall, 2010. Measuring biodiversity to explain community assembly: a unified approach. Biological Reviews 86: 792–812.

    PubMed  Google Scholar 

  • Pavoine, S., J. Vallet, A.-B. Dufour, S. Gachet & H. Daniel, 2009. On the challenge of treating various types of variables: application for improving the measurement of functional diversity. Oikos 118: 391–402.

    Google Scholar 

  • Pease, A. A., A. A. González-Díaz, R. Rodiles-Hernández & K. O. Winemiller, 2012. Functional diversity and trait–environment relationships of stream fish assemblages in a large tropical catchment. Freshwater Biology 5: 1060–1075.

    Google Scholar 

  • Pease, A. A., M. Mendoza-Carranza & K. O. Winemiller, 2018. Feeding ecology and ecomorphology of cichlid assemblages in a large Mesoamerican river delta. Environmental Biology of Fishes 101: 867–879.

    Google Scholar 

  • Peláez, O. E., F. M. Azevedo & C. S. Pavanelli, 2017. Environmental heterogeneity explains species turnover but not nestedness in fish assemblages of a Neotropical basin. Acta Limnologica Brasiliensia 29: e117.

    Google Scholar 

  • Peláez, O. E. & C. S. Pavanelli, 2019. Environmental heterogeneity and dispersal limitation explain different aspects of β-diversity in Neotropical fish assemblages. Freshwater Biology 64: 497–505.

    Google Scholar 

  • Peres-Neto, P. R. & P. Legendre, 2010. Estimating and controlling for spatial structure in the study of ecological communities. Global Ecology and Biogeography 19: 174–184.

    Google Scholar 

  • Poff, N. L., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16: 391–409.

    Google Scholar 

  • Pool, T. K., G. Grenouillet & S. Villéger, 2014. Species contribute differently to the taxonomic, functional, and phylogenetic alpha and beta diversity of freshwater fish communities. Diversity and distributions 20: 1235–1244.

    Google Scholar 

  • R Core Team. 2019. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL https://www.R-project.org/.

  • Roa-Fuentes, C. A., L. Casatti & R. M. Romero, 2015. Phylogenetic signal and major ecological shifts in the ecomorphological structure of stream fish in two river basins in Brazil. Neotropical Ichthyology 13: 165–178.

    Google Scholar 

  • Rocha, M. S., 2012. Sistemática da família Pimelodidae Swainson, 1838 (Teleostei: Siluriformes). Instituto Nacional de Pesquisas da Amazônia, INPA.

    Google Scholar 

  • Rodrigues-Filho, C. A. S., R. C. Gurgel-Lourenço, L. A. V. Bezerra, E. F. Oliveira, R. P. Leitão, D. S. Garcez & J. L. Sánchez-Botero, 2018. How are local fish communities structured in Brazilian semiarid headwater streams? Hydrobiologia 819: 93–108.

    Google Scholar 

  • dos Santos, G. M., B. de Mérona, A. A. Juras & M. Jégu, 2004. Peixes do baixo rio Tocantins: 20 anos depois da usina hidrelétrica Tucuruí. Eletronorte, Brasília, DF.

    Google Scholar 

  • Soininen, J., 2016. Spatial structure in ecological communities—a quantitative analysis. Oikos 125: 160–166.

    Google Scholar 

  • Sharma, S., P. Legendre, M. Cáceres & D. Boisclair, 2011. The role of environmental and spatial processes in structuring native and non-native fish communities across thousands of lakes. Ecography 34: 762–771.

    Google Scholar 

  • Strecker, A. L., J. D. Olden, J. B. Whittier & C. P. Paukert, 2011. Defining conservation priorities for freshwater fishes according to taxonomic, functional, and phylogenetic diversity. Ecological Applications 21: 3002–3013.

    Google Scholar 

  • Stuart-Smith, R., A. Bates, J. Lefcheck, et al., 2013. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501: 539–542.

    CAS  PubMed  Google Scholar 

  • Súarez, Y. R. & M. Petrere Jr., 2006. Gradientes de diversidade nas comunidades de peixes da bacia do rio Iguatemi, Mato Grosso do Sul, Brasil. Iheringia 96: 197–204.

    Google Scholar 

  • Tejerina-Garro, F. L., 2008. Biodiversidade e impactos ambientais no estado de Goiás. In Rocha, C., F. L. Tejerina-Garro & J. P. Pietrafesa (eds), Cerrado, Sociedade e Meio Ambiente: Desenvolvimento Sustentável em Goiás. Editora da Universidade Católica de Goiás, Goiânia, GO: 15–47.

    Google Scholar 

  • Tejerina-Garro, F. L. & B. Mérona, 2000. Gill net sampling standardisation in large rivers of French Guiana (South America). Bulletin Français de La Pêche et de La Pisciculture 357(358): 227–240.

    Google Scholar 

  • Tejerina-Garro, F. L., M. Maldonado, C. Ibañez, D. Pont, N. Roset & T. Oberdorff, 2005. Effects of natural and anthropogenic environmental changes on riverine fish assemblages: a framework for ecological assessment of rivers. Brazilian Archives of Biology and Technology 48: 91–108.

    Google Scholar 

  • Tejerina-Garro, F. L., R. A. Carvalho & F. B. Teresa, 2017. A biodiversidade e a conservação da ictiofauna do alto da bacia do rio Paraná no estado de Goiás, Brasil Central. In Hannibal, W., R. F. Rossi, I. L. Morais & L. H. M. Teixeira (eds), Biodiversidade, Manejo e Conservação do Sul de Goiás. Paco Editorial, Jundiaí, SP: 93–126.

    Google Scholar 

  • Tonkin, J. D., F. Altermatt, D. S. Finn, J. Heino, J. D. Olden, S. U. Pauls & D. A. Lytle, 2018. The role of dispersal in river network metacommunities: patterns, processes, and pathways. Freshwater Biology 63: 141–163.

    Google Scholar 

  • Villéger, S., S. Brosse, M. Mouchet, D. Mouillot & M. J. Vanni, 2017. Functional ecology of fish: current approaches and future challenges. Aquatic Sciences 79: 783–801.

    Google Scholar 

  • Vitorino Jr., O. B., R. Fernandes, C. S. Agostinho & F. M. Pelicice, 2016. Riverine networks constrain β-diversity patterns among fish assemblages in a large Neotropical river. Freshwater Biology 61: 1733–1745.

    Google Scholar 

  • Wiens, J. A., 1989. Spatial scaling in ecology. Functional Ecology 3: 385–397.

    Google Scholar 

  • Winemiller, K. O., 1989. Patterns of variation in life history among South American fishes in seasonal environments. Oecologia 81: 225–241.

    PubMed  Google Scholar 

  • Winemiller, K. O., 2005. Life history strategies, population regulation, and implications for fisheries management. Canadian Journal of Fisheries and Aquatic Sciences 62: 872–885.

    Google Scholar 

  • Zbinden, Z. D. & W. J. Matthews, 2017. Beta diversity of stream fish assemblages: partitioning variation between spatial and environmental factors. Freshwater Biology 62: 1460–1471.

    CAS  Google Scholar 

  • Zuur, A. F., E. N. Ieno & C. S. Elphick, 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1: 3–14.

    Google Scholar 

Download references

Acknowledgements

We thank FAPEG for the financial support to the Project #14597. We thank Waldeir Francisco de Menezes and Nicelly Braudes de Araújo for their help with data collection in field and the extensive work at the laboratory. We also thank reviewers for comments that helped to improve the manuscript. FBT is supported by CNPq (306912/2018-0).

Author information

Authors and Affiliations

Authors

Contributions

RAC and FLTG were responsible for study design and fish species sampling. RAC, FLTG, and FBT were responsible for statistical analyses and manuscript writing. All authors read the manuscript and gave their final approval for publication.

Corresponding author

Correspondence to Rodrigo A. Carvalho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Fernando M. Pelicice

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 332 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, R.A., Teresa, F.B. & Tejerina-Garro, F.L. The effect of riverine networks on fish β-diversity patterns in a Neotropical system. Hydrobiologia 848, 515–529 (2021). https://doi.org/10.1007/s10750-020-04459-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04459-9

Keywords

Navigation