Skip to main content

Advertisement

Log in

Salinity and inundation effects on productivity of brackish tidal marsh plants in the San Francisco Bay-Delta Estuary

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Plant productivity is central to numerous ecosystem functions in tidal wetlands. We examined how productivity of brackish marsh plants in northern California responded to abiotic stress gradients of inundation and salinity using two experimental approaches. In a greenhouse study with varying salinity, shoot production and biomass of Juncus balticus, Schoenoplectus acutus and S. americanus all declined monotonically with higher salinity, with evidence of differences in sensitivity among species by their varied functional responses. Salinity also negatively affected fecundity for the one species (S. americanus) that produced enough inflorescences during the experiment for analysis. In a field manipulation of inundation and initial pore water salinity, total end-of-season biomass and other metrics of growth in the high marsh species, J. balticus, had unimodal relationships with inundation. Root production tended to be greater strongly impacted by greater inundation than shoot production. The salinity treatment quickly dissipated for treatments that were flooded more frequently but persisted at a higher marsh elevation where it suppressed plant growth. These results suggest that both increased flooding and salinity associated with climate change and sea-level rise may negatively impact productivity of brackish marsh species, but with variable effects by species and stressor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data generated in this study will be made available through the Knowledge Network for Biocomplexity (knb.ecoinformatics.org).

References

  • Baustian, J. J., & I. A. Mendelssohn, 2018. Sea level rise impacts to coastal marshes may be ameliorated by natural sedimentation events. Wetlands 38: 689–701.

  • Bertness, M. D., 1991. Interspecific interactions among high marsh perennials in a New England salt marsh. Ecology 72: 125–137.

    Google Scholar 

  • Brophy, L. S., C. M. Greene, V. C. Hare, B. Holycross, A. Lanier, W. N. Heady, K. O’Connor, H. Imaki, T. Haddad & R. Dana, 2019. Insights into estuary habitat loss in the western United States using a new method for mapping maximum extent of tidal wetlands. PLoS ONE 24: e0218558.

    Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 2002. Model selection and multimodel inference: a practical information-theoretic approach, 2nd ed. Springer, New York.

    Google Scholar 

  • Callaway, J. C., R. D. DeLaune & W. H. Patrick Jr., 1997. Sediment accretion rates from four coastal wetlands along the Gulf of Mexico. Journal of Coastal Research 13: 181–191.

    Google Scholar 

  • Callaway, R. M., 1994. Facilitative and interfering effects of Arthrocnemum subterminale on winter annuals. Ecology 75: 681–686.

    Google Scholar 

  • Chapple, D. E., P. Faber, K. N. Suding & A. M. Merenlender, 2017. Climate variability structures plant community dynamics in Mediterranean restored and reference tidal wetlands. Water 9: 209.

    Google Scholar 

  • Cloern, J. E., N. Knowles, L. R. Brown, D. Cayan, M. D. Dettinger, T. L. Morgan, D. H. Schoellhamer, M. T. Stacey, M. van der Wegen, R. W. Wagner & A. D. Jassby, 2011. Projected evolution of California’s San Francisco Bay-Delta-River system in a century of climate change. PLoS ONE. https://doi.org/10.1371/journal.pone.0024465.

    Article  PubMed  PubMed Central  Google Scholar 

  • Colmer, T. D. & L. A. C. J. Voesenek, 2009. Flooding tolerance: suites of plant trails in variable environments. Functional Plant Biology 36: 665–681.

    CAS  PubMed  Google Scholar 

  • Deegan, L. A., D. S. Johnson, R. S. Warren, B. J. Peterson, J. W. Fleeger, S. Fagherazzi & W. M. Wollheim, 2012. Coastal eutrophication as a driver of salt marsh loss. Nature 490: 388–394.

    CAS  PubMed  Google Scholar 

  • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman & D. R. Cayan, 2011. Atmospheric rivers, floods and the water resources of California. Water 3: 445–478.

    Google Scholar 

  • Diffenbaugh, N. S., D. L. Swain & D. Touma, 2015. Anthropogenic warming has increased drought risk in California. Proceedings of the National Academy of Sciences of the USA 112: 3931–3936.

    CAS  PubMed  Google Scholar 

  • Easton, L. C. & S. Kleindorfer, 2009. Effects of salinity levels and seed mass on germination in Australian species of Frankenia. Environmental and Experimental Botany 65: 345–352.

    CAS  Google Scholar 

  • Franco, J. A., S. Bañón, M. J. Vincente, J. Miralles & J. J. Martínez-Sánchez, 2011. Root development in horticultural plants grown under abiotic stress conditions – a review. The Journal of Horticultural Science and Biotechnology 86: 543–556.

    Google Scholar 

  • García-Caparrós, P., A. Llanderal, M. Pestana, P. J. Correia & M. T. Lao, 2017. Nutritional and physiological response of the dicotyledonous halophyte Sarcocornia fruticosa to salinity. Australian Journal of Botany 65: 573–581.

    Google Scholar 

  • Gittman, R. K., F. J. Fodrie, C. J. Baillie, M. C. Brodeur, C. A. Currin, D. A. Keller, M. D. Kenworthy, J. P. Morton, J. T. Ridge & Y. S. Zhang, 2018. Living on the edge: increasing patch size enhances the resilience and community development of a restored salt marsh. Estuaries and Coasts 41: 884–895.

    Google Scholar 

  • Griffin, D. & K. J. Anchukaitis, 2014. How unusual is the 2012–2014 California drought? Geophysical Research Letters 41: 9017–9023.

    Google Scholar 

  • Hester, M. W., I. A. Mendelssohn & K. L. McKee, 2001. Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora: morphological and physiological constraints. Environmental and Experimental Botany 46: 277–297.

    CAS  Google Scholar 

  • Janousek, C. N., & C. L. Folger, 2014. Variation in tidal wetland plant diversity and composition within and among coastal estuaries: assessing the relative importance of environmental gradients. Journal of Vegetation Science 25:534–545.

  • Janousek, C. N. & C. Mayo, 2013. Plant responses to increased inundation and salt exposure: interactive effects on tidal marsh productivity. Plant Ecology 214: 917–928.

    Google Scholar 

  • Janousek, C. N., K. J. Buffington, K. M. Thorne, G. R. Guntenspergen, J. Y. Takekawa & B. D. Dugger, 2016. Potential effects of sea-level rise on plant productivity: species-specific responses in northeast Pacific tidal marshes. Marine Ecology Progress Series 548: 111–125.

    Google Scholar 

  • Kirwan, M. L. & G. R. Guntenspergen, 2012. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. Journal of Ecology 100: 764–770.

    Google Scholar 

  • Kirwan, M. L. & G. R. Guntenspergen, 2015. Experimental flooding in a stable and a submerging marsh. Ecosystems 18: 903–913.

    Google Scholar 

  • Kirwan, M., S. Temmerman, E. E. Skeehan, G. R. Guntenspergen & S. Fagherazzi, 2016. Overestimation of marsh vulnerability to sea level rise. Nature Climate Change 6: 253–260.

    Google Scholar 

  • Langley, J. A., T. J. Mozdzer, K. A. Shepard, S. B. Hagerty & J. P. Megonigal, 2013. Tidal marsh plant responses to elevated CO2, nitrogen fertilization, and sea level rise. Global Change Biology 19: 1495–1503.

    Google Scholar 

  • Leonard, L. A., A. C. Hine & M. E. Luther, 1995. Surficial sediment transport and deposition in a Juncus roemerianus marsh, west-central Florida. Journal of Coastal Research 11: 322–336.

    Google Scholar 

  • Leonard, L. A., & A. L. Croft, 2006. The effect of standing biomass on flow velocity and turbulence in Spartina alterniflora canopies. Estuarine Coastal and Shelf Science 69: 325–336.

  • Levin, L. A., C. Neira & E. D. Grosholz, 2006. Invasive cordgrass modifies wetland trophic function. Ecology 87: 419–432.

    PubMed  Google Scholar 

  • Li, S.-H., Z.-M. Ge, L.-N. Xie, W. Chen, L. Yuan, D.-Q. Wang, X.-Z. Li & L.-Q. Zhang, 2018. Ecophysiological response of native and exotic salt marsh vegetation to waterlogging and salinity: Implications for the effects of sea-level rise. Scientific Reports 8: 2441.

    PubMed  PubMed Central  Google Scholar 

  • MacTavish, R. M. & R. A. Cohen, 2017. Water column ammonium concentration and salinity influence nitrogen uptake and growth of Spartina alterniflora. Journal Experimental Marine Biology and Ecology 488: 52–59.

    CAS  Google Scholar 

  • Marco, P., M. Carvajal & M. D. C. Martínez-Ballesta, 2019. Efficient leaf solute partitioning in Salicornia fruticosa allows growth under salinity. Environmental and Experimental Botany 157: 177–186.

    CAS  Google Scholar 

  • Martin, N. M. & B. R. Maricle, 2015. Species-specific enzymatic tolerance of sulfide toxicity in plant roots. Plant Physiology and Biochemistry 88: 36–41.

    CAS  PubMed  Google Scholar 

  • Mcleod, E., G. L. Chmura, S. Bouillon, R. Salm, M. Björk, C. M. Duarte, C. E. Lovelock, W. H. Schlesinger & B. R. Silliman, 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers Ecology Environment 9: 552–560.

    Google Scholar 

  • Morris, J. T., P. V. Sundareshwar, C. T. Nietch, B. Kjerfve & D. R. Cahoon, 2002. Responses of coastal wetlands to rising sea level. Ecology 83: 2869–2877.

    Google Scholar 

  • Morris, J. T., K. Sundberg & C. S. Hopkinson, 2013. Salt marsh primary productivity and its responses to relative sea level and nutrients in estuaries at Plum Island, Massachusetts, and North Inlet, South Carolina USA. Oceanography 26: 78–84.

    Google Scholar 

  • Morris, J. T., D. C. Barber, J. C. Callaway, R. Chambers, S. C. Hagen, C. S. Hopkinson, B. J. Johnson, P. Megonigal, S. C. Neubauer, T. Troxler & C. Wigand, 2016. Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state. Earth’s Future 4: 110–121.

    PubMed  PubMed Central  Google Scholar 

  • Mudd, S. M., S. M. Howell & J. T. Morris, 2009. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuarine, Coastal and Shelf Science 82: 377–389.

    CAS  Google Scholar 

  • Narayan, S., M. W. Beck, P. Wilson, C. J. Thomas, A. Guerrero, C. C. Shepard, B. G. Reguero, G. Franco, J. C. Ingram & D. Trespalacios, 2017. The value of coastal wetlands for flood damage reduction in the northeastern USA. Scientific Reports 7: 9463.

    PubMed  PubMed Central  Google Scholar 

  • Nyman, J. A., R. J. Walters, R. D. Delaune & W. H. Patrick Jr., 2006. Marsh vertical accretion via vegetative growth. Estuarine, Coastal and Shelf Science 69: 370–380.

    Google Scholar 

  • Page, M., 1997. Importance of vascular plant and algal production to macro-invertebrate consumers in a southern California salt marsh. Estuarine, Coastal and Shelf Science 45: 823–834.

    Google Scholar 

  • Parker, V. T. & K. E. Boyer, 2017. Sea-level rise and climate change impacts on an urbanized Pacific coast estuary. Wetlands 39: 1232–1291.

    Google Scholar 

  • Pearcy, R. W. & S. L. Ustin, 1984. Effects of salinity on growth and photosynthesis of three California tidal marsh species. Oecologia 62: 68–73.

    PubMed  Google Scholar 

  • Person, B. T. & R. W. Ruess, 2003. Stability of a subarctic saltmarsh: plant community resistance to tidal inundation. Ecoscience 10: 351–360.

    Google Scholar 

  • R Core Team, 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/.

  • Reef, R., T. Spencer, I. Möller, C. E. Lovelock, E. K. Christie, A. L. McIvor, B. R. Evans & J. A. Tempest, 2016. The effects of elevated CO2 and eutrophication on surface elevation gain in a European salt marsh. Global Change Biology 23: 881–890.

    PubMed  Google Scholar 

  • Rozema, J. & B. Blom, 1977. Effects of salinity and inundation on the growth of Agrostis stolonifera and Juncus gerardii. Journal of Ecology 65: 213–222.

    CAS  Google Scholar 

  • Schile, L. M., J. C. Callaway, V. T. Parker & M. C. Vasey, 2011. Salinity and inundation influence productivity of the halophytic plant Sarcocornia pacifica. Wetlands 31: 1165–1174.

    Google Scholar 

  • Schile, L. M., J. C. Callaway, K. N. Suding & N. M. Kelly, 2017. Can community structure track sea-level rise? Stress and competitive controls in tidal wetlands. Ecology and Evolution 7: 1276–1285.

    PubMed  PubMed Central  Google Scholar 

  • Schoellhamer, D. H., 2011. Sudden clearing of estuarine waters upon cross the threshold from transport to supply regulation of sediment transport as an erodible sediment pool is depleted: San Francisco Bay, 1999. Estuaries and Coasts 34: 885–899.

    Google Scholar 

  • Shepard, C. C., C. M. Crain & M. W. Beck, 2011. The protective role of coastal marshes: a systematic review and meta-analysis. PLoS ONE 6: e27374.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silliman, B. R., J. van de Koppel, M. D. Bertness, L. E. Stanton & I. A. Mendelssohn, 2005. Drought, snails, and large-scale die-off of southern U.S. salt marshes. Science 310: 1803–1806.

    CAS  PubMed  Google Scholar 

  • Snedden, G. A., K. Cretini & B. Patton, 2015. Inundation and salinity impacts to above- and belowground productivity in Spartina patens and Spartina alterniflora in the Mississippi River deltaic plain: Implications of using river diversions as restoration tools. Ecological Engineering 81: 133–139.

    Google Scholar 

  • Spalding, E. A. & M. W. Hester, 2007. Interactive effects of hydrology and salinity on oligohaline plant species productivity: implications of relative sea-level rise. Estuaries and Coasts 30: 214–225.

    Google Scholar 

  • Spautz, H., N. Nur, D. Stralberg & Y. Chan, 2006. Multiple-scale habitat relationships of tidal-marsh breeding birds in the San Francisco Bay Estuary. Studies in Avian Biology 32: 247–269.

    Google Scholar 

  • Stagg, C. L., D. R. Schoolmaster Jr., S. C. Piazza, G. Snedden, G. D. Steyer, C. J. Fischenich & R. W. McComas, 2017. A landscape-scale assessment of above- and belowground primary production in coastal wetlands: Implications for climate change-induced community shifts. Estuaries and Coasts 40: 856–879.

    CAS  Google Scholar 

  • Swanson, K. M., J. Z. Drexler, C. C. Fuller & D. H. Schoellhamer, 2015. Modeling tidal freshwater marsh sustainability in the Sacramento-San Joaquin Delta under a broad suite of potential future scenarios. San Francisco Estuary and Watershed Science 13: 1–21.

    Google Scholar 

  • Sustaita, D., P. F. Quickert, L. Patterson, L. Barthman-Thompson & S. Estrella, 2011. Salt marsh harvest mouse demography and habitat use in the Suisun marsh, California. The Journal of Wildlife Management 75: 1498–1507.

    Google Scholar 

  • Tobias, V. D. & J. A. Nyman, 2017. Leaf tissue indicators of flooding stress in the above- and belowground biomass of Spartina patens. Journal of Coastal Research 33: 309–320.

    CAS  Google Scholar 

  • Ustin, S. L., R. W. Pearcy & D. E. Bayer, 1982. Plant water relations in a San Francisco Bay salt marsh. Botanical Gazette 143: 368–373.

    Google Scholar 

  • Watson, E. B., C. Wigand, M. Cencer & K. Blount, 2015. Inundation and precipitation effects on growth and flowering of the high marsh species Juncus gerardii. Aquatic Botany 121: 52–56.

    Google Scholar 

  • Whitfield, A. K., 2017. The role of seagrass meadows, mangrove forests, salt marshes and reed beds as nursery areas and food sources for fishes in estuaries. Reviews in Fish Biology and Fisheries 27: 75–110.

    Google Scholar 

  • Wilson, B. J., S. Servais, S. P. Charles, S. E. Davis, E. E. Gaiser, J. S. Kominoski, J. H. Richards & T. G. Troxler, 2018. Declines in plant productivity drive carbon loss from brackish coastal wetland mesocosms exposed to saltwater intrusion. Estuaries and Coasts 41: 2147–2158.

    CAS  Google Scholar 

  • Whipple A.A., R.M. Grossinger, D. Rankin, B. Stanford, R.A. Askevold, 2012. Sacramento-San Joaquin Delta Historical Ecology Investigation: Exploring Pattern and Process. A report of SFEI-ASC’s Historical Ecology Program, Publication #672, San Francisco Estuary Institute-Aquatic Science Center, Richmond, CA.

  • Wu, Z., P. Dijkstra, G. W. Koch, J. Peñuelas & B. A. Hungate, 2011. Responses of terrestrial ecosystems to temperate and precipitation change: a meta-analysis of experimental manipulation. Global Change Biology 17: 927–942.

    Google Scholar 

  • Yang, Z., T. Wang, N. Voisin & A. Copping, 2015. Estuarine response to river flow and sea-level rise under future climate change and human development. Estuarine, Coastal and Shelf Science 156: 19–30.

    Google Scholar 

  • Yuan, F., J. Guo, S. Shabala & B. Wang, 2019. Reproductive physiology of halophytes: current standing. Frontiers in Plant Science 9: 1–13.

    Google Scholar 

  • Zedler, J. B., 1983. Freshwater impacts in normally hypersaline marshes. Estuaries 6: 346–355.

    Google Scholar 

Download references

Acknowledgements

This research was funded by the National Oceanic and Atmospheric Administration (EESLR cooperative agreement NA15NOS4780171) and the Priority Ecosystems Science program of the U.S. Geological Survey. We thank Veronica Corbett, Karen Backe, Mike Vasey, Ari Goodman, Mason Hill, Dave Nelson, Charlie Nelson, Sonya Kaufman, and Kevin Buffington for project assistance. We also thank two anonymous reviewers and Dylan Chapple for comments that helped improve the paper. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher N. Janousek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Glenn Guntenspergen

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5727 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janousek, C.N., Dugger, B.D., Drucker, B.M. et al. Salinity and inundation effects on productivity of brackish tidal marsh plants in the San Francisco Bay-Delta Estuary. Hydrobiologia 847, 4311–4323 (2020). https://doi.org/10.1007/s10750-020-04419-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04419-3

Keywords

Navigation