Skip to main content

Advertisement

Log in

Ecological niche models predict the potential distribution of the exotic rotifer Kellicottia bostoniensis (Rousselet, 1908) across the globe

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The invasion of non-native species is one of the major factors influencing the loss of biodiversity. The rotifer Kellicottia bostoniensis, which is native to North America, has been registered in several other countries and on other continents. We investigated the main climatic-environmental variables suitable for the potential distribution of K. bostoniensis and, hence, the areas of non-native regions where it could spread. We used different statistical niche models within an ensemble forecasting approach to estimate environmental suitability and the potential global distribution area of K. bostoniensis. Precipitation in the driest month and temperature in the coldest month were the most important variables in predicting the distribution of the species. Our predictions indicated that countries with high invasive potential included Argentina and Brazil (South America), Croatia, France, and Germany (Europe). The results also revealed that many areas with high invasive potential, such as East Asia, have no recorded occurrences yet. Our study provides important information for implement management measures to deal with the problems of the spread of K. bostoniensis through ballast water and aquaculture in countries and regions highly susceptible to invasion (mainly areas that the species has not yet reached), thus providing useful information for decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allouche, O., A. Tsoar & R. Kadmon, 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 1223–1232.

    Google Scholar 

  • Alves, T. P. & N. F. Fontoura, 2009. Statistical distribution models for migratory fish in Jacuí Basin, South Brazil. Neotropical Ichthyology 7: 647–658.

    Google Scholar 

  • Araújo, M. B. & M. New, 2007. Ensemble forecasting of species distributions. Trends in Ecology and Evolution 22: 42–47.

    PubMed  Google Scholar 

  • Arcifa, M. S., 2000. Feeding habits of Chaoboridae larvae in a tropical Brazilian reservoir. Revista Brasileira de Biologia 60: 591–597.

    CAS  Google Scholar 

  • Arnemo, R., B. Berzins, B. Grönberg, I. Mellgren & B. Gronberg, 1968. The dispersal in Swedish waters of Kellicottia bostoniensis (Rousselet) (Rotatoria). Oikos 19: 351–358.

    Google Scholar 

  • Balvay, G., 1994. First record of the rotifer Kellicottia bostoniensis (Rousselet, 1908) in France. Journal of Plankton Research 16: 1071–1074.

    Google Scholar 

  • Bayanov, N. G., 2014. Occurrence and abundance level of Kellicottia bostoniensis (Rousselet, 1908) in lakes of the Nizhniy Novgorod region. Russian Journal of Biological Invasions 5: 111–114.

    Google Scholar 

  • Bellard, C., P. Cassey & T. M. Blackburn, 2016. Alien species as a driver of recent extinctions. Biology Letters 12: 20150623.

    PubMed  PubMed Central  Google Scholar 

  • Bellard, C., J. M. Jeschke, B. Leroy & G. M. Mace, 2018. Insights from modeling studies on how climate change affects invasive alien species geography. Ecology and Evolution 8: 5688–5700.

    PubMed  PubMed Central  Google Scholar 

  • Benites, V. M., A. N. Caiafa, E. S. Mendonça, C. E. Schaefer & J. C. Ker, 2003. Solos e vegetação nos complexos rupestres de altitude da Mantiqueira e do Espinhaço. Floresta e Ambiente 10: 76–85.

    Google Scholar 

  • Bezerra-Neto, J. F., L. A. Aguila, G. G. Landa & R. M. Pinto-Coelho, 2004. The exotic rotifers Kellicotia bostoniensis (Rousselet 1908 (Rotifera:Brachionidae) in the zooplankton community in the tropical reservoir. Lundiana 5: 151–153.

    Google Scholar 

  • Bollens, S. M., J. R. Cordell, S. Avent & R. Hooff, 2002. Zooplankton invasions: a brief reviews, plus two case studies from the northeast Pacific Ocean. Hydrobiologia 480: 87–100.

    Google Scholar 

  • Bomfim, F. F., T. Mantovano, L. T. F. Schwind, F. Palazzo, C. C. Bonecker & F. A. Lansac-Tôha, 2016. Geographical spread of the invasive species Kellicottia longispina (Kellicott, 1879) and K. bostoniensis (Rousselet, 1908): a scientometric approach. Acta Scientiarum 38: 29–36.

    Google Scholar 

  • Busby, J., 1991. BIOCLIM-a bioclimate analysis and prediction system. Plant Protection Quarterly 61: 8–9.

    Google Scholar 

  • Capinha, C. & P. Anastácio, 2010. Assessing the environmental requirements of invaders using ensembles of distribution models. Diversity and Distributions 17: 13–24.

    Google Scholar 

  • Carlin, B., 1943. Die Planktonrotatorien des Motalaström zur Taxonomie und Ökologie der Planktonrotatorien. Meddelanden Lunds Universitets Limnologiska Institution 5: 1–256.

    Google Scholar 

  • Carpenter, G., A. N. Gillison & J. Winter, 1993. Domain: a flexible modeling procedure for mapping potential distributions of plants and animals. Biodiversity Conservation 2: 667–680.

    Google Scholar 

  • Casanova, S. M. C. & R. Henry, 2004. Longitudinal distribution of Copepoda populations in the transition zone of Paranapanema River and Jurumirim Reservoir (Sao Paulo, Brazil) and interchange with two lateral lakes. Brazilian Journal of Biology 64: 11–26.

    CAS  Google Scholar 

  • Casanova, S. M. C., E. A. Panarelli & R. Henry, 2009. Rotifer abundance, biomass, and secondary production after the recovery of hydrologic connectivity between a river and two marginal lakes (São Paulo, Brazil). Limnologica 39: 292–301.

    Google Scholar 

  • Cassemiro, F. A. S., D. Bailly, W. J. Graça & A. A. Agostinho, 2018. The invasive potential of tilapias (Osteichthyes, Cichlidae) in the Americas. Hydrobiologia 817: 133–154.

    Google Scholar 

  • Chen, P., E. O. Wiley & K. M. Mcnyset, 2007. Ecological niche modeling as a predictive tool: silver and bighead carps in North America. Biological Invasions 9: 43–51.

    Google Scholar 

  • Colautti, R. I. & H. J. MacIsaac, 2004. A neutral terminology to define ‘invasive’ species. Diversity and Distributions 10: 135–141.

    Google Scholar 

  • Cuyckens, G. A. E., J. A. Pereira, T. C. Trigo, M. Da Silva, L. Gonçalves, J. C. Huaranca, N. Bou Pérez, J. L. Cartes & E. Eizirik, 2016. Refined assessment of the geographic distribution of Geoffroy’s cat (Leopardus geoffroyi) (Mammalia: Felidae) in the Neotropics. Journal of Zoology 298: 285–292.

    Google Scholar 

  • [Data Provider or owner name]. [Resource or Dataset Name] published by [Data Provider Name, address or affiliation(s)] (Accessed through Biodiversity Information Serving Our Nation (BISON), https://bison.usgs.gov, 2019-02-20).

  • Devetter, M., 1998. Influence of environmental factors on the rotifer assemblage in an artificial lake. Hydrobiologia 387: 171–178.

    Google Scholar 

  • Devetter, M. & J. Seďa, 2006. Regulation of rotifer community by predation of Cyclops vicinus (Copepoda) in the Římov Reservoir in spring. International review of hydrobiology 91: 101–112.

    CAS  Google Scholar 

  • Dias, J. D., C. C. Bonecker & M. R. Miracle, 2014. The rotifer community and its functional role in lakes of a neotropical floodplain. International Review of Hydrobiology 99: 72–83.

    Google Scholar 

  • Diniz-Filho, J. A. F., L. M. Bini, T. F. Rangel, R. D. Loyola, C. Hof, D. Nogue´s-Bravo & M. B. Araujo, 2009. Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32: 897–906.

    Google Scholar 

  • Diniz-Filho, J. A. F., J. C. Nabout, L. M. Bini, R. D. Loyola, T. F. Rangel, D. Nogues-Bravo & M. B. Araújo, 2010. Ensemble forecasting shifts in climatically suitable areas for Tropidacris cristata (Orthoptera: Acridoidea: Romaleidae). Insect Conservation and Diversity 3: 213–221.

    Google Scholar 

  • Drummond, G. M., C. S. Martins, A. B. M. Machado, F. A. Sebaio & Y. Antonini, 2005. Biodiversidade em Minas Gerais: um Atlas para sua conservação, 2nd ed. Fundação Biodiversitas, Belo Horizonte.

    Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. Kawabata, D. J. Knowler, C. Leveque, R. J. Naiman, A. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.

    PubMed  Google Scholar 

  • Eloranta, P., 1988. Kellicottia bostoniensis (Rousselet), a planktonic rotifer species new to Finland. Annales Zoologici Fennici 25: 249–252.

    Google Scholar 

  • Gama, M., D. Crespo, M. Dolbeth & P. M. Anastácio, 2016. Predicting global habitat suitability for Corbicula fluminea using species distribution models: the importance of different environmental datasets. Ecological Modelling 319: 163–169.

    Google Scholar 

  • Gama, M., D. Crespo, M. Dolbeth & P. M. Anastácio, 2017. Ensemble forecasting of Corbicula fluminea worldwide distribution: projections of the impact of climate change. Aquatic Conservation: Marine and Freshwater Ecosystems 27: 675–684.

    Google Scholar 

  • Gower, J. C., 1971. A general coefficient of similarity and some of its properties. Biometrics 27: 857–871.

    Google Scholar 

  • Grenouillet, G., L. Buisson, N. Casajus & S. Lek, 2011. Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34: 9–17.

    Google Scholar 

  • Gu, D. E., G. M. Ma, Y. J. Zhu, M. Xu, D. Luo, Y. Y. Li, H. Wei, X. D. Mu, J. R. Luo & Y. C. Hu, 2015. The impacts of invasive Nile tilapia (Oreochromis niloticus) on the fisheries in the main rivers of Guangdong Province, China. Biochemical Systematics and Ecology 59: 1–7.

    CAS  Google Scholar 

  • Guisan, A. & W. Thuiller, 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8: 993–1009.

    Google Scholar 

  • Harvey-Samuel, T., T. Ant & L. Alphey, 2017. Towards the genetic control of invasive species. Biological Invasions 19: 1683–1703.

    PubMed  PubMed Central  Google Scholar 

  • Havel, J. E., C. E. Lee & Z. M. J. Vander, 2005. Do reservoirs facilitate invasions into landscapes? BioScience 55: 518–525.

    Google Scholar 

  • Havens, K. E., 1990. Chaoborus predation and zooplankton community structure in a rotifer-dominated lake. Hydrobiologia 198: 215–226.

    Google Scholar 

  • Hector, A. & R. Bagchi, 2007. Biodiversity and ecosystem multifunctionality. Nature 448: 188–190.

    CAS  PubMed  Google Scholar 

  • Henderson, L., J. M. Goodall & H. Klein, 2006. Pompom weed - an invader of grasslands that threatens conservation and agriculture in South Africa. Agricultural Research Council-Plant Research Institute, pamphlet.

  • Hirzel, A. H., J. Hausser, D. Chessel & N. Perrin, 2002. Ecological-niche factor analysis: how to compute habitat suitability maps without absence data? Ecology 83: 2027–2036.

    Google Scholar 

  • Jiménez-Valverde, A., A. T. Peterson, J. Soberón, J. M. Overton, P. Aragón & J. M. Lobo, 2011. Use of niche models in invasive species risk assessments. Biological Invasions 13: 2785–2797.

    Google Scholar 

  • Kipp, R., S. A. Bailey, H. MacIsaac & A. Ricciardi, 2010. Transoceanic ships as vectors for nonindigenous freshwater bryozoans. Diversity and Distribution 16: 77–83.

    Google Scholar 

  • Kopf, R. K., D. G. Nimmod, P. Humphries, L. J. Baumgartner, M. B. Bode, N. R. Bond, A. E. Byrom, L. C. Cucherousset, R. P. Keller, A. J. King, H. M. McGinness, P. B. Moyle & J. D. Olden, 2017. Confronting the risks of large-scale invasive species control. Nature Ecology & Evolution 1: 172–175.

    Google Scholar 

  • Krainev, E. Y., E. M. Tselishcheva & V. I. Lazareva, 2018. American rotifer Kellicottia bostoniensis (Rousselet, 1908) (Rotifera: Brachionidae) in the Kama Reservoir (Kama River, Russia). Inland Water Biology 11: 42–45.

    Google Scholar 

  • Landa, G. G., L. R. Aguila & R. M. Pinto-Coelho, 2002. Spatial and temporal distribution of Kellicottia bostoniensis (Rousselet, 1908) (Rotifera) in a large tropical reservoir (Furnas Reservoir), state of Minas Gerais, Brazil. Acta Scienciarum 24: 313–319.

    Google Scholar 

  • Leentvaar, P., 1961. Quelques rotateurs rares observés en Hollande. Hydrobiologia 18: 245–251.

    Google Scholar 

  • Legendre, P. & L. Legendre, 2012. Numerical Ecology. Elsevier, Amsterdam.

    Google Scholar 

  • Lima, S. M. Q., T. P. A. Ramos, M. J. Silva & R. S. Rosa, 2017. Diversity, distribution and conservation of the Caatinga fishes: advances and challenges. In Silva, J. M. C., I. R. Leal & M. Tabarelli (eds), Caatinga. Springer International Publishing, Basel.

    Google Scholar 

  • Linders, T. E. W., U. Schaffner, R. Eschen, A. Abebe, S. K. Choge, L. Nigatu, P. R. Mbaabu & E. Allan, 2019. Direct and indirect effects of invasive species: biodiversity loss is a major mechanism by which an invasive tree affects ecosystem functioning. Journal of Ecology 107: 2660–2672.

    Google Scholar 

  • Little, C. J., E. A. Fronhofer & F. Altermatt, 2019. Nonlinear effects of intraspecific competition alter landscape-wide upscaling of ecosystem function. bioRxiv 195: 3.

    Google Scholar 

  • Locke, A. & J. M. Hanson, 2009. Rapid response to nonindigenous species. 3. A proposed framework. Aquatic Invasions 4: 259–273.

    Google Scholar 

  • Lockwood, J. L., M. F. Hoopes & M. P. Marchetti, 2007. Invasion Ecology. Blackwell Publishing, Oxford.

    Google Scholar 

  • Lockwood, J. L., P. Cassey & T. Blackburn, 2009. The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Diversity and Distributions 15: 904–910.

    Google Scholar 

  • Lockwood, J. L., M. F. Hoopes & M. P. Marchetti, 2013. Invasion Ecology. Blackwell Publishing, Oxford.

    Google Scholar 

  • Lopes, R. M., F. A. Lansac-Tôha, R. Vale & M. Serafim Jr., 1997. Comunidade zooplanctônica do reservatório de segredo. In Agostinho, A. A. & L. C. Gomes (eds), Reservatório de segredo: Bases ecológicas para o manejo. Eduem, Maringá: 39–54.

    Google Scholar 

  • Lopes, T. M., D. Bailly, B. A. Almeida, N. C. L. Santos, B. C. G. Gimenez, G. O. Landgraf, P. C. L. Sales, M. S. Lima-Ribeiro, F. A. S. Cassemiro, T. F. Rangel, J. A. F. Diniz-Filho, A. A. Agostinho & L. C. Gomes, 2017. Two sides of a coin: effects of climate change on the native and non-native distribution of Colossoma macropomum in South America. PLoS ONE 12: e0179684.

    PubMed  PubMed Central  Google Scholar 

  • Lucinda, I., I. H. Moreno, M. G. G. Melão & T. Matsumura-Tundisi, 2004. Rotifers in freshwater habitats in the upper Tietê River Basin, São Paulo State, Brazil. Acta Limnologica Brasiliensia. 16: 203–224.

    Google Scholar 

  • Mack, R. N., D. Simberloff, W. Mark Lonsdale, H. Evans, M. Clout & F. A. Bazzaz, 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications 10: 689–710.

    Google Scholar 

  • Magnuson, J. J., B. J. Benson & T. K. Kratz, 1990. Temporal coherence in the limnology of a suite of lakes in Wiskonsin, U.S.A. Freshwater Biology 23: 145–159.

    Google Scholar 

  • Mantovano, T., R. L. Arrieira, L. T. F. Schwind, C. C. Bonecker & F. A. Lansac-Tôha, 2015. Rotifer community structure along a stretch under the influence of dams in the Upper Paraná River floodplain. Acta Scientiarum Biological Sciences 37: 281–289.

    Google Scholar 

  • Mantovano, T., L. T. F. Schwind, L. S. M. Braghin, R. L. Arrieira, V. G. Tiburcio, K. C. Nascimento, C. C. Bonecker & F. A. Lansac-Toha, 2018. An analysis of publications on Daphnia lumholtzi in freshwater ecosystems. Limnetica 37: 199–208.

    Google Scholar 

  • Mothes, C. C., J. T. Stroud, S. L. Clements & C. A. Searcy, 2019. Evaluating ecological niche model accuracy in predicting biotic invasions using South Florida’s exotic lizard community. Journal of Biogeography 46: 432–441.

    Google Scholar 

  • Muirhead, J. R. & H. J. Maclsaac, 2005. Development of inland lakes as hubs in an invasion network. Journal of Applied Ecology 42: 80–90.

    Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. Mcglinn, P. R. Minchin, R. B. O’hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs & H. Wagner, 2018. Vegan: Community Ecology Package. R package version 2.5-3. Available in: https://CRAN.R-project.org/package=vegan.

  • Oliveira, F. R., F. M. Lansac-Tôha, B. R. Meira, B. T. Segovia, C. Cochak & L. F. M. Velho, 2019. Effects of the exotic rotifer Kellicottia bostoniensis (Rousselet, 1908) on the microbial food web components. Aquatic Ecology 53: 581–594.

    Google Scholar 

  • Padial, A. A., A. A. Agostinho, V. M. Azevedo-Santos, F. A. Frehse, D. P. Lima-Junior, A. L. Magalhães, R. P. Mormul, F. M. Pelicice, L. A. V. Bezerra, M. L. Orsi, M. Petrere-Junior & J. R. S. Vitule, 2017. The “Tilapia Law” encouraging non-native fish threatens Amazonian River basins. Biodiversity and Conservation 26: 243–246.

    Google Scholar 

  • Padilla, D. K. & S. L. Williams, 2004. Beyond ballast water: aquarium and ornamental trades as sources of invasive species in aquatic ecosystems. Frontiers in Ecology and the Environment 2: 131–138.

    Google Scholar 

  • Paggi, S. J., 2002. New data on the distribution of Kellicottia bostoniensis (Rousselet, 1908) (Rotifera: Monogononta:Brachionidae): its presence in Argentina. Zoologischer Anzeiger 241: 363–368.

    Google Scholar 

  • Peixoto, R. S., L. P. M. Brandão, C. D. F. Valadares & P. M. M. Barbosa, 2010. Occurrence of Kellicottia bostoniensis (Rousselet, 1908) and Mesocyclops ogunnus (Onabamiro, 1957) in lakes of the Middle River Doce, MG, Brazil. Acta Limnologica Brasiliensia 22: 356–360.

    Google Scholar 

  • Perbiche-Neves, G., M. Serafim-Júnior, J. L. Portinho, E. M. Shimabukuro, A. R. Ghidini & L. Brito, 2012. Effect of atypical rainfall on lotic zooplankton: comparing downstream of a reservoir and tributaries with free stretches. Tropical Ecology 53: 149–162.

    Google Scholar 

  • Perrings, C., K. Dehnen-Schmutz, J. Touza & M. Williamson, 2005. How to manage biological invasions under globalization. Trends in Ecology and Evolution 20: 212–215.

    PubMed  Google Scholar 

  • Peterson, T. C., W. M. Connolley & J. Fleck, 2008. The myth of the 1970s global cooling scientific consensus. Bulletin of the American Meteorological Society 89: 1325–1337.

    Google Scholar 

  • Peterson, A. T., J. Soberon, R. G. Pearson, R. P. Anderson, E. Martınez-Meyer, M. Nakamura & M. B. Araujo, 2011. Ecological Niches and Geographic Distributions. Monographs in Population Biology. Princeton University Press, Princeton.

    Google Scholar 

  • Phillips, S. J., R. P. Anderson & R. E. Schapire, 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259.

    Google Scholar 

  • Poquet, J. M. & F. Mesquita-Joanes, 2010. Combined effects of local environment and continental biogeography on the distribution of Ostracoda. Freshwater Biology 56: 448–460.

    Google Scholar 

  • Pouilly, M., S. Barrrera & C. Rosales, 2006. Changes of taxonomic and trophic structure of fish assemblages along an environmental gradient in the Upper Beni watershed (Bolivia). Journal of Fish Biology 68: 137–157.

    Google Scholar 

  • R Development Core Team, 2018: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Richardson, D. M., P. Pyšek & J. T. Carlton, 2011. A compendium of essential concepts and terminology in invasion ecology. In Richardson, D. M. (ed.), Fifty Years of Invasion Ecology: The Legacy of Charles Elton. Wiley-Blackwell, Oxford: 409–420.

    Google Scholar 

  • Simberloff, D., J. L. Martin, P. Genovesi, V. Maris, D. A. Wardle, J. Aronson, F. Courchamp, B. Galil, E. Garcıa-Berthou, M. Pascal, P. Pysek, R. Sousa, E. Tabacchi & M. Vilà, 2013. Impacts of biological invasions - what’s what and the way forward. Trends in Ecology and Evolution 28: 58–66.

    PubMed  Google Scholar 

  • Simões, N. R., B. A. Robertson, F. A. Lansac-Tôha, E. M. Takahashi, C. C. Bonecker, L. F. M. Velho & C. Y. Joko, 2009. Exotic species of zooplankton in the Upper Paraná River floodplain, Daphnia lumholtzi Sars, 1885 (Crustacea: Branchiopoda). Brazilian Journal of Biology 69: 551–558.

    Google Scholar 

  • Sistema de Informação do Programa Biota/Fapesp (SinBiota) disponível na rede speciesLink (http://www.splink.org.br) em 09 de Fevereiro de 2019 às 09:25.

  • Soberón, J., 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters 10: 1115–1123.

    PubMed  Google Scholar 

  • Sousa, T., A. Novais, R. Costa & D. L. Strayer, 2014. Invasive bivalves in fresh waters: impacts from individuals to ecosystems and possible control strategies. Hydrobiologia 735: 233–251.

    Google Scholar 

  • Sousa, F. D. R., A. V. Palaoro, L. M. A. Elmoor-Loureiro & A. A. Kotovo, 2017. Predicting the invasive potential of the cladoceran Daphnia lumholtzi Sars, 1885 (Crustacea: Cladocera: Daphniidae) in the Neotropics: are generalists threatened and relicts protected by their life-history traits? Journal of Limnology 76: 272–280.

    Google Scholar 

  • Stockwell, D., 1999. The GARP modelling system: problems and solutions to automated spatial prediction. International Journal of Geographical Information Science 13: 143–158.

    Google Scholar 

  • Strayer, D. L., 2010. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwater Biology 55: 152–174.

    Google Scholar 

  • Terribile, L. C. & J. A. F. Diniz-Filho, 2010. How many studies are necessary to compare niche-based models for geographic distributions? Inductive reasoning may fail at the end. Brazilian Journal of Biology 70: 263–269.

    CAS  Google Scholar 

  • Valadares, C. F., 2007. Alterações nas características limnológicas e na comunidade zooplanctônica do rio Araguari (MG) em função das obras hidráulicas de Capim Branco I. Universidade Federal de Minas Gerais - UFMG. [Dissertação de mestrado].

  • Vargas, A. L., J. M. Santangelo & R. L. Bozelli, 2019. Recovery from drought: viability and hatching patterns of hydrated and desiccated zooplankton resting eggs. International Review of Hydrobiology 104: 26–33.

    Google Scholar 

  • Vezhnavets, V. V. & A. G. Litvinova, 2015. First record of the north American rotifer Kellicottia bostoniensis (Rousselet, 1908) from the Sozh River, Belarus. Russian Journal of Biological Invasions 6: 135–136.

    Google Scholar 

  • Vitule, J. R. S., A. A. Agostinho, V. M. Azevedo-Santos, V. S. Daga, W. R. T. Darwall, D. B. Fitzgerald, F. A. Frehse, D. J. Hoeinghaus, D. P. Lima-Junior, P. Dilermando, A. L. B. Magalhães, M. L. Orsi, A. A. Padial, F. M. Pelicice, M. Petrere, P. S. Pompeu & K. O. Winemiller, 2017. We need better understanding about functional diversity and vulnerability of tropical freshwater fishes. Biodiversity and Conservation 26: 757–762.

    Google Scholar 

  • Zhdanova, S. M. & A. E. Dobrynin, 2011. Kellicotia bostoniensis (Rousselet, 1908) (Rotifera: Brachionidae) in Waterbodies of European Russia. Inland Water Biology 4: 39–46.

    Google Scholar 

  • Zhdanova, S. M., V. I. Lazareva, N. G. Bayanov, E. V. Lobunicheva, N. V. Rodionova, G. V. Shurganova, T. V. Zolotareva & M. Y. Il’in, 2019. Morphological Variability of Kellicottia bostoniensis (Rousselet, 1908) (Rotifera: Brachionidae) in Waterbodies of European Russia. Inland Water Biology 12: 140–149.

    Google Scholar 

Download references

Acknowledgments

We thank the Centre of Research in Limnology, Ichthyology and Aquaculture (Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura – Nupélia) and the Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais – PEA of the State University of Maringá (Universidade Estadual de Maringá – UEM) for the logistic support. We would also like to thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and Capes (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiane Mantovano.

Additional information

Handling editor: Andrew Dzialowski

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mantovano, T., Diniz, L.P., de Oliveira da Conceição, E. et al. Ecological niche models predict the potential distribution of the exotic rotifer Kellicottia bostoniensis (Rousselet, 1908) across the globe. Hydrobiologia 848, 299–309 (2021). https://doi.org/10.1007/s10750-020-04435-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04435-3

Keywords

Navigation