Skip to main content
Log in

Water temperature and lake size explain Darwin’s conundrum for fish establishment in boreal lakes

  • INVASIVE SPECIES III
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We used a trait-based approach to disentangle Darwin’s conundrum along environmental gradients and tested the contribution of earlier established invaders to biotic resistance of resident communities in boreal lakes. For this, we used a linear mixed model to test if lake surface area, water temperature, the proportion of earlier established invaders and functional distances to resident species predict the establishment of introduced species. We found that in colder and smaller lakes, introduced fishes that were ecologically distant to resident species had higher establishment success, supporting Darwin’s naturalisation hypothesis. However, in warmer and larger lakes, the establishment was higher for species ecologically closer to residents, supporting the adaptation hypothesis. Therefore, the support for Darwin’s hypotheses depends on how environmental gradients affect biotic interactions. Contrary to our expectation, we found that earlier established invaders seem to favour the establishment of further introduced species and did not contribute to the biotic resistance of the resident community. Our study revealed that using environmental gradients is essential to disentangle Darwin’s conundrum for introduced species in boreal lakes and contribute to explain why the results of previous studies are conflicting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrams, P., 1983. The theory of limiting similarity. Annual Review of Ecology and Systematics Annual Reviews 14: 359–376.

    Google Scholar 

  • Alofs, K. M., & D. A. Jackson, 2014. Meta‐analysis suggests biotic resistance in freshwater environments is driven by consumption rather than competition. Ecology 95: 3259–3270.

    Google Scholar 

  • Bates, D., M. Maechler, B. Bolker, S. Walker, R. H. B. Christensen, H. Singmann, B. Dai, & F. Scheipl, 2012. Package ‘lme4.’ CRAN. R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  • Beauchard, O., H. Veríssimo, A. M. Queirós, & P. M. J. Herman, 2017. The use of multiple biological traits in marine community ecology and its potential in ecological indicator development. Ecological Indicators 76: 81–96.

    Google Scholar 

  • Bennett, J. A., & M. Pärtel, 2017. Predicting species establishment using absent species and functional neighborhoods. Ecology and Evolution 7: 2223–2237.

    PubMed  PubMed Central  Google Scholar 

  • Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens, & J.-S. S. White, 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution 24: 127–135.

    Google Scholar 

  • Bomford, M., S. C. Barry, & E. Lawrence, 2010. Predicting establishment success for introduced freshwater fishes: a role for climate matching. Biological Invasions 12: 2559–2571.

    Google Scholar 

  • Brind’Amour, A., D. Boisclair, S. Dray, & P. Legendre, 2011. Relationships between species feeding traits and environmental conditions in fish communities: a three‐matrix approach. Ecological Applications 21: 363–377.

    PubMed  Google Scholar 

  • Burnham, K. P., & D. R. Anderson, 2002. A Practical Information-Theoretic Approach. Model Selection and Multimodel Inference, 2nd ed. Springer, New York .

    Google Scholar 

  • Byström, P., J. A. N. Karlsson, P. E. R. Nilsson, T. Van Kooten, J. Ask, & F. Olofsson, 2007. Substitution of top predators: effects of pike invasion in a subarctic lake. Freshwater Biology 52: 1271–1280.

    Google Scholar 

  • Cadotte, M. W., S. E. Campbell, S. Li, D. S. Sodhi, & N. E. Mandrak, 2018. Preadaptation and naturalization of nonnative species: Darwin’s two fundamental insights into species invasion. Annual Review of Plant Biology 69: 661–684.

    CAS  PubMed  Google Scholar 

  • Carboni, M., T. Münkemüller, S. Lavergne, P. Choler, B. Borgy, C. Violle, F. Essl, C. Roquet, F. Munoz, & D. Consortium, 2016. What it takes to invade grassland ecosystems: traits, introduction history and filtering processes. Ecology Letters 19: 219–229.

    PubMed  Google Scholar 

  • Cleland, E. E., C. M. Clark, S. L. Collins, J. E. Fargione, L. Gough, K. L. Gross, S. C. Pennings, & K. N. Suding, 2011. Patterns of trait convergence and divergence among native and exotic species in herbaceous plant communities are not modified by nitrogen enrichment. Journal of Ecology 99: 1327–1338.

    CAS  Google Scholar 

  • Daehler, C. C., 2001. Darwin’s naturalization hypothesis revisited. The American Naturalist 158: 324–330.

    CAS  PubMed  Google Scholar 

  • Darwin CR. 1859. On the Origin of the Species by Means of Natural Selection. Murray, London.

    Google Scholar 

  • De Roos, A. M., L. Persson, & E. McCauley, 2003. The influence of size‐dependent life‐history traits on the structure and dynamics of populations and communities. Ecology Letters 6: 473–487.

    Google Scholar 

  • Diez, J. M., J. J. Sullivan, P. E. Hulme, G. Edwards, & R. P. Duncan, 2008. Darwin’s naturalization conundrum: dissecting taxonomic patterns of species invasions. Ecology Letters 11: 674–681.

    PubMed  Google Scholar 

  • Duncan, R. P., & P. A. Williams, 2002. Ecology: Darwin’s naturalization hypothesis challenged. Nature 417: 608.

    CAS  PubMed  Google Scholar 

  • Erős, T., J. Heino, D. Schmera, & M. Rask, 2009. Characterising functional trait diversity and trait–environment relationships in fish assemblages of boreal lakes. Freshwater Biology 54: 1788–1803.

    Google Scholar 

  • Ferreira, R. B., K. H. Beard, S. L. Peterson, S. A. Poessel, & C. M. Callahan, 2012. Establishment of introduced reptiles increases with the presence and richness of native congeners. Amphibia-Reptilia 33: 387–392.

    Google Scholar 

  • Finstad, A. G., T. Forseth, B. Jonsson, E. Bellier, T. Hesthagen, A. J. Jensen, D. O. Hessen, & A. Foldvik, 2011. Competitive exclusion along climate gradients: energy efficiency influences the distribution of two salmonid fishes. Global Change Biology 17: 1703–1711.

    Google Scholar 

  • Fox, J., & G. Monette, 1992. Generalized collinearity diagnostics. Journal of the American Statistical Association 87: 178–183.

    Google Scholar 

  • Froese, R., & D. Pauly, 2019. FishBase. Fisheries Centre, University of British Columbia.

    Google Scholar 

  • Gallien, L., & M. Carboni, 2017. The community ecology of invasive species: where are we and what’s next? Ecography 40: 335–352.

    Google Scholar 

  • Gallien, L., M. Carboni, & T. Münkemüller, 2014. Identifying the signal of environmental filtering and competition in invasion patterns–a contest of approaches from community ecology. Methods in Ecology and Evolution 5: 1002–1011.

    Google Scholar 

  • Gatz Jr, A. J., 1979. Community organization in fishes as indicated by morphological features. Ecology 60: 711–718.

    Google Scholar 

  • Greenhalgh, M., 1999. Freshwater Fish. Mitchell Beazley, London.

    Google Scholar 

  • Hayden, B., C. Harrod, & K. K. Kahilainen, 2014. Lake morphometry and resource polymorphism determine niche segregation between cool‐and cold‐water‐adapted fish. Ecology 95: 538–552.

    PubMed  Google Scholar 

  • Hein, C. L., G. Öhlund, & G. Englund, 2012. Future distribution of Arctic char Salvelinus alpinus in Sweden under climate change: effects of temperature, lake size and species interactions. Ambio Springer 41: 303–312.

    Google Scholar 

  • Hein, C. L., G. Öhlund, & G. Englund, 2014. Fish introductions reveal the temperature dependence of species interactions. Proceedings of the Royal Society B: Biological Sciences 281: 20132641.

    PubMed  Google Scholar 

  • Henriksson, A., J. Yu, D. A. Wardle, & G. Englund, 2015. Biotic resistance in freshwater fish communities: species richness, saturation or species identity? Oikos 124: 1058–1064.

    Google Scholar 

  • Henriksson, A., C. Rydberg, & G. Englund, 2016a. Failed and successful intentional introductions of fish species into 821 Swedish lakes. Ecology 97: 1364–1364.

    Google Scholar 

  • Henriksson, A., D. A. Wardle, J. Trygg, S. Diehl, & G. Englund, 2016b. Strong invaders are strong defenders–implications for the resistance of invaded communities. Ecology Letters 19: 487–494.

    PubMed  Google Scholar 

  • Hevia, V., C. P. Carmona, F. M. Azcárate, M. Torralba, P. Alcorlo, R. Ariño, J. Lozano, S. Castro-Cobo, & J. A. González, 2016. Effects of land use on taxonomic and functional diversity: a cross-taxon analysis in a Mediterranean landscape. Oecologia Springer 181: 959–970.

    Google Scholar 

  • Jackson, M. C., 2015. Interactions among multiple invasive animals. Ecology 96: 2035–2041.

    CAS  PubMed  Google Scholar 

  • Jackson, D. A., P. R. Peres-Neto, & J. D. Olden, 2001. What controls who is where in freshwater fish communities the roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences 58: 157–170.

    Google Scholar 

  • Joehnk, K. D., J. E. F. Huisman, J. Sharples, B. E. N. Sommeijer, P. M. Visser, & J. M. Stroom, 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Global Change Biology 14: 495–512.

    Google Scholar 

  • Lamothe, K. A., K. M. Alofs, D. A. Jackson, & K. M. Somers, 2018. Functional diversity and redundancy of freshwater fish communities across biogeographic and environmental gradients. Diversity and Distributions 24: 1612–1626.

    Google Scholar 

  • Levine, J. M., and C. M. D’Antonio. 1999. Elton revisited: areview of evidence linking diversity and invasibility. Oikos 87:15–26.

    Google Scholar 

  • Linløkken, A. N., E. Bergman, & L. Greenberg, 2010. Effect of temperature and roach Rutilus rutilus group size on swimming speed and prey capture rate of perch Perca fluviatilis and R. rutilus. Journal of Fish Biology 76: 900–912.

    Google Scholar 

  • Lockwood, J. L., M. F. Hoopes, & M. P. Marchetti, 2013. Invasion Ecology. Wiley, Hoboken.

    Google Scholar 

  • Lopez, L. K., A. R. Davis, & M. Y. Wong, 2018. Behavioral interactions under multiple stressors: temperature and salinity mediate aggression between an invasive and a native fish. Biological Invasions 20: 487–499.

    Google Scholar 

  • Ludsin, S. A., & A. D. Wolfe, 2001. Biological invasion theory: Darwin’s contributions from The Origin of Species. AIBS Bulletin 51: 780–789.

    Google Scholar 

  • Mack, R. N., D. Simberloff, W. Mark Lonsdale, H. Evans, M. Clout, & F. A. Bazzaz, 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications 10: 689–710.

    Google Scholar 

  • Maitner, B. S., J. A. Rudgers, A. E. Dunham, & K. D. Whitney, 2012. Patterns of bird invasion are consistent with environmental filtering. Ecography 35: 614–623.

    Google Scholar 

  • Malecore, E. M., W. Dawson, A. Kempel, G. Müller, & M. van Kleunen, 2019. Nonlinear effects of phylogenetic distance on early‐stage establishment of experimentally introduced plants in grassland communities. Journal of Ecology 107: 781–793.

    Google Scholar 

  • Marchetti, M. P., P. B. Moyle, & R. Levine, 2004. Alien fishes in California watersheds: characteristics of successful and failed invaders. Ecological Applications 14: 587–596.

    Google Scholar 

  • Marx, H. E., D. E. Giblin, P. W. Dunwiddie, & D. C. Tank, 2016. Deconstructing Darwin’s Naturalization Conundrum in the San Juan Islands using community phylogenetics and functional traits. Diversity and Distributions 22: 318–331.

    Google Scholar 

  • McGill, B. J., B. J. Enquist, E. Weiher, & M. Westoby, 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178–185.

    Google Scholar 

  • Moyle, P. B., & T. Light, 1996. Fish invasions in California: do abiotic factors determine success? Ecology 77: 1666–1670.

    Google Scholar 

  • Park, D. S., X. Feng, B. S. Maitner, K. C. Ernst, & B. J. Enquist, 2020. Darwin’s naturalization conundrum can be explained by spatial scale. Proceedings of the National Academy of Sciences National Acad Sciences 117: 10904–10910.

    CAS  Google Scholar 

  • Pavoine, S., J. Vallet, A.-B. Dufour, S. Gachet, & H. Daniel, 2009. On the challenge of treating various types of variables: application for improving the measurement of functional diversity. Oikos 118: 391–402.

    Google Scholar 

  • Peters, R. H., 1986. The Ecological Implications of Body Size. Cambridge University Press, Cambridge

    Google Scholar 

  • Pinto-Ledezma, J. N., Villalobos, F., Reich, P. B., Catford, J. A., Larkin, D. J., Cavender-Bares, J. 2019. Testing Darwin’s naturalization conundrum based on taxonomic, phylogenetic, and functional dimensions of vascular plants. Ecological Monographs

  • Pianka, E. R., 1970. On r-and K-selection. The American Naturalist 104: 592–597.

    Google Scholar 

  • R Core Team, 2019. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Ribeiro, F., B. Elvira, M. J. Collares-Pereira, & P. B. Moyle, 2008. Life-history traits of non-native fishes in Iberian watersheds across several invasion stages: a first approach. Biological Invasions Springer 10: 89–102.

    Google Scholar 

  • Ricciardi, A., 2001. Facilitative interactions among aquatic invaders: is an" invasional meltdown" occurring in the Great Lakes? Canadian Journal of Fisheries and Aquatic Sciences 58: 2513–2525.

    Google Scholar 

  • Ricciardi, A., & M. Mottiar, 2006. Does Darwin’s naturalization hypothesis explain fish invasions? Biological Invasions 8: 1403–1407.

    Google Scholar 

  • Ricciardi, A., M. F. Hoopes, M. P. Marchetti, & J. L. Lockwood, 2013. Progress toward understanding the ecological impacts of nonnative species. Ecological Monographs 83: 263–282.

    Google Scholar 

  • Rolls, R. J., B. Hayden, & K. K. Kahilainen, 2017. Conceptualising the interactive effects of climate change and biological invasions on subarctic freshwater fish. Ecology and Evolution 7: 4109–4128.

    PubMed  PubMed Central  Google Scholar 

  • Salmaso, N., F. Buzzi, L. Garibaldi, G. Morabito, & M. Simona, 2012. Effects of nutrient availability and temperature on phytoplankton development: a case study from large lakes south of the Alps. Aquatic Sciences Springer 74: 555–570.

    CAS  Google Scholar 

  • Sax, D. F., J. J. Stachowicz, J. H. Brown, J. F. Bruno, M. N. Dawson, S. D. Gaines, R. K. Grosberg, A. Hastings, R. D. Holt, & M. M. Mayfield, 2007. Ecological and evolutionary insights from species invasions. Trends in Ecology & Evolution 22: 465–471.

    Google Scholar 

  • Schielzeth, H., 2010. Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution 1: 103–113.

    Google Scholar 

  • Sheppard, C. S., M. Carboni, F. Essl, H. Seebens, D. Consortium, & W. Thuiller, 2018. It takes one to know one: Similarity to resident alien species increases establishment success of new invaders. Diversity and Distributions 24: 680–691.

    Google Scholar 

  • Simberloff, D., & B. Von Holle, 1999. Positive interactions of nonindigenous species: invasional meltdown? Biological Invasions Springer 1: 21–32.

    Google Scholar 

  • Simberloff, D., J.-L. Martin, P. Genovesi, V. Maris, D. A. Wardle, J. Aronson, F. Courchamp, B. Galil, E. García-Berthou, M. Pascal, P. Pyšek, R. Sousa, E. Tabacchi, & M. Vilà, 2013. Impacts of biological invasions: what’s what and the way forward. Trends in Ecology & Evolution 28: 58–66.

    Google Scholar 

  • Skóra, F., V. Abilhoa, A. A. Padial, & J. R. S. Vitule, 2015. Darwin’s hypotheses to explain colonization trends: evidence from a quasi‐natural experiment and a new conceptual model. Diversity and Distributions 21: 583–594.

    Google Scholar 

  • Spens, J., & J. P. Ball, 2008. Salmonid or nonsalmonid lakes: predicting the fate of northern boreal fish communities with hierarchical filters relating to a keystone piscivore. Canadian Journal of Fisheries and Aquatic Sciences 65: 1945–1955.

    Google Scholar 

  • Strauss, S. Y., C. O. Webb, & N. Salamin, 2006. Exotic taxa less related to native species are more invasive. Proceedings of the National Academy of Sciences 103: 5841–5845.

    CAS  Google Scholar 

  • Thuiller, W., L. Gallien, I. Boulangeat, F. De Bello, T. Münkemüller, C. Roquet, & S. Lavergne, 2010. Resolving Darwin’s naturalization conundrum: a quest for evidence. Diversity and Distributions 16: 461–475.

    Google Scholar 

  • Tingley, R., B. L. Phillips, & R. Shine, 2011. Establishment success of introduced amphibians increases in the presence of congeneric species. The American Naturalist 177: 382–388.

    PubMed  Google Scholar 

  • Vander Zanden, M. J., J. D. Olden, J. H. Thorne, & N. E. Mandrak, 2004. Predicting occurrences and impacts of smallmouth bass introductions in north temperate lakes. Ecological Applications 14: 132–148.

    Google Scholar 

  • Warnock, W. G., & J. B. Rasmussen, 2013. Abiotic and biotic factors associated with brook trout invasiveness into bull trout streams of the Canadian Rockies. Canadian Journal of Fisheries and Aquatic Sciences 70: 905–914.

    Google Scholar 

  • Weber, M. J., M. L. Brown, D. H. Wahl, & D. E. Shoup, 2015. Metabolic theory explains latitudinal variation in common carp populations and predicts responses to climate change. Ecosphere 6: 1–16.

    Google Scholar 

  • Whitehead, H., & S. J. Walde, 1992. Habitat dimensionality and mean search distances of top predators: implications for ecosystem structure. Theoretical Population Biology 42: 1–9.

    Google Scholar 

  • Winemiller, K. O., & K. A. Rose, 1992. Patterns of life-history diversification in North American fishes: implications for population regulation. Canadian Journal of Fisheries and Aquatic Sciences 49: 2196–2218.

    Google Scholar 

  • Zuur, A., E. N. Ieno, N. Walker, A. A. Saveliev, & G. M. Smith, 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York.

    Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their helpful and constructive remarks. This study was possible thanks to the financial support of CAPES (PhD scholarship to B.S.R) and CNPq (Productivity Grant to M.V.C; #306590/2018-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbbara Silva Rocha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Katya E. Kovalenko, Fernando M. Pelicice, Lee B. Kats, Jonne Kotta & Sidinei M. Thomaz / Aquatic Invasive Species III

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, B.S., Cianciaruso, M.V. Water temperature and lake size explain Darwin’s conundrum for fish establishment in boreal lakes. Hydrobiologia 848, 2033–2042 (2021). https://doi.org/10.1007/s10750-020-04434-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04434-4

Keywords

Navigation