Skip to main content

Advertisement

Log in

Macroinvertebrate taxa display increased fidelity to preferred biotopes among disturbed sites in a hydrologically variable tropical river

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Understanding the biotope requirements of the various aquatic biota is crucial for effective biomonitoring. Yet, the biotope preferences of macroinvertebrates in Afrotropical rivers have been poorly studied. In this study, we investigated the influence of human disturbance and flow-driven biotope changes on the β-diversity and biotope preferences of macroinvertebrates in the Mara River, Kenya. Macroinvertebrates were sampled from various biotopes at seven reference and nine impaired sites in wet and dry seasons. β-Diversity was determined (i) for each biotope and (ii) at the site scale, combining all biotopes sampled, and macroinvertebrate biotope preferences were assessed among biotopes between reference and impaired sites. Minor β-diversity differences were observed between reference and impaired sites based on relative abundance data, but differences were greater when the presence–absence data were used. There were no statistically significant changes in macroinvertebrate biotope preference due to human disturbance, but fidelity to preferred biotopes increased at impaired sites. In fast-flowing waters, Simuliidae, Baetidae, Tricorythidae, and Hydropsychidae dominated stable rocky substrates and were the most sensitive to flow alteration. This study adds valuable information on the effects of biotope reduction/loss and flow alteration on the diversity and biotope preferences of macroinvertebrates in Afrotropical rivers, and contributes to improvement of relevant bioassessment protocols and biodiversity conservation efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • American Public Health Association, APHA, 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC.

    Google Scholar 

  • Anderson, M. J., K. E. Ellingsen & B. H. McArdle, 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9: 683–693.

    PubMed  Google Scholar 

  • Arimoro, F. O., O. N. Odume, S. I. Uhunoma & A. O. Edegbene, 2015. Anthropogenic impact on water chemistry and benthic macroinvertebrate associated changes in a southern Nigeria stream. Environmental Monitoring and Assessment 187: 14.

    PubMed  Google Scholar 

  • Arthington, A. H., 2012. Environmental Flows: Saving Rivers in the Third Millennium. University of California Press, Berkeley.

    Google Scholar 

  • Arthington, Á. H., R. J. Naiman, M. E. McClain & C. Nilsson, 2010. Preserving the biodiversity and ecological services of rivers: new challenges and research opportunities. Freshwater Biology 55: 1–16.

    Google Scholar 

  • Aschalew, L. & O. Moog, 2015. Benthic macroinvertebrates based new biotic score “ETHbios” for assessing ecological conditions of highland streams and rivers in Ethiopia. Limnologica-Ecology and Management of Inland Waters 52: 11–19.

    Google Scholar 

  • Aura, C. M., P. O. Raburu & J. Herrmann, 2010. A preliminary macroinvertebrate Index of Biotic Integrity for bioassessment of the Kipkaren and Sosiani Rivers, Nzoia River Basin, Kenya. Lakes and Reservoirs: Research and Management 15: 119–128.

    Google Scholar 

  • Barwell, L. J., N. J. B. Isaac & W. E. Kunin, 2015. Measuring β-diversity with species abundance data. Journal of Animal Ecology 84: 1112–1122.

    Google Scholar 

  • Beeson, C. E. & P. F. Doyle, 1995. Comparison of bank erosion and vegetated and non-vegetated channel bends. Journal of the American Water Resources Association 31: 983–990.

    Google Scholar 

  • Biggs, B. J. F., R. P. Ibbit & I. G. Jowett, 2008. Determination of flow regimes for protection of in-river values in New Zealand: and overview. Ecohydrology and Hydrobiology 8: 17–29.

    Google Scholar 

  • Bonada, N., H. F. Dallas, M. Rieradevall, J. Day & N. Prat, 2006. A comparison of rapid bioassessment protocols used in 2 regions with Mediterranean climates, the Iberian Peninsula and South Africa. Journal of North American Benthological Society 25: 487–500.

    Google Scholar 

  • Boulton, A. J. & P. S. Lake, 2008. Effects of drought on stream insects and its ecological consequences. In Aquatic Insects: Challenges to Populations. CABI Publishing, Wallingford: 81–102.

  • Bray, J. R. & J. T. Curtis, 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27: 325–349.

    Google Scholar 

  • Brewin, P. A., T. M. L. Newman & S. J. Ormerod, 1995. Patterns of macroinvertebrate distribution in relation to altitude, habitat structure and land use in streams of the Nepalese Himalaya. Archiv für Hydrobiologie 135: 79–100.

    Google Scholar 

  • Brooks, J. J., T. I. M. Haeusler, I. Reinfelds & S. Williams, 2005. Hydraulic microhabitats and the distribution of macroinvertebrate assemblages in riffles. Freshwater Biology 50: 331–344.

    Google Scholar 

  • Camberlin, P., V. Moron, R. Okoola, N. Philippon & W. Gitau, 2009. Components of rainy seasons’ variability in Equatorial East Africa: onset, cessation, rainfall frequency and intensity. Theoretical and Applied Climatology 98: 237–249.

    Google Scholar 

  • Chakona, A., C. Phiri, C. H. Magadza & L. Brendonck, 2008. The influence of habitat structure and flow permanence on macroinvertebrate assemblages in temporary rivers in northwestern Zimbabwe. Hydrobiologia 607: 199–209.

    Google Scholar 

  • Chutter, F. M., 1970. Hydrobiological studies in the catchment of Vaal Dam, South Africa. Part 1. River zonation and the benthic fauna. Internationale Revue der gesamten Hydrobiologie 55: 445–494.

    Google Scholar 

  • Chutter, F. M., 1972. An empirical biotic index of the quality of water in South African streams and rivers. Water Research 6: 19–30.

    Google Scholar 

  • Clarke, K. R. & R. M. Warwick, 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. PRIMER-E Ltd., Plymouth.

    Google Scholar 

  • Cummins, K. W. & M. J. Klug, 1979. Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10: 147–172.

    Google Scholar 

  • Dallas, H. F., 2007. The influence of biotope availability on macroinvertebrate assemblages in South African rivers: implications for aquatic bioassessment. Freshwater Biology 52: 370–380.

    Google Scholar 

  • Day, J. A. & I. J. de Moor, 2002a. Guides to the Freshwater Invertebrates of Southern Africa. Non-arthropods (the Protozoans, Porifera, Cnidaria, Platyhelminthes, Nemertea, Rotifera, Nematoda, Nematomorpha, Gastrotrichia, Bryozoa, Tardigrada, Polychaeta, Oligochaeta and Hirudinea), Vol. 5. WRC Report No. TT 167/02. Water Research Commission, Pretoria.

  • Day, J. A. & I. J. de Moor, 2002b. Guides to the Freshwater Invertebrates of Southern Africa. Arachnida and Mollusca (Araneae, Water Mites and Mollusca), Vol. 6. WRC Report No. TT 182/02. Water Research Commission, Pretoria.

  • Day, J. A., A. D. Harrison & I. J. de Moor, 2002. Guides to the Freshwater Invertebrates of Southern Africa. Diptera, Vol. 9. WRC Report No. TT 201/02, South Africa.

  • de Moor, F. C., 2002. Shortcomings and advantages of using rapid biological assessment techniques for the purpose of characterizing rivers in South Africa. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen 28: 651–662.

    Google Scholar 

  • de Moor I. J., J. A. Day & F. C. de Moor, 2003a. Guides to the Freshwater Invertebrates of Southern Africa. Insecta I: Ephemeroptera, Odonata and Plecoptera, Vol. 7. WRC Report No. TT 207/03. Water Research Commission, Pretoria.

  • de Moor I. J., J. A. Day & F. C. de Moor, 2003b. Guides to the Freshwater Invertebrates of Southern Africa. Insecta II: Hemiptera, Megaloptera, Neuroptera, Trichoptera and Lepidoptera, Vol. 8. WRC Report No. TT 214/03. Water Research Commission, Pretoria.

  • Demars, B. O., J. L. Kemp, N. Friberg, P. Usseglio-Polatera & D. M. Harper, 2012. Linking biotopes to invertebrates in rivers: biological traits, taxonomic composition and diversity. Ecological Indicators 23: 301–311.

    Google Scholar 

  • Dickens, C. W. S. & P. M. Graham, 2002. The South African Scoring System (SASS) Version 5 rapid bioassessment method for rivers. African Journal of Aquatic Science 27: 1–10.

    Google Scholar 

  • Dutton, C., S. C. Anisfeld & H. Ernstberger, 2013. A novel sediment fingerprinting method using filtration: application to the Mara River, East Africa. Journal of Soils and Sediments 13: 1708–1723.

    CAS  Google Scholar 

  • Dutton, C. L., A. L. Subalusky, S. K. Hamilton, E. J. Rosi & D. M. Post, 2018. Organic matter loading by hippopotami causes subsidy overload resulting in downstream hypoxia and fish kills. Nature Communications 9: 1–10.

    CAS  Google Scholar 

  • Gardener, M., 2014. Community Ecology: Analytical Methods in Using R and Excel. Pelagic Publishing, Exeter.

    Google Scholar 

  • Gerber, A. & M. J. M. Gabriel, 2002. Aquatic Invertebrates of South African Rivers. Field Guide. Resource Quality Services. Department of Water Affairs and Forestry, Durban.

    Google Scholar 

  • Grill, G., B. Lehner, M. Thieme, B. Geenen, D. Tickner, F. Antonelli, et al., 2019. Mapping the world’s free-flowing rivers. Nature 569: 215.

    CAS  PubMed  Google Scholar 

  • Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: Paleontological Statistics Software Package for education and data analysis. Palaeontologia Electronica 4: 9.

    Google Scholar 

  • Harby, A., J.-M. Olivier, S. Mérigoux & E. Malet, 2007. A mesohabitat method used to assess minimum flow changes and impacts on the invertebrate and fish fauna in the Rhône River, France. River Research and Applications 23: 525–543.

    Google Scholar 

  • Hardersen, S., 2008. Dragonfly (Odonata) communities at three lotic sites with different hydrological characteristics. Italian Journal of Zoology 75: 271–283.

    Google Scholar 

  • Hart, D. D. & C. M. Finelli, 1999. Physical–biological coupling in streams: the pervasive effects of flow on benthic organisms. Annual Review of Ecology and Systematics 30: 363–395.

    Google Scholar 

  • Holt, C. R., D. Pfitzer, C. Scalley, B. A. Caldwell & D. P. Batzer, 2015. Macroinvertebrate community responses to annual flow variation from river regulation: an 11-year study. River Research and Applications 31: 798–807.

    Google Scholar 

  • Hynes, H. B. N., 1975. The stream and its valley. Internationale Vereinigung für theoretische und angewandte Limnologie, Verhandlungen 19: 1–15.

    Google Scholar 

  • Jackson, A. J. H. & P. S. McCarter, 1994. A Profile of the Mau Complex. KIFCON, Nairobi.

    Google Scholar 

  • Johansson, E. L., M. Fader, J. W. Seaquist & K. A. Nicholas, 2016. Green and blue water demand from large-scale land acquisitions in Africa. Proceedings of the National Academy of Sciences of USA 113: 11471–11476.

    CAS  Google Scholar 

  • Kaaya, L. T., J. A. Day & H. F. Dallas, 2015. Tanzania River Scoring System (TARISS): a macroinvertebrate based biotic index for rapid bioassessment of rivers. African Journal of Aquatic Science 40: 109–117.

    Google Scholar 

  • Kaboré, I., O. Moog, M. Alp, W. Guenda, T. Koblinger, K. Mano, A. Ouéda, R. Ouédraogo, D. Trauner & A. H. Melcher, 2016. Using macroinvertebrates for ecosystem health assessment in semi-arid streams of Burkina Faso. Hydrobiologia 766: 57–74.

    Google Scholar 

  • Kasangaki, A., L. J. Chapman & J. Balirwa, 2008. Land use and the ecology of benthic macroinvertebrate assemblages of high-altitude rainforest streams in Uganda. Freshwater Biology 53: 681–697.

    Google Scholar 

  • Kashaigili, J. J., M. Mccartney & H. F. Mahoo, 2007. Estimation of environmental flows in the Great Ruaha River Catchment, Tanzania. Physics and Chemistry of the Earth Parts A/B/C 32: 1007–1014.

    Google Scholar 

  • Kilonzo, F., F. O. Masese, A. Van Griensven, W. Bauwens, J. Obando & P. N. L. Lens, 2014. Spatial–temporal variability in water quality and macro-invertebrate assemblages in the Upper Mara River Basin, Kenya. Physics and Chemistry of the Earth Parts A/B/C 67: 93–104.

    Google Scholar 

  • Masese, F. O. & P. O. Raburu, 2017. Improving the performance of the EPT Index to accommodate multiple stressors in Afrotropical streams. African Journal of Aquatic Science 42: 219–233.

    Google Scholar 

  • Masese, F. O., M. Muchiri & P. O. Raburu, 2009. Macroinvertebrate assemblages as biological indicators of water quality in the Moiben River, Kenya. African Journal of Aquatic Science 34: 15–26.

    CAS  Google Scholar 

  • Masese, F. O., J. O. Omukoto & K. Nyakeya, 2013. Biomonitoring as a prerequisite for sustainable water resources: a review of current status, opportunities and challenges to scaling up in East Africa. Ecohydrology and Hydrobiology 13: 173–191.

    Google Scholar 

  • Masese, F. O., N. Kitaka, J. Kipkemboi, G. M. Gettel, K. Irvine & M. E. McClain, 2014. Macroinvertebrate functional feeding groups in Kenyan highland streams: evidence for a diverse shredder guild. Freshwater Science 33: 435–450.

    Google Scholar 

  • Masese, F. O., K. G. Abrantes, G. M. Gettel, K. Irvine, S. Bouillon & M. E. McClain, 2018. Trophic structure of an African Savanna River and organic matter inputs by large terrestrial herbivores: a stable isotope approach. Freshwater Biology 63: 1365–1380.

    CAS  Google Scholar 

  • Mathooko, J. M., B. Mpawenayo, J. K. Kipkemboi & C. M. M’Erimba, 2005. Distributional patterns of diatoms and Limnodrilus Oligochaetes in a Kenyan dry streambed following the 1999–2000 drought conditions. International Review of Hydrobiology 90: 185–200.

    Google Scholar 

  • Mbaka, J. G., C. M. M’Erimba, H. K. Thiongo & J. M. Mathooko, 2014. Water and habitat quality assessment in the Honi and Naro Moru Rivers, Kenya, using benthic macroinvertebrate assemblages and qualitative habitat scores. African Journal of Aquatic Science 39: 361–368.

    Google Scholar 

  • McClain, M. E., A. L. Subalusky, E. P. Anderson, S. B. Dessu, A. M. Melesse, P. M. Ndomba, J. O. D. Mtamba, R. A. Tamatamah & C. Mligo, 2014. Comparing flow regime, channel hydraulics and biological communities to infer flow–ecology relationships in the Mara River of Kenya and Tanzania. Hydrological Sciences Journal 59: 1–19.

    Google Scholar 

  • Melesse, A., M. McClain, M. Abira, W. Mutayoba & X. M. Wang, 2008. Modeling the impact of land-cover and rainfall regime change scenarios on the flow of mara river, Kenya ASCE-EWRI. In World Environmental and Water Resources Congress 2008: Ahupua’A: 1–10.

  • Merritt, R. W., K. W. Cummins & M. B. Berg, 2008. An Introduction to the Aquatic Insects of North America. Kendall/Hunt Publishing Company, Dubuque.

    Google Scholar 

  • Merritt, R. W., K. W. Cummins & M. B. Berg, 2017. Trophic relations of macroinvertebrates. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology, 3rd ed. Academic, Burlington: 413–433.

    Google Scholar 

  • Minaya, V., M. E. McClain, O. Moog, F. Omengo & G. Singer, 2013. Scale-dependent effects of rural activities on benthic macroinvertebrates and physico-chemical characteristics in headwater streams of the Mara River, Kenya. Ecological Indicators 32: 116–122.

    CAS  Google Scholar 

  • Monteiro-Júnior, C. S., S. R. M. Couceiro, N. Hamada & L. Juen, 2013. Effect of vegetation removal for road building on richness and composition of Odonata communities in Amazonia, Brazil. International Journal of Odonatology 17: 1–13.

    Google Scholar 

  • Muñoz-Mas, R., J. Sánchez-Hernández, M. E. McClain, R. Tamatamah, S. C. Mukama & F. Martínez-Capel, 2019. Investigating the influence of habitat structure and hydraulics on tropical macroinvertebrate communities. Ecohydrology and Hydrobiology 19: 339–350.

    Google Scholar 

  • O’Keeffe, J. H. & F. C. de Moor, 1988. Changes in the physico-chemistry and benthic invertebrates of the Great Fish River, South Africa, following an interbasin transfer of water. Regulated Rivers: Research and Management 2: 39–55.

    Google Scholar 

  • Odume, O. N. & W. J. Muller, 2011. Diversity and structure of Chironomidae communities in relation to water quality differences in the Swartkops River. Physics and Chemistry of the Earth, Parts A/B/C 36: 929–938.

    Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2018. Community ecology package “vegan” [available on internet at https://crean.r-project.org/web/packages/vegan/vegan.pdf]. Accessed 10 May 2019.

  • Pardo, I. & P. D. Armitage, 1997. Species assemblages as descriptions of mesohabitats. Hydrobiologia 344: 111–128.

    Google Scholar 

  • Poff, N. L. & J. K. H. Zimmerman, 2010. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biology 55: 194–205.

    Google Scholar 

  • Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, et al., 1997. The natural flow regime. BioScience 47: 769–784.

    Google Scholar 

  • Quinn, J. M. & C. W. Hickey, 1990. Characterisation and classification of benthic invertebrate communities in 88 New Zealand rivers in relation to environmental factors. New Zealand Journal of Marine and Freshwater Research 24: 387–409.

    CAS  Google Scholar 

  • R Development Core Team, 2017. R: A Language and Environment for Statistical Computing. Page R, R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Raburu, P. O., F. O. Masese & C. A. Mulanda, 2009. Macroinvertebrate Index of Biotic Integrity (M-IBI) for monitoring rivers in the upper catchment of Lake Victoria Basin, Kenya. Aquatic Ecosystem Health and Management 12: 197–205.

    CAS  Google Scholar 

  • Rivers-Moore, N. A., F. C. de Moor, C. Morris & J. O’Keeffe, 2007. Effect of flow variability modification and hydraulics on invertebrate communities in the Great Fish River (Eastern Cape Province, South Africa), with particular reference to critical hydraulic thresholds limiting larval densities of Simulium chutteri Lewis (Diptera, Simuliidae). River Research and Applications 23: 201–222.

    Google Scholar 

  • Salazar, G., 2018. EcolUtils: utilities for community ecology analysis. R Package Version 0.1 [available on internet at https://github.com/GuillemSalazar/EcolUtils]. Accessed 12 Dec 2019.

  • Samways, M. J. & N. S. Steytler, 1996. Dragonfly (Odonata) distribution patterns in urban and forest landscapes, and recommendations for riparian management. Biological Conservation 78: 279–288.

    Google Scholar 

  • Schiemer, F., 2016. Building an eco-hydrological framework for the management of large river systems. Ecohydrology and Hydrobiology 16: 19–25.

    Google Scholar 

  • Serneels, S. & E. F. Lambin, 2001. Proximate causes of land-use change in Narok District, Kenya: a spatial statistical model. Agriculture, Ecosystems and Environment 85: 65–81.

    Google Scholar 

  • Shivoga, W. A., 2001. The influence of hydrology on the structure of invertebrate communities in two streams flowing into Lake Nakuru, Kenya. Hydrobiologia 458: 121–130.

    Google Scholar 

  • Simonsen, T. D., 1993. Correspondence and relative precision of stream habitat features estimated at two spatial scales. Journal of Freshwater Ecology 8: 363–373.

    Google Scholar 

  • Sombroek, W. G., H. M. H. Braun & B. J. A. Van der Pouw, 1982. Exploratory Soil Map and Agro-climatic Zone Map of Kenya. Kenya Soil Survey, Nairobi.

    Google Scholar 

  • Stewart, D. A. & M. J. Samways, 1998. Conserving dragonfly (Odonata) assemblages relative to river dynamics in an African Savanna Game Reserve. Conservation Biology 12: 683–692.

    Google Scholar 

  • ter Braak, C. J. & F. Smilauer, 2004. Canoco for Windows Version 453. Biometrics: Plant Research International, Wageningen.

    Google Scholar 

  • Thirion, C., 2016. The determination of flow and habitat requirements for selected riverine macroinvertebrates. Doctoral Thesis, North-West University, South Africa.

  • UN-Water Africa, 2003. The Africa Water Vision for 2025: Equitable and Sustainable Use of Water for Socioeconomic Development. Economic Commission for Africa, Addis Ababa.

    Google Scholar 

  • Velasco, J. & A. Millan, 1998. Insect dispersal in a drying desert stream: effects of temperature and water loss. The Southwestern Naturalist 43(1): 80–87.

    Google Scholar 

  • Webb, J. A., K. A. Miller, E. L. King, S. C. Little, M. J. Stewardson, J. K. Zimmerman & N. L. Poff, 2013. Squeezing the most out of existing literature: a systematic re-analysis of published evidence on ecological responses to altered flows. Freshwater Biology 58: 2439–2451.

    Google Scholar 

Download references

Acknowledgements

We thank a number of graduate students (Augustine Sitati, Joshua Kimeli, and George Alal) who assisted in field sampling and laboratory processing of samples. This Study was funded partly by the National Research Fund-2016/2017 FY Grants through the KISS Project and partly by the Netherlands Embassy in Nairobi, Kenya through the MaMaSe Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank O. Masese.

Additional information

Handling editor: Marcelo Moretti

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masese, F.O., Achieng, A.O., O’Brien, G.C. et al. Macroinvertebrate taxa display increased fidelity to preferred biotopes among disturbed sites in a hydrologically variable tropical river. Hydrobiologia 848, 321–343 (2021). https://doi.org/10.1007/s10750-020-04437-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04437-1

Keywords

Navigation