Population differentiation supports multiple human-mediated introductions of the transatlantic exotic sponge Paraleucilla magna (Porifera, Calcarea)

Abstract

Paraleucilla magna was the first sponge recognised as alien in the Atlantic. It was first registered in Rio de Janeiro (Brazil) and soon became very abundant in the southeastern and southern coasts of Brazil and also in the Mediterranean. Its origin is still unknown but recurrent introductions seem to have occurred in the Mediterranean. In this study, we used genetic markers (microsatellites) to test if Brazilian and Adriatic populations share a single source or if multiple introductions occurred in both regions. We also compared the genetic composition of populations established almost 30 years ago (Brazil) with a recently founded population (Adriatic—less than 10 years). Populations of P. magna were sampled in four localities across 900 km in the Southwestern Atlantic (Brazilian coast) and in one locality in the Adriatic (Croatian coast). Our results suggest the presence of five genetically distinct populations possibly originated by multiple human-mediated introductions from different sources and show that the putative most recently established population is genetically more diverse.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Agell, G., J. Frotscher, M. Guardiola, M. Pascual, M. J. Uriz, et al., 2012. Characterization of nine polymorphic microsatellite loci for the calcareous sponge Paraleucilla magna Klautau et al. 2004 introduced to the Mediterranean Sea. Conservation Genetic Resources 4: 403–405.

    Google Scholar 

  2. Ahyong, S. T., E. Kupriyanova, I. Burghardt, Y. Sun, P. A. Hutchings, M. Capa & S. L. Cox, 2017. Phylogeography of the invasive Mediterranean fan worm, Sabella spallanzanii (Gmelin, 1791), in Australia and New Zealand. Journal of the Marine Biological Association of the United Kingdom 97: 985–991.

    CAS  Google Scholar 

  3. Ávila, E. & J. L. Carballo, 2009. A preliminary assessment of the invasiveness of the Indo-Pacific sponge Chalinula nematifera on coral communities from the tropical Eastern Pacific. Biological Invasions 11: 257–264.

    Google Scholar 

  4. Belkhir, K., P. Borsa, L. Chikhi, N. Raufaste & F. Bonhomme, 2004. Genetix 4.04, logiciel sous WindowsTM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 500, Université de Montpellier II, Montpellier, France.

  5. Benzécri, J. P., 1973. L’Analyse des données: T. 2. L’Analyse des correspondances. Dunod, Paris.

  6. Blackburn, T. M., P. Pyšek, S. Bacher, J. T. Carlton, P. R. Duncan, V. Jarošík, J. R. U. Wilson & D. M. Richardson, 2011. A proposed unified framework for biological invasions. Trends in Ecology and Evolution 26: 333–339.

    PubMed  Google Scholar 

  7. Blanquer, A. & M. J. Uriz, 2011. ‘‘Living together apart’’: the hidden genetic diversity of sponge populations. Molecular Biology and Evolution 28: 2435–2438.

    CAS  PubMed  Google Scholar 

  8. Bowerbank, J. S., 1874. A Monograph of the British Spongiadae, Vol. 3. Ray Society, London. https://biodiversitylibrary.org/page/1871265

  9. Bowerbank, J. S., 1875. Contributions to a general history of the Spongiadae. Part VII. Proceedings of the Zoological Society of London 1875: 281–296.

    Google Scholar 

  10. Brown, E. A., F. J. J. Chain, A. Zhan, H. J. MacIsaac & M. E. Cristescu, 2016. Early detection of aquatic invaders using metabarcoding reveals a high number of non-indigenous species in Canadian ports. Diversity and Distributions 22: 1045–1059.

    Google Scholar 

  11. Burton, M., 1935. Some sponges from the Okhotsk Sea and the Sea of Japan. Exploration des Mers de l’URSS 22: 61–79.

    Google Scholar 

  12. Cabezas, M. P., R. Xavier, M. Branco, A. M. Santos & J. M. Guerra-García, 2014. Invasion history of Caprella scaura Templeton, 1836 (Amphipoda: Caprellidae) in the Iberian Peninsula: multiple introductions revealed by mitochondrial sequence data. Biological Invasions 16: 2221–2245.

    Google Scholar 

  13. Calcinai, B., G. Bavestrello & C. Cerrano, 2004. Dispersal and association of two alien species in the Indonesian coral reefs: the octocoral Carijoa riisei and the demosponge Desmapsamma anchorata. Journal of the Marine Biological Association of the United Kingdom 84: 937–941.

    Google Scholar 

  14. Capel, K. C. C., R. J. Toonen, C. T. C. C. Rachid, J. C. Creed, M. V. Kitahara, Z. Forsman & C. Zilberberg, 2017. Clone wars: asexual reproduction dominates in the invasive range of Tubastraea spp. (Anthozoa: Scleractinia) in the South-Atlantic Ocean. PeerJ 5: e3873.

    PubMed  PubMed Central  Google Scholar 

  15. Capel, K. C. C., J. Creed, M. V. Kitahara, C. A. Chen & C. Zilberberg, 2019. Multiple introductions and secondary dispersión of Tubastrea spp. in the Southwestern Atlantic. Nature Scientific Reports 9: 13978.

    CAS  Google Scholar 

  16. Carter, H. J., 1882. Some sponges from the West Indies and Acapulco in the Liverpool Free Museum described, with general and classificatory remarks. Annals and Magazine of Natural History 9(266–301): 346–368.

    Google Scholar 

  17. Cavalcanti, F. F., L. F. Skinner & M. Klautau, 2013. Population dynamics of cryptogenic calcarean sponges (Porifera, Calcarea) in Southeastern Brazil. Marine Ecology 34: 280–288.

    Google Scholar 

  18. Chen, Y., S. Li, Y. Lin, H. Li & A. Zhan, 2018. Population genetic patterns of the solitary tunicate, Molgula manhattensis, in invaded Chinese coasts: large-scale homogeneity but fine-scale heterogeneity. Marine Biodiversity 48: 2137–2149.

    Google Scholar 

  19. Çinar, M. E., T. Katağan, F. Koçak, B. Öztürk, Z. Ergen, A. Kocatas, M. Önen, F. Kirkim, K. Bakir, G. Kurt, E. Dağli, Ş. Açık, A. Doğan & T. Özcan, 2008. Faunal assemblages of the mussel Mytilus galloprovincialis in and around Alsancak Harbour (Izmir Bay, eastern Mediterranean) with special emphasis on alien species. Journal of Marine Systems 71: 1–17.

    Google Scholar 

  20. Coles, S. L. & H. Bollick, 2007. Invasive introduced sponge Mycale grandis overgrows reef corals in Kaoane‘ohe Bay, O‘ahu, Hawaii. Coral Reefs 26: 911.

    Google Scholar 

  21. Concepcion, G. T., S. E. Kahng, M. W. Crepeau, E. C. Franklin, S. L. Coles & R. J. Toonen, 2010. Resolving natural ranges and marine invasions in a globally distributed octocoral (genus Carijoa). Marine Ecology Progress Series 401: 113–127.

    Google Scholar 

  22. Cornuet, J. M. & G. Luikart, 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001–2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cvitković, I., M. Despalatović, I. Grubelić, B. Pleše & A. Žuljević, 2013. Occurrence of Paraleucilla magna (Porifera: Calcarea) in the eastern Adriatic Sea. Acta Adriatica 54: 93–99.

    Google Scholar 

  24. Davidson, I. C., C. J. Zabin, A. L. Chang, C. W. Brown, M. D. Sytsma & G. M. Ruiz, 2010. Recreational boats as potential vectors of marine organisms at an invasion hotspot. Aquatic Biology 11: 179–191.

    Google Scholar 

  25. Dendy, A., 1905. Report on the sponges collected by Professor Herdman, at Ceylon, in 1902. In Herdman, W. A. (ed.), Report to the Government of Ceylon on the Pearl Oyster Fisheries of the Gulf of Manaar. Royal Society, London: 57–246.

    Google Scholar 

  26. De Felice, R. C., L. G. Eldredge & J. T. Carlton, 2001. A guidebook of introduced marine species in Hawaii. Bishop Museum Technical Report 21: 1–70.

    Google Scholar 

  27. de Laubenfels, M. W., 1954. The sponges of the west-central Pacific. Oregon state monographs. Studies in Zoology 7: 1–306.

    Google Scholar 

  28. de Laubenfels, M. W., 1936. A comparison of the shallow-water sponges near the Pacific end of the Panama Canal with those at the Caribbean end. Proceedings of the United States National Museum 83: 441–466.

    Google Scholar 

  29. Dupont, L., F. Viard, M. J. Dowell, C. Wood & D. D. Bishop, 2009. Fine- and regional-scale genetic structure of the exotic ascidian Styela clava (Tunicata) in southwest England, 50 years after its introduction. Molecular Ecology 18: 442–453.

    CAS  PubMed  Google Scholar 

  30. Duran, S., G. Giribet & X. Turon, 2004a. Phylogeographical history of the sponge Crambe crambe (Porifera, Poecilosclerida): range expansion and recent invasion of the Macaronesian islands from the Mediterranean Sea. Molecular Ecology 13: 109–122.

    CAS  PubMed  Google Scholar 

  31. Duran, S., M. Pascual, A. Estoup & X. Turon, 2004b. Strong population structure in the marine sponge Crambe crambe (Poecilosclerida) as revealed by microsatellite markers. Molecular Ecology 13: 511–522.

    CAS  PubMed  Google Scholar 

  32. Earl, D. A. & B. M. von Holdt, 2012. Structure Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4: 359–361.

    Google Scholar 

  33. Ellis, J. & D. Solander, 1786. The Natural History of many curious and uncommon Zoophytes, collected from various parts of the Globe. In Systematically Arranged and Described by the Late Daniel Solander. Benjamin White & Son, London.

  34. Enríquez, S., E. Ávila & J. L. Carballo, 2009. Phenotypic plasticity induced in transplant experiments in a mutualistic association between the red alga Jania adhaerens (Rhodophyta, Corallinales) and the sponge Haliclona caerulea (Porifera: Haplosclerida): morphological responses of the alga. Journal of Phycology 45: 81–90.

    PubMed  Google Scholar 

  35. Evcen, A. & M. E. Çinar, 2020. Sponge species from ports of the inner and middle parts of İzmir Bay (Aegean Sea, Eastern Mediterranean). Ege Journal of Fisheries and Aquatic Sciences 37: 149–155.

    Google Scholar 

  36. Excoffier, L. & H. E. L. Lischer, 2010. ARLEQUIN suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567.

    PubMed  Google Scholar 

  37. Facon, B., J. P. Pointier, P. Jarne, V. Sarda & P. David, 2008. High genetic variance in life-history strategies within invasive populations by way of multiple introductions. Current Biology 18: 363–367.

    CAS  PubMed  Google Scholar 

  38. Faust, E., C. André, S. Meurling, J. Kochmann, H. Christiansen, L. F. Jensen, G. Charrier, A. T. Laugen & A. Strand, 2017. Origin and route of establishment of the invasive Pacific oyster Crassostrea gigas in Scandinavia. Marine Ecology Progress Series 575: 95–105.

    Google Scholar 

  39. Ferreira, C. E. L., J. E. A. Gonçalves & R. Coutinho, 2006. Ship hulls and oil platforms as potential vectors to marine species introduction. Journal of Coastal Research SI 39: 1341–1346.

    Google Scholar 

  40. Gardner, J. P. A., J. Patterson, S. George & J. K. Patterson Edward, 2016. Combined evidence indicates that Perna indica Kuriakose and Nair 1976 is Perna perna (Linnaeus, 1758) from the Oman region introduced into southern India more than 100 years ago. Biological Invasions 18: 1375–1390.

    Google Scholar 

  41. Geller, J. B., J. A. Darling & J. T. Carlton, 2010. Genetic perspectives on marine biological invasions. Annual Review of Marine Science 2: 367–393.

    PubMed  Google Scholar 

  42. Gerovasileiou, V., E. H. Kh. Akel, O. Akyol, G. Alongi, F. Azevedo, N. Babali, R. Bakiu, M. Bariche, A. Bennoui, L. Castriota, C. C. Chintiroglou, F. Crocetta, A. Deidun, S. Galinou-Mitsoudi, I. Giovos, M. Gökoğlu, A. Golemaj, L. Hadjioannou, J. Hartingerova, G. Insacco, S. Katsanevakis, P. Kleitou, J. Korun, L. Lipej, M. Malegue, N. Michailidis, A. Mouzai Tifoura, P. Ovalis, S. Petović, S. Piraino, S. I. Rizkalla, M. Rousou, I. Savva, H. Şen, A. Spinelli, K. G. Vougioukalou, E. Xharahi, B. Zava & A. Zenetos, 2017. New mediterranean biodiversity records. Mediterranean Marine Science 18: 355–384.

  43. Glasby, T. M., S. D. Connell, M. G. Holloway & C. L. Hewitt, 2007. Nonindigenous biota on artificial structures: could habitat creation facilitate biological invasions? Marine Biology 151: 887–895.

    Google Scholar 

  44. Goudet, J., 2002. FSTAT vol 2.9.3.2: a computer program to calculate F-statistics. Journal of Heredity 86: 485–486.

    Google Scholar 

  45. Gravili, C., G. Belmonte, E. Cecere, F. Denitto, A. Giangrande, P. Guidetti, C. Longo, F. Mastrototaro, S. Moscatello, A. Petrocelli, S. Piraino, A. Terlizzi & F. Boero, 2010. Nonindigenous species along the Apulian coast, Italy. Chemical Ecology 26: 121–142.

    Google Scholar 

  46. Gray, J. E., 1867. Notes on the arrangement of sponges, with the descriptions of some new genera. Proceedings of the Zoological Society of London 1867: 492–558.

    Google Scholar 

  47. Grosholz, E. D., G. M. Ruiz, C. A. Dean, K. A. Shirley, J. L. Maron & P. G. Connors, 2000. The impacts of a nonindigenous marine predator in a California Bay. Ecology 81: 1206–1224.

    Google Scholar 

  48. Guardiola, M., J. Frotscher & M. J. Uriz, 2012. Genetic structure and differentiation at a short-time scale of the introduced calcarean sponge Paraleucilla magna to the western Mediterranean. Hydrobiologia 687: 71–84.

    Google Scholar 

  49. Guardiola, M., J. Frotscher & M. J. Uriz, 2016. High genetic diversity, phenotypic plasticity, and invasive potential of a recently introduced calcareous sponge, fast spreading across the Atlanto-Mediterranean basin. Marine Biology 163: 123.

    PubMed  PubMed Central  Google Scholar 

  50. Hechtel, G. J., 1965. A systematic study of the Demospongiae of Port Royal, Jamaica. Bulletin of the Peabody Museum of Natural History 20: 1–103.

    Google Scholar 

  51. Hillis, D. M., C. Morritz & B. K. Mable, 1996. Molecular Systematics. Sinaeur Associates, Sunderland, MA.

    Google Scholar 

  52. Holland, B. S., 2000. Genetics of marine bioinvasions. Hydrobiologia 420: 63–71.

    CAS  Google Scholar 

  53. Jakobsson, M. & N. A. Rosenberg, 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: 1801.

    CAS  PubMed  Google Scholar 

  54. Johnston, G., 1842. A History of British Sponges and Lithophytes. W. H. Lizars, Edinburgh.

    Google Scholar 

  55. Jombart, T., 2008. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24: 1403–1405.

    CAS  PubMed  Google Scholar 

  56. Jombart, T., S. Devillard & F. Balloux, 2010. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics 11: 94.

    PubMed  PubMed Central  Google Scholar 

  57. Kim, P., D. Kim, T. J. Yoon & S. Shin, 2018. Early detection of marine invasive species, Bugula neritina (Bryozoa: Cheilostomatida), using species-specific primers and environmental DNA analysis in Korea. Marine Environmental Research 139: 1–10.

    CAS  PubMed  Google Scholar 

  58. Klautau, M., L. Monteiro & R. Borojević, 2004. First occurrence of the genus Paraleucilla (Calcarea, Porifera) in the Atlantic Ocean: P. magna sp. nov. Zootaxa 710: 1–8.

    Google Scholar 

  59. Klautau, M., B. Cóndor-Luján, F. Azevedo, P. Leocorny, F. D. A. R. Brandão & F. F. Cavalcanti, 2020. Heteropia glomerosa (Bowerbank, 1873) (Porifera, Calcarea, Calcaronea), a new alien species in the Atlantic. Systematics and Biodiversity 18: 362–376.

    Google Scholar 

  60. Knapp, I. S., Z. H. Forsman, G. J. Williams, R. T. Toonen & J. J. Bell, 2015. Cryptic species obscure introduction pathway of the blue Caribbean sponge (Haliclona (Soestella) caerulea), (order: Haplosclerida) to Palmyra Atoll. Central Pacifc. PeerJ 3: e1170.

    Google Scholar 

  61. Kremer, L. P., R. M. Rocha & J. J. Roper, 2010. An experimental test of colonization ability in the potentially invasive Didemnum perlucidum (Tunicata, Ascidiacea). Biological Invasions 12: 1581–1590.

    Google Scholar 

  62. Lanna, E. & M. Klautau, 2010. Oogenesis and spermatogenesis in Paraleucilla magna (Porifera, Calcarea). Zoomorphology 129: 249–261.

    Google Scholar 

  63. Lanna, E. & M. Klautau, 2012. Embryogenesis and larval ultrastructure in Paraleucilla magna (Calcarea, Calcaronea), with remarks on the epilarval trophocyte epithelium (“placental membrane”). Zoomorphology 31: 277–292.

    Google Scholar 

  64. Lanna, E., L. C. Monteiro & M. Klautau, 2007. Life cycle of Paraleucilla magna Klautau, Monteiro and Borojević, 2004 (Porifera, Calcarea). In Custódio, M., G. Lôbo-Hajdu, E. Hajdu & G. Muricy (eds), Porifera Research. Biodiversity, Innovation and Sustainability. Museu Nacional Série Livros 28, Rio de Janeiro: 413–418.

  65. Lanna, E., R. Paranhos, P. C. Paiva & M. Klautau, 2015. Environmental effects on the reproduction and fecundity of the introduced calcareous sponge Paraleucilla magna in Rio de Janeiro, Brazil. Marine Ecology 36: 1075–1087.

    Google Scholar 

  66. Loh, T. L., S. López-Legentil, B. Song & J. R. Pawlik, 2012. Phenotypic variability in the Caribbean orange icing sponge Mycale laevis (Demospongiae: Poecilosclerida). Hydrobiologia 687: 205–217.

    CAS  Google Scholar 

  67. Longo, C., F. Mastrototaro & C. Corriero, 2007. Occurrence of Paraleucilla magna (Porifera: Calcarea) in the Mediterranean Sea. Journal of the Marine Biological Association of the United Kingdom 87: 1749–1755.

    Google Scholar 

  68. Longo, C., C. Pontassuglia, G. Corriero & E. Gaino, 2012. Life-cycle traits of Paraleucilla magna, a calcareous sponge invasive in a coastal Mediterranean basin. PloS ONE 7: 1–12.

    Google Scholar 

  69. López-Legentil, S., P. M. Erwin, T. P. Henkel, T. L. Loh & J. R. Pawlik, 2010. Phenotypic plasticity in the Caribbean sponge Callyspongia vaginalis (Porifera: Haplosclerida). Scientia Marina 74: 445–453.

    Google Scholar 

  70. Luikart, G., F. W. Allendorf, J. M. Cornuet & B. S. William, 1997. Distortion of allele frequency distributions provides a test for recent population bottlenecks. Journal of Heredity 89: 238–247.

    Google Scholar 

  71. Mačić, V. & S. Petović, 2017. New data on the distribution of the alien sponge Paraleucilla magna Klautau, Monteiro & Borojević, 2004 in the Adriatic Sea. Studia Marina 29: 63–68.

    Google Scholar 

  72. Maltagliati, F., L. Lupi, A. Castelli & F. G. Pannacciull, 2016. The genetic structure of the exotic ascidian Styela plicata (Tunicata) from Italian ports, with a re-appraisal of its worldwide genetic pattern. Marine Ecology 37: 492–502.

    Google Scholar 

  73. Mead, A., J. T. Carlton, C. L. Groffiths & M. Rius, 2011. Revealing the scale of marine bioinvasions in developing regions: a South African re-assessment. Biological Invasions 13: 1991–2008.

    Google Scholar 

  74. Meurer, B. C., N. S. Lages, O. A. Pereira, S. Palhano & G. M. Magalhães, 2010. First record of native species of sponge overgrowing invasive corals Tubastraea coccinea and Tubastraea tagusensis in Brazil. Marine Biodiversity Records 3: e62.

    Google Scholar 

  75. Montano, S., W. H. Chou, C. A. Chen, P. Galli & J. D. Reimer, 2015. First record of the coral-killing sponge Terpios hoshinota in the Maldives and Indian Ocean. Bulletin of Marine Science 91: 1–2.

    Google Scholar 

  76. Morandini, A. C., S. N. Stampar, M. M. Maronna & F. L. Silveira, 2017. All non-indigenous species were introduced recently? The case study of Cassiopea (Cnidaria: Scyphozoa) in Brazilian waters. Journal of the Marine Biological Association of the United Kingdom 97: 321–328.

    Google Scholar 

  77. Occhipinti-Ambrogi, A., A. Marchini, G. Cantone, A. Castelli, C. Chimenz, M. Cormaci, C. Froglia, G. Furnari, M. C. Gambi, G. Giaccone, A. Giangrande, C. Gravili, F. Mastrototaro, C. Mazziotti, L. Orsi-Relini & S. Piraino, 2011. Alien species along the Italian coasts: an overview. Biological Invasions 13: 215–237.

    Google Scholar 

  78. Oricchio, F. T., A. C. Marques, E. Hajdu, F. B. Pitombo, F. Azevedo, F. D. Passos, L. M. Vieira, S. N. Stampar, R. M. Rocha & G. M. Dias, 2019. Exotic species dominate marinas between the two most populated regions in the southwestern Atlantic Ocean. Marine Pollution Bulletin 146: 884–892.

    CAS  PubMed  Google Scholar 

  79. Padua, A., E. Lanna, C. Zilberberg & M. Klautau, 2013a. Macrofauna associated to the calcarean sponge Paraleucilla magna (Porifera, Calcarea). Journal of the Marine Biological Association of the United Kingdom 93: 889–898.

    Google Scholar 

  80. Padua, A., E. Lanna, C. Zilberberg, P. C. Paiva & M. Klautau, 2013b. Recruitment, habitat selection and larval photoresponse of Paraleucilla magna (Porifera, Calcarea) in Rio de Janeiro, Brazil. Marine Ecology 34: 56–61.

    Google Scholar 

  81. Padua, A., F. F. Cavalcanti, H. A. Cunha & M. Klautau, 2013c. Isolation and characterization of polymorphic microsatellite loci from Clathrina aurea (Porifera, Calcarea). Marine Biodiversity 43: 489–492.

    Google Scholar 

  82. Padua, A., H. A. Cunha & M. Klautau, 2018. Gene flow and differentiation in a native calcareous sponge (Porifera) with unknown dispersal phase. Marine Biodiversity 48: 2125–2135.

    Google Scholar 

  83. Padua, A., P. Leocorny, M. R. Custódio & M. Klautau, 2016. Fragmentation, fusion, and genetic homogeneity in a calcareous sponge (Porifera, Calcarea). Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 325: 294–303.

    Google Scholar 

  84. Paetkau, D., R. Slade, M. Burden & A. Estoup, 2004. Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Molecular Ecology 13: 55–65.

    CAS  PubMed  Google Scholar 

  85. Pérez, T., B. Perrin, S. Carteroni, J. Vacelet & N. Boury-Esnault, 2006. Celtodoryx girardae gen. nov. sp. nov., a new sponge species (Poecilosclerida: Demospongiae) invading the Gulf of Morbihan (North East Atlantic, France). Cahiers de Biologie Marine 47: 205–214.

    Google Scholar 

  86. Pérez-Portela, R. & A. Riesgo, 2018. Population genomics of early-splitting lineages of metazoans. In Oleksiak, M. F. & O. P. Rajora (eds), Population Genomics: Marine Organisms. Springer, New York: 1–35.

    Google Scholar 

  87. Pierri, C., C. Longo & A. Giangrande, 2010. Variability of fouling communities in the Mar Piccolo of Taranto (Northern Ionian Sea, Mediterranean Sea). Journal of the Marine Biological Association of the United Kingdom 90: 159–167.

    Google Scholar 

  88. Pike, N., 2011. Using false discovery rates for multiple comparisons in ecology and evolution. Methods in Ecology and Evolution 2: 278–282.

    Google Scholar 

  89. Pineda, M. C., B. Lorente, S. López-Legentil, C. Palacín & X. Turon, 2016a. Stochasticity in space, persistence in time: genetic heterogeneity in harbor populations of the introduced ascidian Styela plicata. PeerJ 4: e2158.

    PubMed  PubMed Central  Google Scholar 

  90. Pineda, M. C., X. Turon, R. Pérez-Portela & S. López-Legentil, 2016b. Stable populations in unstable habitats: temporal genetic structure of the introduced ascidian Styela plicata in North Carolina. Marine Biology 163: 59.

    Google Scholar 

  91. Piry, S., A. Alapetite, J.-M. Cornuet, D. Paetkau, L. Baudouin & A. Estoup, 2004. GENECLASS2: a software for genetic assignment and first-generation migrant detection. Journal of Heredity 95: 536–539.

    CAS  PubMed  Google Scholar 

  92. Piry, S., G. Luikart & J.-M. Cornuet, 1999. BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. The Journal of Heredity 90: 502–503.

    Google Scholar 

  93. Plucer-Rosario, G., 1987. The effect of substratum on the growth of Terpios, an encrusting sponge which kills corals. Coral Reefs 5: 197–200.

    Google Scholar 

  94. Pritchard, J. K., M. Stephens & P. Donnelly, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Rannala, B. & J. L. Mountain, 1997. Detecting immigration by using multilocus genotypes. Proceedings of the National Academy of Sciences of the United States of America 94: 9197–9221.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Reusch, T. B., S. Bolte, M. Sparwel, A. G. Moss & J. Javidpour, 2010. Microsatellites reveal origin and genetic diversity of Eurasian invasions by one of the world’s most notorious marine invader, Mnemiopsis leidyi (Ctenophora). Molecular Ecology 19: 2690–2699.

    CAS  PubMed  Google Scholar 

  97. Riesgo, A., R. Pérez-Portela, L. Pita, G. Blasco, P. M. Erwin & S. López-Legentil, 2016. Population structure and connectivity in the Mediterranean sponge Ircinia fasciculata are affected by mass mortalities and hybridization. Heredity 117: 427–439.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Rilov, G. & J. A. Crooks, 2009. Biological Invasions in Marine Ecosystems. Ecological, Management and Geographic Perspectives. Springer, Berlin.

    Google Scholar 

  99. Rius, M., X. Turon, G. Bernardi, F. A. M. Volckaert & F. Viard, 2015. Marine invasion genetics: from spatio-temporal patterns to evolutionary outcomes. Biological Invasions 17: 869–885.

    Google Scholar 

  100. Roman, J., 2006. Diluting the founder effect: cryptic invasions expand a marine invader’s range. Proceedings of the Royal Society B Biological Sciences 273: 2453–2459.

    PubMed Central  Google Scholar 

  101. Roman, J. & J. A. Darling, 2007. Paradox lost: genetic diversity and the success of aquatic invasions. Trends in Ecology and Evolution 22: 454–464.

    PubMed  Google Scholar 

  102. Rosenberg, N. A., 2004. DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes 4: 137–138.

    Google Scholar 

  103. Rousset, F., 1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145: 1219–1228.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Rützler, K. & K. Muzik, 1993. Terpios hoshinota, a new cyanobacteriosponge threatening Pacific Reefs. In Uriz, M. J. & K. Rützler (eds), Recent Advances in Ecology and Systematics of Sponges, Vol. 57. Scientia Marina, Barcelona: 395–403.

    Google Scholar 

  105. Sambrook, J., E. F. Fritschi & T. Maniatis, 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  106. Sammarco, P. W., D. A. Brazeau, M. McKoin & K. B. Strychar, 2017. Tubastraea micranthus, comments on the population genetics of a new invasive coral in the western Atlantic and a possible secondary invasion. Journal of Experimental Marine Biology and Ecology 490: 56–63.

    Google Scholar 

  107. Santos, O. C. S., P. V. M. L. Pontes, J. F. M. Santos, G. Muricy, M. Giambiagi-de Merval & M. S. Laport, 2010. Isolation, characterization and phylogeny of sponge associated bacteria with antimicrobial activities from Brazil. Research in Microbiology 161: 604–612.

    CAS  PubMed  Google Scholar 

  108. Schmidt, O., 1862. Die Spongien des Adriatischen Meeres, enthaltend die Histologie und systematiche Ergänzungen. Wilhelm Engelmann, Leipzig.

    Google Scholar 

  109. Schrieber, K. & S. Lachmuth, 2017. The Genetic Paradox of Invasions revisited: the potential role of inbreeding × environment interactions in invasion success. Biological Review 92: 939–952.

    Google Scholar 

  110. Schuelke, M., 2000. An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology 18: 233–234.

    CAS  PubMed  Google Scholar 

  111. Silva, A. G., H. F. M. Fortunato, G. Lôbo-Hajdu & B. G. Fleury, 2017. Response of native marine sponges to invasive Tubastraea corals: a case study. Marine Biology 164: 78.

    Google Scholar 

  112. Simon-Bouhet, B., P. Garcia-Meunier & F. Viard, 2006. Multiple introductions promote range expansion of the mollusc Cyclope neritea (Nassariidae) in France: evidence from mitochondrial sequence data. Molecular Ecology 15: 1699–1711.

    CAS  PubMed  Google Scholar 

  113. Spagnolo, A., R. Auriemma, T. Bacci, I. Balković, F. Bertasi, L. Bolognini, M. Cabrini, L. Cilenti, C. Cuicchi, I. Cvitković, M. Despalatović, F. Grati, L. Grossi, A. Jaklin, L. Lipej, O. Marković, B. Mavrič, M. Mikac, F. Nasi, V. Nerlović, S. Pelosi, M. Penna, S. Petović, E. Punzo, A. Santucci, T. Scirocco, P. Strafella, B. Trabucco, A. Travizi & A. Žulijević, 2017. Non-indigenous macrozoobenthic species on hard substrata of selected harbours in the Adriatic Sea. Marine Pollution Bulletin 147: 150–158.

    PubMed  Google Scholar 

  114. Taboada, S., A. Riesgo, H. Wicklund, G. L. J. Paterson, V. Koutsouveli, N. Santodomingo, A. C. Dale, C. R. Smith, D. O. B. Jones, T. G. Dahlgren & A. G. Glover, 2018. Implications of population connectivity studies for the design of marine protected areas in the deep sea: an example of a demosponge from the Clarion-Clipperton Zone. Molecular Ecology 27: 4657–4679.

    PubMed  Google Scholar 

  115. Tepolt, C. K., 2015. Adaptation in marine invasion: a genetic perspective. Biological Invasions 17: 887–903.

    Google Scholar 

  116. Topaloğlu, B., A. Evcen & M. E. Çinar, 2016. Sponge Fauna in the Sea of Marmara. Turkish Journal of Fisheries and Aquatic Sciences 16: 51–59.

    Google Scholar 

  117. Turque, A. S., D. Batista, C. B. Silveira, A. M. Cardoso, R. P. Vieira, F. C. Moraes, M. M. Clementino, R. M. Albano, R. Paranhos, O. B. Martins & G. Muricy, 2010. Environmental shaping of sponge associated archaeal communities. PloS ONE 5: 1–10.

    Google Scholar 

  118. Uriz, M. J. & X. Turón, 2012. Sponge ecology in the molecular era. Advances in Marine Biology 61: 345–410.

    PubMed  Google Scholar 

  119. Valdez-Moreno, M., C. Quintal-Lizama, R. Gómez-Lozano & M. C. G. García-Rivas, 2012. Monitoring an alien invasion: DNA barcoding and the identification of lionfish and their prey on coral reefs of the Mexican Caribbean. PloS One 7: e36636.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Van Oosterhout, C., W. F. Hutchinson, D. P. M. Wills & P. Shipley, 2004. Micro-checker: software for identifying and correct genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535–538.

    Google Scholar 

  121. Van Soest, R. W. M., M. J. Kluijver, P. H. van Bragt, M. Faasse, R. Nijland, E. J. Beglinger, W. H. de Weerdt & N. J. de Voogd, 2007. Sponge invaders in Dutch coastal waters. Journal of the Marine Biological Association of the United Kingdom 87: 1733–1748.

    Google Scholar 

  122. Viard, F., P. David & J. A. Darling, 2016. Marine invasions enter the genomic era: three lessons from the past, and the way forward. Current Zoology 62: 629–642.

    PubMed  PubMed Central  Google Scholar 

  123. Waples, R. S. & O. Gaggiotti, 2006. What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Molecular Ecology 15: 1419–1439.

    CAS  PubMed  Google Scholar 

  124. Zammit, P. P., C. Longo & P. J. Schembri, 2009. Occurrence of Paraleucilla magna Klautau et al., 2004 (Porifera: Calcarea) in Malta. Mediterranean Marine Science 10: 135–138.

    Google Scholar 

  125. Zhan, A., E. Briski, D. G. Bock, S. Ghabooli & H. J. MacIsaac, 2015. Ascidians as models for studying invasion success. Marine Biology 162: 2449–2470.

    Google Scholar 

  126. Žuljević, A., T. Thibaut, M. Despalatović, J. M. Cottalorda, V. Nikolić, I. Cvitković & B. Antolić, 2011. Invasive alga Caulerpa racemosa var. cylindracea makes a strong impact on the Mediterranean sponge Sarcotragus spinosulus. Biological Invasions 13: 2303–2308.

    Google Scholar 

Download references

Acknowledgements

We would like to thank those who helped with sponge sampling – Vinicius Padula, Laura Kremer, Roberto Berlinck, Janaína Bouzon and Cecília Pascelli, and with primer optimization – Anderson Vasconcellos, Báslavi Cóndor-Luján, Carla Zilberberg and Aretusa Goulart. We also thank Antonio Solé-Cava, Fabiano Thompson and Paulo Paiva for logistic support. Fellowships and grants were given to André Padua by the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ; E-26/202.677/2016), and to Michelle Klautau and Fernanda Fernandes Cavalcanti by the Brazilian National Research Council (CNPq - Grants 476597/2013-7 and 449070/2014-0, Fellowship 33 305451/2017-0). This paper is part of the Ph.D. thesis of Fernanda Fernandes Cavalcanti at the Zoology Graduate Program of the National Museum of the Federal University of Rio de Janeiro.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michelle Klautau.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Diego Fontaneto

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1:

Supplementary material 1 (DOCX 15 kb) Characterization of nine microsatellite markers for the calcareous sponge Paraleucilla magna. Ta = locus specific annealing temperature; [MgCl2] = locus specific concentration of MgCl2 in mM.

Online Resource 2:

Supplementary material 2 (DOCX 36 kb) Allele frequencies for all populations by locus. AC – Arraial do Cabo, Rio de Janeiro state/ Brazil; SB – Sepetiba Bay, Rio de Janeiro state/ Brazil; IB – Ilhabela, São Paulo state/ Brazil; SC – Moleques do Sul, Santa Catarina state/ Brazil; CR - Grška Cove, Island of Brač/ Croatia.

Online Resource 3:

Supplementary material 3 (TIFF 10089 kb) LnP(D) obtained with STRUCTURE HARVESTER, indicating K=5 as the most likely number of clusters of Paraleucilla magna.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cavalcanti, F.F., Padua, A., Cunha, H. et al. Population differentiation supports multiple human-mediated introductions of the transatlantic exotic sponge Paraleucilla magna (Porifera, Calcarea). Hydrobiologia (2020). https://doi.org/10.1007/s10750-020-04368-x

Download citation

Keywords

  • Marine invasion
  • Brazilian coast
  • Croatian coast
  • Calcareous sponge
  • Adriatic Sea
  • Bioinvasion