Skip to main content

Advertisement

Log in

Periodic inundations drive community assembly of amphibious plants in floodplain lakes

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

A Correction to this article was published on 22 October 2020

This article has been updated

Abstract

Understanding the effects of disturbance regimes on community assembly is an essential issue in community ecology. Yet, little is known about how water regimes drive community assembly considering functional facets in aquatic communities. We detected functional trait patterns of amphibious plant communities and checked the effects of inundations on these patterns, using null model analyses based on observational data of 20 Yangtze River floodplain lakes. Amphibious plant communities in the study lakes were dominated by perennials and a large proportion (61.2%) of communities were species-poor (species richness < 3). Null model analyses based on both incidence and biomass data showed 95.6% species-rich communities (species richness ≥ 3) presented randomness trait patterns. A higher proportion of randomness was found in the post-flood (98.8%) than pre-flood (89.7%) communities, and randomness tended to be more important as inundation increased. We showed for the first time the effects of periodic inundations on trait patterns of amphibious plants in floodplain lakes. Our results suggested that randomness would be common and important at a fine scale even in highly disturbed habitats. We further put forward a new conceptual framework regarding the underlying assembly mechanisms that water regimes drove aquatic plant communities in river floodplain ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 22 October 2020

    Due to an unfortunate mistake during the production process, some rows in Table 1 were distorted. The original article has been corrected and the correct display of Table 1 is also published here.

References

  • Adler, P. B., R. Salguero-Gómez, A. Compagnoni, J. S. Hsu, J. Ray-Mukherjee, C. Mbeau-Ache & M. Franco, 2014. Functional traits explain variation in plant life history strategies. Proceedings of the National Academy of Sciences 111: 740–745.

    CAS  Google Scholar 

  • Amoros, C. & G. Bornette, 2002. Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology 47: 761–776.

    Google Scholar 

  • Barko, J. W., D. G. Hardin & M. S. Matthews, 1982. Growth and morphology of submersed freshwater macrophytes in relation to light and temperature. Canadian Journal of Botany 60: 877–887.

    Google Scholar 

  • Bunn, S. E. & A. H. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492–507.

    PubMed  Google Scholar 

  • Chase, J. M., 2003. Community assembly: when should history matter? Oecologia 136: 489–498.

    Google Scholar 

  • Chase, J. M. & J. A. Myers, 2011. Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society B: Biological Sciences 366: 2351–2363.

    Google Scholar 

  • Chesson, P., 2000. Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics 31: 343–366.

    Google Scholar 

  • Colmer, T. D. & L. A. C. J. Voesenek, 2009. Flooding tolerance: suites of plant traits in variable environments. Functional Plant Biology 36: 665–681.

    CAS  PubMed  Google Scholar 

  • Fitzgerald, D. B., K. O. Winemiller, P. M. H. Sabaj & L. M. Sousa, 2017. Seasonal changes in the assembly mechanisms structuring tropical fish communities. Ecology 98: 21–31.

    PubMed  Google Scholar 

  • Flora of China Editorial Committee (ed.), 1988–2013. Flora of China (Checklist & Addendum). Unpaginated. Science Press & Missouri Botanical Garden Press, Beijing & St. Louis.

  • Fraaije, R. G. A., C. J. F. ter Braak, B. Verduyn, J. T. A. Verhoeven & M. B. Soons, 2015. Dispersal versus environmental filtering in a dynamic system: drivers of vegetation patterns and diversity along stream riparian gradients. Journal of Ecology 103: 1634–1646.

    Google Scholar 

  • Fu, H., J. Zhong, G. Yuan, P. Xie, L. Guo, X. Zhang, J. Xu, Z. Li, W. Li, M. Zhang, T. Cao & L. Ni, 2014. Trait-based community assembly of aquatic macrophytes along a water depth gradient in a freshwater lake. Freshwater Biology 59: 2462–2471.

    Google Scholar 

  • Garssen, A. G., A. Baattrup-Pedersen, L. A. C. J. Voesenek, J. T. A. Verhoeven & M. B. Soons, 2015. Riparian plant community responses to increased flooding: a meta-analysis. Global Change Biology 21: 2881–2890.

    PubMed  Google Scholar 

  • Gotelli, N. J. & K. Rohde, 2002. Co-occurrence of ectoparasites of marine fishes: a null model analysis. Ecology Letters 5: 86–94.

    Google Scholar 

  • Heino, J. & K. T. Tolonen, 2017. Untangling the assembly of littoral macroinvertebrate communities through measures of functional and phylogenetic alpha diversity. Freshwater Biology 62: 1168–1179.

    CAS  Google Scholar 

  • HilleRisLambers, J., P. B. Adler, W. S. Harpole, J. M. Levine & M. M. Mayfield, 2012. Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution and Systematics 43: 227–248.

    Google Scholar 

  • Hubbell, S. P., 2005. Neutral theory in community ecology and the hypothesis of functional equivalence. Functional Ecology 19: 166–172.

    Google Scholar 

  • Institute of Botany, Chinese Academy of Sciences, 1994. The Picture Index of Senior China Plant. Science Press, Beijing.

    Google Scholar 

  • Jiang, L. & S. N. Patel, 2008. Community assembly in the presence of disturbance: a microcosm experiment. Ecology 89: 1931–1940.

    Google Scholar 

  • Keddy, P., 1999. Wetland restoration: the potential for assembly rules in the service of conservation. Wetlands 19: 716–732.

    Google Scholar 

  • Keddy, P. A., 1992. Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science 3: 157–164.

    Google Scholar 

  • Keddy, P. A. & A. A. Reznicek, 1986. Great lake vegetation dynamics: the efffects of fluctuating water levels and buried seeds. Journal of Great Lakes Research 12: 25–36.

    Google Scholar 

  • Khedr, A. H. A. & M. A. El-Demerdash, 1997. Distribution of aquatic plants in relation to environmental factors in the Nile Delta. Aquatic Botany 56: 75–86.

    Google Scholar 

  • Kraft, N. J. B. & D. D. Ackerly, 2010. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs 80: 401–422.

    Google Scholar 

  • Kraft, N. J. B., P. B. Adler, O. Godoy, E. C. James, S. Fuller & J. M. Levine, 2015. Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology 29: 592–599.

    Google Scholar 

  • Laliberté, E. & P. Legendre, 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91: 299–305.

    PubMed  Google Scholar 

  • Liu, G., 2005. Wetland seed banks in the middle to lower reaches of Changjiang River. Ph D Thesis, Wuhan Botanical Garden, the Chinese Acedemy of Sciences.

  • Liu, X. & H. Wang, 2018. Contrasting patterns and drivers in taxonomic versus functional diversity, and community assembly of aquatic plants in subtropical lakes. Biodiversity and Conservation 27: 3103–3118.

    Google Scholar 

  • Lombardo, P. & M. Mjelde, 2014. Quantifying interspecific spatial overlap in aquatic macrophyte communities. Hydrobiologia 737: 25–43.

    Google Scholar 

  • Lytle, D. A. & N. L. Poff, 2004. Adaptation to natural flow regimes. Trends in Ecology & Evolution 19: 94–100.

    Google Scholar 

  • Maren, I. E., J. Kapfer, P. A. Aarrestad, J. A. Grytnes & V. Vandvik, 2018. Changing contributions of stochastic and deterministic processes in community assembly over a successional gradient. Ecology 99: 148–157.

    PubMed  Google Scholar 

  • Mason, N. W. H., C. Lanoiselée, D. Mouillot, P. Irz & C. Argillier, 2007. Functional characters combined with null models reveal inconsistency in mechanisms of species turnover in lacustrine fish communities. Oecologia 153: 441–452.

    PubMed  Google Scholar 

  • Mason, N. W. H., D. Mouillot, W. G. Lee & J. B. Wilson, 2005. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111: 112–118.

    Google Scholar 

  • McCluney, K. E., N. L. Poff, M. A. Palmer, J. H. Thorp, G. C. Poole, B. S. Williams, M. R. Williams & J. S. Baron, 2014. Riverine macrosystems ecology: sensitivity, resistance, and resilience of whole river basins with human alterations. Frontiers in Ecology and Environment 12: 48–58.

    Google Scholar 

  • Merritt, D. M., M. L. Scott, N. LeRoy Poff, G. T. Auble & D. A. Lytle, 2010. Theory, methods and tools for determining environmental flows for riparian vegetation: riparian vegetation-flow response guilds. Freshwater Biology 55: 206–225.

    Google Scholar 

  • Middleton, B. A. (ed.), 2002. Flood Pulsing in Wetlands: Restoring the Natural Hydrological Balance. Wiley, New York.

    Google Scholar 

  • Mjelde, M., S. Hellsten & F. Ecke, 2013. A water level drawdown index for aquatic macrophytes in Nordic lakes. Hydrobiologia 704: 141–151.

    Google Scholar 

  • Moore, J. E., S. B. Franklin & J. W. Grubaugh, 2011. Herbaceous plant community responses to fluctuations in hydrology: using Mississippi River islands as models for plant community assembly. The Journal of the Torrey Botanical Society 138: 177–191.

    Google Scholar 

  • Mouchet, M. A., S. Villéger, N. W. H. Mason & D. Mouillot, 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology 24: 867–876.

    Google Scholar 

  • Mouillot, D., N. A. J. Graham, S. Villéger, N. W. H. Mason & D. R. Bellwood, 2013. A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution 28: 167–177.

    Google Scholar 

  • Obolewski, K., K. Glińska-Lewczuk, M. Ożgo & A. Astel, 2016. Connectivity restoration of floodplain lakes: an assessment based on macroinvertebrate communities. Hydrobiologia 774: 23–37.

    CAS  Google Scholar 

  • Paillex, A., S. Dolédec, E. Castella, S. Mérigoux & D. C. Aldridge, 2013. Functional diversity in a large river floodplain: anticipating the response of native and alien macroinvertebrates to the restoration of hydrological connectivity. Journal of Applied Ecology 50: 97–106.

    Google Scholar 

  • Perry, G. L. W., N. J. Enright, B. P. Miller & B. B. Lamont, 2013. Do plant functional traits determine spatial pattern? A test on species-rich shrublands, Western Australia. Journal of Vegetation Science 24: 441–452.

    Google Scholar 

  • Poff, N. L., 2018. Beyond the natural flow regime? Broadening the hydro-ecological foundation to meet environmental flows challenges in a non-stationary world. Freshwater Biology 63: 1011–1021.

    Google Scholar 

  • Power, M. E., M. S. Parker & W. E. Dietrich, 2008. Seasonal reassembly of a river food web: floods, droughts, and impacts of fish. Ecological Monographs 78: 263–282.

    Google Scholar 

  • Core Team, R., 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Romme, W. H., T. G. Whitby, D. B. Tinker & M. G. Turner, 2016. Deterministic and stochastic processes lead to divergence in plant communities 25 years after the 1988 Yellowstone fires. Ecological Monographs 86: 327–351.

    Google Scholar 

  • Roscher, C., J. Schumacher, A. Lipowsky, M. Gubsch, A. Weigelt, S. Pompe, O. Kolle, N. Buchmann, B. Schmid & E.-D. Schulze, 2013. A functional trait-based approach to understand community assembly and diversity–productivity relationships over 7 years in experimental grasslands. Perspectives in Plant Ecology, Evolution and Systematics 15: 139–149.

    Google Scholar 

  • Santos, A. M. C., M. V. Cianciaruso & P. De Marco, 2016. Global patterns of functional diversity and assemblage structure of island parasitoid faunas. Global Ecology and Biogeography 25: 869–879.

    Google Scholar 

  • Sarremejane, R., H. Mykra, N. Bonada, J. Aroviita & T. Muotka, 2017. Habitat connectivity and dispersal ability drive the assembly mechanisms of macroinvertebrate communities in river networks. Freshwater Biology 62: 1073–1082.

    Google Scholar 

  • Shurin, J. B., K. Cottenie & H. Hillebrand, 2009. Spatial autocorrelation and dispersal limitation in freshwater organisms. Oecologia 159: 151–159.

    PubMed  Google Scholar 

  • Stegen, J. C., X. Lin, A. E. Konopka & J. K. Fredrickson, 2012. Stochastic and deterministic assembly processes in subsurface microbial communities. The ISME Journal 6: 1653–1664.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stoffels, R. J., R. A. Rehwinkel, A. E. Price & W. F. Fagan, 2016. Dynamics of fish dispersal during river-floodplain connectivity and its implications for community assembly. Aquatic Sciences 78: 355–365.

    CAS  Google Scholar 

  • Strayer, D. L. & D. Dudgeon, 2010. Freshwater biodiversity conservation: recent progress and future challenges. Journal of the North American Benthological Society 29: 344–358.

    Google Scholar 

  • Swenson, N., 2014. Functional and Phylogenetic Ecology in R. Springer, New York.

    Google Scholar 

  • Swenson, N. G., D. L. Erickson, X. Mi, N. A. Bourg, J. Forero-Montaña, X. Ge, R. Howe, J. K. Lake, X. Liu, K. Ma, N. Pei, J. Thompson, M. Uriarte, A. Wolf, S. J. Wright, W. Ye, J. Zhang, J. K. Zimmerman & W. J. Kress, 2012. Phylogenetic and functional alpha and beta diversity in temperate and tropical tree communities. Ecology 93: S112–S125.

    Google Scholar 

  • ter Braak, C. J. F. & P. F. M. Verdonschot, 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences 57: 255–289.

    Google Scholar 

  • Tilman, D., 2004. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proceedings of the National Academy of Sciences of the United States of America 101: 10854–10861.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tockner, K., S. Bunn, C. Gordon, R. J. Naiman, G. P. Quinn & J. A. Stanford, 2008. Flood plains: critically threatened ecosystems. In Polunin, N. V. C. (ed.), Aquatic Ecosystems Trends and Global Prospects. Cambridge University Press, London: 45–61.

    Google Scholar 

  • Vestergaard, O. & K. Sand-Jensen, 2000. Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes. Aquatic Botany 67: 85–107.

    Google Scholar 

  • Viana, D. S. & J. M. Chase, 2019. Spatial scale modulates the inference of metacommunity assembly processes. Ecology 100: e02576.

    PubMed  Google Scholar 

  • Viana, D. S., J. Figuerola, K. Schwenk, M. Manca, A. Hobæk, M. Mjelde, C. D. Preston, R. J. Gornall, J. M. Croft, R. A. King, A. J. Green & L. Santamaría, 2016. Assembly mechanisms determining high species turnover in aquatic communities over regional and continental scales. Ecography 39: 281–288.

    Google Scholar 

  • Villéger, S., N. W. H. Mason & D. Mouillot, 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89: 2290–2301.

    PubMed  Google Scholar 

  • Wang, H., X. Liu & H. Wang, 2016. The Yangtze River floodplain: threats and rehabilitation. American Fisheries Society Symposium 84: 263–291.

    Google Scholar 

  • Wantzen, K. M., K.-O. Rothhaupt, M. Mörtl, M. Cantonati, L. G. -Tóth & P. Fischer (eds), 2008. Ecological effects of water-level fluctuations in lakes. Springer.

  • Ward, J. V., K. Tockner & F. Schiemer, 1999. Biodiversity of floodplain river ecosystems: ecotones and connectivity. Regulated Rivers 15: 125–139.

    Google Scholar 

  • Wilson, S. D. & P. A. Keddy, 1985. Plant zonation on a shoreline gradient: physiological response curves of component species. Journal of Ecology 73: 851–860.

    Google Scholar 

  • Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-Bares, T. Chapin, J. H. C. Cornelissen, M. Diemer, J. Flexas, E. Garnier, P. K. Groom, J. Gulias, K. Hikosaka, B. B. Lamont, T. Lee, W. Lee, C. Lusk, J. J. Midgley, M.-L. Navas, U. Niinemets, J. Oleksyn, N. Osada, H. Poorter, P. Poot, L. Prior, V. I. Pyankov, C. Roumet, S. C. Thomas, M. G. Tjoelker, E. J. Veneklaas & R. Villar, 2004. The worldwide leaf economics spectrum. Nature 428: 821–827.

    CAS  PubMed  Google Scholar 

  • Yuan, S., Z. Yang, X. Liu & H. Wang, 2017. Key parameters of water level fluctuations determining the distribution of Carex in shallow lakes. Wetlands 37: 1005–1014.

    Google Scholar 

  • Zhang, S. (ed.), 2009. Common Wetland Plants in China. Science Press, Beijing.

    Google Scholar 

  • Zhang, X., 2013. Water level fluctuation requirements of plants in the Yangtze floodplain lakes. University of Chinese Academy of Sciences.

  • Zhao, J. & Y. Liu (eds), 2009. Aquatic Plant. Huazhong University of Science & Techology Press, Wuhan.

    Google Scholar 

Download references

Acknowledgements

We thank Xiaoke Zhang and Zhendong Yang for field work, and Yajing He for preparation of the map. We also thank Firas F. Asfar for helpful comments on the early draft. This work was supported by National Key R&D Program of China (2017YFC0404502, 2018YFC0407200) and National Natural Science Foundation of China (51579234, 41371054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqin Liu.

Additional information

Handling editor: André Padial

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article has been revised: some rows in Table 1 were distorted.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yuan, S. & Wang, H. Periodic inundations drive community assembly of amphibious plants in floodplain lakes. Hydrobiologia 847, 4207–4217 (2020). https://doi.org/10.1007/s10750-020-04401-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04401-z

Keywords

Navigation