Skip to main content

Advertisement

Log in

Dispersal of fish eggs and larvae in a cascade of small hydropower plants with fish ladders

  • PERSPECTIVES ON SUSTAINABLE HYDRO-POWER
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This study was conducted to investigate fish eggs and larvae dispersal in a river stretch influenced by small hydropower plants in Southeast Brazil. The main hypothesis is that the downstream dispersal of free-flowing eggs and larvae is likely to occur given the small size of the studied reservoirs and that passage through the dam may occur, with the fish ladder contributing to it. Eggs and larvae were collected fortnightly, between November 2016 and February 2017, from locations upstream of two dams, including lotic, transition and lentic zones. Additional samples were collected inside the fish ladders at each dam. Downstream dispersal of eggs and larvae was influenced by a combination of rainfall/flow variation and stage of the reproductive cycle, with the peak of rainfall during the summer coinciding with higher abundances. Under these conditions, eggs and larvae drifted downstream through the reservoirs and reached the dams. Once in the dam, they could pass through the fish ladder. This passage was correlated with larval density in the reservoir immediately upstream, although at very low densities compared with the other sampling sites located upstream of the fish ladders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agostinho, A. A., L. C. Gomes, H. I. Suzuki & H. F. Júlio Jr., 2003. Migratory fishes of the Upper Paraná River Basin, Brazil. In Carolsfeld, J., B. Harvey, C. Ross & A. Baer (eds.), Migratory Fishes of South America: Biology, Fisheries and Conservation Status. World Fisheries Trust, International Bank for Reconstruction and Development/The World Bank, Ottawa: 19–98.

    Google Scholar 

  • Agostinho, A. A., E. E. Marques, C. S. Agostinho, D. A. de Almeida, R. J. de Oliveira & J. R. B. de Melo, 2007. Fish ladder of Lajeado Dam: migrations on one-way routes? Neotropical Ichthyology 5: 121–130.

    Google Scholar 

  • Agostinho, C. S., F. M. Pelicice, E. E. Marques, A. B. Soares & D. A. A. Almeida, 2011. All that goes up must come down? Absence of downstream passage through a fish ladder in a large Amazonian river. Hydrobiologia 675: 1–12.

    Google Scholar 

  • Agostinho, A. A., L. C. Gomes, N. C. L. Santos, J. C. G. Ortega & F. M. Pelicice, 2016. Fish assemblages in neotropical reservoirs: colonization patterns, impacts and management. Fisheries Research 173: 26–36.

    Google Scholar 

  • Ahlstrom, E. H. & O. P. Ball, 1954. Description of eggs and larvae of jack mackerel (Trachurus symmetricus) and distribution and abundance of larvae in 1950 and 1951. Fishery Bulletin 56: 209–245.

    Google Scholar 

  • Almeida, F. S., W. Frantine-Silva, S. C. Lima, D. A. Z. Garcia & M. L. Orsi, 2018. DNA barcoding as a useful tool for identifying non-native species of freshwater ichthyoplankton in the neotropics. Hydrobiologia 817: 111–119.

    Google Scholar 

  • Amaral, S. V., B. S. Coleman, J. L. Rackovan, K. Withers & B. Mater, 2018. Survival of fish passing downstream at a small hydropower facility. Marine and Freshwater Research 69: 1870–1881.

    Google Scholar 

  • Anderson, M., R. N. Gorley, & K. R. Clarke, 2008. PERMANOVA + for PRIMER user manual. PRIMER-E, Plymouth

  • ANEEL, 2018. Capacidade de Geração do Brasil., http://www2.aneel.gov.br/aplicacoes/capacidadebrasil/capacidadebrasil.cfm.

  • Arcifa, M. S. & A. L. H. Esguícero, 2012. The fish fauna in the fish passage at the Ourinhos Dam, Paranapanema River. Neotropical Ichthyology 10: 715–722.

    Google Scholar 

  • Bakken, T. H., H. Sundt, A. Ruud & A. Harby, 2012. Development of small versus large hydropower in Norway comparison of environmental impacts. Energy Procedia 20: 185–199.

    CAS  Google Scholar 

  • Becker, R. A., N. G. Sales, G. M. Santos, G. B. Santos & D. C. Carvalho, 2015. DNA barcoding and morphological identification of neotropical ichthyoplankton from the Upper Paraná and São Francisco. Journal of Fish Biology 87: 159–168.

    CAS  PubMed  Google Scholar 

  • Benejam, L., S. Saura-Mas, M. Bardina, C. Solà, A. Munné, E. García-Berthou & A. Munn, 2016. Ecological impacts of small hydropower plants on headwater stream fish: from individual to community effects. Ecology of Freshwater Fish 25: 295–306.

    Google Scholar 

  • Boys, C. A., W. Robinson, B. Miller, B. Pflugrath, L. J. Baumgartner, A. Navarro, R. Brown & Z. Deng, 2016. How low can they go when going with the flow? Tolerance of egg and larval fishes to rapid decompression. Biology Open 5: 786–793.

    PubMed  PubMed Central  Google Scholar 

  • Brambilla, E. M., V. S. Uieda & M. G. Nogueira, 2018. Influence of habitat connectivity and seasonality on the ichthyofauna structure of a riverine knickzone, Iheringia. Série Zoologia 108: e2018035.

    Google Scholar 

  • Brown, R. S., K. V. Cook, B. D. Pflugrath, L. L. Rozeboom, R. C. Johnson, J. G. Mclellan, T. J. Linley, Y. Gao, L. J. Baumgartner, F. E. Dowell, E. A. Miller & T. A. White, 2013. Vulnerability of larval and juvenile white sturgeon to barotrauma: can they handle the pressure? Conservation Physiology 1: 1–9.

    Google Scholar 

  • Brown, R. S., A. H. Colotelo, B. D. Pflugrath, C. A. Boys, L. J. Baumgartner, Z. D. Deng, L. G. M. Silva, C. J. Brauner, M. Mallen-Cooper, O. Phonekhampeng, G. Thorncraft & D. Singhanouvong, 2014. Understanding barotrauma in fish passing hydro structures: a global strategy for sustainable development of water resources. Fisheries 39: 108–122.

    Google Scholar 

  • Celestino, L. F., F. J. Sanz-Ronda, L. E. Miranda, M. C. Makrakis, J. H. P. Dias & S. Makrakis, 2019. Bidirectional connectivity via fish ladders in a large neotropical river. River Research and Applications 35: 236–246.

    Google Scholar 

  • Cheshire, K. J. M., Q. Ye, B. M. Gillanders & A. King, 2016. Annual variation in larval fish assemblages in a heavily regulated river during differing hydrological conditions. River Research and Applications 32: 1207–1219.

    Google Scholar 

  • Clay, C. H., 1995. Design of Fishways and Other Fish Facilities. CRC Press, Florida.

    Google Scholar 

  • de Oliveira, A. K., J. C. Garavello, V. V. Cesario & R. T. Cardoso, 2016. Fish fauna from Sapucaí-Mirim River, tributary of Grande River, upper Paraná River basin, Southeastern Brazil. Biota Neotropica 16: 1–9.

    Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. Kawabata, R. J. Naiman, D. J. Knowler & C. Le, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.

    PubMed  Google Scholar 

  • Frantine-Silva, W., S. H. Sofia, M. L. Orsi & F. S. Almeida, 2015. DNA barcoding of freshwater ichthyoplankton in the Neotropics as a tool for ecological monitoring. Molecular Ecology Resources 15: 1226–1237.

    CAS  PubMed  Google Scholar 

  • Freitas-Souza, D., 2014. Interferências das construções sucessivas de Pequenas Centrais Hidroelétricas (PCH), sobre a ictiofauna do rio Sapucaí-Mirim—SP, Brasil. Universidade Estadual Paulista—UNESP, Campus de Botucatu

  • Fricke, R., W. N. Eschmeyer, & R. van der Laan, 2019. Eschmeyer’s catalog of fishes: genera, species, references., http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp.

  • Fuentes, C. M., M. I. Gómez, D. R. Brown, A. Arcelus & A. E. Ros, 2016. Downstream passage of fish larvae at the Salto Grande dam on the Uruguay River. River Research and Applications 1889: 1879–1889.

    Google Scholar 

  • Geiger, F., M. Cuchet, & P. Rutschmann, 2018. Fish behavior and fish guidance at hydropower intake screens for fish downstream passage. E3S Web of Conferences 40: 03041.

  • Gogola, T. M., V. S. Daga, P. R. da Silva, P. V. Sanches, É. A. Gubiani, G. Baumgartner & R. L. Delariva, 2010. Spatial and temporal distribution patterns of ichthyoplankton in a region affected by water regulation by dams. Neotropical Ichthyology 8: 341–349.

    Google Scholar 

  • Kucukali, S., 2014. Environmental risk assessment of small hydropower (SHP) plants: a case study for Tefen SHP plant on Filyos River. Energy for Sustainable Development International Energy Initiative 19: 102–110.

    Google Scholar 

  • Langeani, F., & A. C. L. Rêgo, 2014. Guia ilustrado dos peixes da bacia do rio Araguari. Grupo de Mídia Brasil Central, Uberlândia

  • Lechner, A., H. Keckeis & P. Humphries, 2016. Patterns and processes in the drift of early developmental stages of fish in rivers: a review. Reviews in Fish Biology and Fisheries Springer International Publishing 26: 471–489.

    Google Scholar 

  • Lopes, C. A., V. Garcia, D. A. Reynalte-Tataje, E. Zaniboni-Filho & A. P. O. de Nuñer, 2014. Distribuição temporal do ictioplâncton no rio Forquilha, alto rio Uruguai—Brasil: relação com os fatores ambientais. Acta Scientiarum - Biological Sciences 36: 59–65.

    Google Scholar 

  • Makrakis, S., A. P. S. Bertão, J. F. M. Silva, M. C. Makrakis, F. J. Sanz-Ronda & L. F. Celestino, 2019. Hydropower development and fishways: a need for connectivity in rivers of the upper Paraná Basin. Sustainability 11: 3749.

    Google Scholar 

  • Marques, H., J. H. P. Dias, G. Perbiche-Neves, E. A. L. Kashiwaqui & I. P. Ramos, 2018. Importance of dam-free tributaries for conserving fish biodiversity in Neotropical reservoirs. Biological Conservation Elsevier 224: 347–354.

    Google Scholar 

  • Nakatani, K., A. A. Agostinho, G. Baumgartner, A. Bialetzki, P. V. Sanches, M. C. Makrakis & C. S. Pavanelli, 2001. Ovos e larvas de peixes de água doce: desenvolvimento e manual de identificação. Eduem, Maringá.

    Google Scholar 

  • Nogueira, M. G., G. Perbiche-Neves & D. A. O. de Naliato, 2012. Limnology of two contrasting hydroelectric reservoirs (storage and run-of-river) in southeast Brazil. In Borougeni, H. S. (ed.), Hydropower—Practice and Application. INTECH, Rijeka: 167–784.

    Google Scholar 

  • Pavlov, D. S., 1994. The downstream migration of young fishes in rivers-mechanisms and distribution. Folia Zool 43: 193–208.

    Google Scholar 

  • Pavlov, D. S., V. N. Mikheev, A. I. Lupandin & M. A. Skorobogatov, 2008. Ecological and behavioural influences on juvenile fish migrations in regulated rivers: a review of experimental and field studies. Hydrobiologia 609: 125–138.

    Google Scholar 

  • Pelicice, F. M. & A. A. Agostinho, 2008. Fish-passage facilities as ecological traps in large neotropical rivers. Conservation Biology 22: 180–188.

    PubMed  Google Scholar 

  • Pelicice, F. M., P. S. Pompeu & A. A. Agostinho, 2015. Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish and Fisheries 16: 697–715.

    Google Scholar 

  • Pompeu, P. S., L. B. Nogueira, H. P. Godinho & C. B. Martinez, 2011. Downstream passage of fish larvae and eggs through a small-sized reservoir, Mucuri river, Brazil. Zoologia (Curitiba) 28: 739–746.

    Google Scholar 

  • Pompeu, P. S., A. A. Agostinho & F. M. Pelicice, 2012. Existing and future challenges: the concept of successful fish passage in South America. River Research and Applications 28: 504–512.

    Google Scholar 

  • Porcher, J. P. & F. Travade, 2002. Fishways: biological basis, limits and legal considerations. Bulletin Français de la Pêche et de la Pisciculture 364: 9–20.

    Google Scholar 

  • Reynalte-Tataje, D. A., K. Nakatani, R. Fernandes, A. A. Agostinho & A. Bialetzki, 2011. Temporal distribution of ichthyoplankton in the Ivinhema River (Mato Grosso do Sul State/Brazil): influence of environmental variables. Neotropical Ichthyology 9: 427–436.

    Google Scholar 

  • Rosa, G. R., G. N. Salvador, A. Bialetzki & G. B. Santos, 2018. Spatial and temporal distribution of ichthyoplankton during an unusual period of low flow in a tributary of the São Francisco River, Brazil. River Research and Applications 34: 69–82.

    Google Scholar 

  • Romanelli, J. P., L. G. M. Silva, A. Horta & R. A. Picoli, 2018. Site selection for hydropower development: a GIS-based framework to improve planning in Brazil. Journal of Environmental Engineering 144: 04018051.

    Google Scholar 

  • Sanches, P. V., K. Nakatani, A. Bialetzki, G. Baumgartner, L. C. Gomes & E. A. Luiz, 2006. Flow regulation by Dams affecting ichthyoplankton: the case of the Porto Primavera Dam, Paraná River, Brazil. River Research and Applications 22: 555–565.

    Google Scholar 

  • Sharma, K. N., P. K. Tiwari & Y. R. Sood, 2013. A comprehensive analysis of strategies, policies and development of hydropower in India: special emphasis on small hydro power. Renewable and Sustainable Energy Reviews Elsevier 18: 460–470.

    Google Scholar 

  • Silva, L. G. M., L. B. Nogueira, B. P. Maia & L. B. Resende, 2012. Fish passage post-construction issues: analysis of distribution, attraction and passage efficiency metrics at the Baguari Dam fish ladder to approach the problem. Neotropical Ichthyology 10: 751–762.

    Google Scholar 

  • Suzuki, F. M., L. V. Pires & P. S. Pompeu, 2011. Passage of fish larvae and eggs through the Funil, Itutinga and Camargos reservoirs on the upper Rio Grande (Minas Gerais, Brazil). Neotropical Ichthyology 9: 617–622.

    Google Scholar 

  • Suzuki, F. M. & P. S. Pompeu, 2016. Influence of abiotic factors on ichthyoplankton occurrence in stretches with and without dams in the upper Grande River basin, south-eastern Brazil. Fisheries Management and Ecology 23: 99–108.

    Google Scholar 

  • Suzuki, H. I., C. K. Bulla, A. A. Agostinho & L. C. Gomes, 2005. Estratégias reprodutivas de assembleias de peixes em reservatórios. In Rodrigues, L., S. M. Thomaz, L. C. Gomes & A. A. Agostinho (eds.), Biocenoses em Reservatórios—Padrões Espaciais e Temporais. Rima, São Carlos: 223–242.

    Google Scholar 

  • Tanaka, S., 1973. Stock assessment by means of ichthyoplankton surveys. FAO Fisheries Technical Paper 122: 33–51.

    Google Scholar 

  • Vasconcelos, L. P., D. C. Alves & L. C. Gomes, 2014. Fish reproductive guilds downstream of dams. Journal of Fish Biology 85: 1489–1506.

    CAS  PubMed  Google Scholar 

  • Vianna, N. C. & M. G. Nogueira, 2008. Ichthyoplankton and limnological factors in the Cinzas River—an alternative spawning site for fishes in the middle Paranapanema River basin, Brazil. Acta Limnologica Brasiliensia 20: 139–151.

    Google Scholar 

  • Vidal, L. V. O., R. C. B. Albinati, A. C. L. Albinati, A. D. de Lira, T. R. de Almeida & G. B. Santos, 2008. Eugenol como anestésico para a tilápia-do-nilo. Pesquisa Agropecuária Brasileira 43: 1069–1074.

    Google Scholar 

  • Vono, V., L. G. M. Silva, B. P. Maia & H. P. Godinho, 2002. Biologia reprodutiva de três espécies simpátricas de peixes neotropicais: Pimelodus maculatus Lacépède (Siluriformes, Pimelodidae), Leporinus amblyrhynchus Garavello & Britski e Schizodon nasutus Kner (Characiformes, Anostomidae) do recém-formado Reservatório de Miranda, Alto Paraná. Revista Brasileira de Zoologia 19: 819–826.

    Google Scholar 

  • Wilkes, M. A., J. A. Webb, P. S. Pompeu, L. G. M. Silva, A. S. Vowles, C. F. Baker, P. Franklin, O. Link, E. Habit & P. S. Kemp, 2019. Not just a migration problem: metapopulations, habitat shifts, and gene flow are also important for fishway science and management. River Research and Applications 35: 1688–1696.

    Google Scholar 

  • Zarfl, C., A. E. Lumsdon, J. Berlekamp, L. Tydecks & K. Tockner, 2015. A global boom in hydropower dam construction. Aquatic Sciences 77: 161–170.

    Google Scholar 

Download references

Acknowledgements

We thank the funding agency Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for scholarship conceived for the first author. Staff of the dam sites are thanked for helping to provide access to the experimental facilities. We also acknowledged the three anonymous reviewers and the associated guest editor, Eduardo Martins, for their valuable comments and criticisms that significantly contributed to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Meneguzzi Brambilla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Ingeborg P. Helland, Michael Power, Eduardo G. Martins & Knut Alfredsen / Perspectives on the environmental implications of sustainable hydro-power

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brambilla, E.M., Silva, L.G.M., Baumgartner, L.J. et al. Dispersal of fish eggs and larvae in a cascade of small hydropower plants with fish ladders. Hydrobiologia 849, 339–356 (2022). https://doi.org/10.1007/s10750-020-04425-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04425-5

Keywords

Navigation