Variation in the diversity of semiaquatic bugs (Insecta: Heteroptera: Gerromorpha) in altered and preserved veredas

Abstract

Veredas environments play a critical role on the perennialization of streams in the Cerrado Biome, but alterations to their physiognomies are becoming increasingly more common, which directly affects abiotic variation and the structure of biological communities. Our study evaluates the effect of abiotic variations and environmental alterations upon the abundance, richness, and composition of species of semiaquatic bugs, where we test whether there are significant differences in conserved and altered veredas. Species richness was higher on altered veredas and there was no difference in abundance between altered and preserved veredas. The composition of conserved veredas was more homogeneous. Five species were associated with altered veredas and one to conserved areas. There were abiotic changes in the veredas that affected the abundance, richness, and/or composition of Gerromorpha. Ease of access to soil usage and to water for farming activities and pasture might be the main factors contributing to the alteration of veredas in this region. Gerromorpha community structure was modified by the environmental passive in areas of veredas, thus allowing to measure the degree of alterations to these systems, being a useful tool for monitoring and conservation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Almada, H. K. S., D. V. Silvério, M. N. Macedo, L. Maracahipes-Santos, E. C. P. Zaratim, K. P. Zaratim, A. Maccari, M. R. Nascimento & R. K. Umetsu, 2019. Effects of geomorphology and land use on stream water quality in southeastern Amazonia. Hydrological Sciences Journal 64: 620–632.

    Google Scholar 

  2. Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  3. Anderson, M. J. & D. C. Walsh, 2013. PERMANOVA, ANOSIM, and the mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecological Monographs 83: 557–574.

    Google Scholar 

  4. Blanchet, F. G., P. Legendre & D. Borcard, 2008. Forward selection of explanatory variables. Ecology 89: 2623–2632.

    PubMed  Google Scholar 

  5. Börner, J., S. Wunder, S. Wertz-Kanounnikoff, G. Hyman & N. Nascimento, 2014. Forest law enforcement in the Brazilian Amazon: costs and income effects. Global Environmental Change 29: 294–305.

    Google Scholar 

  6. Brannstrom, C., W. Jepson, A. M. Felippi, D. Redo, X. Zengwang & S. Ganeshi, 2008. Land change in the Brazilian savanna (Cerrado), 1986–2002: comparative analysis and implications for land-use policy. Land Use Policy 25: 579–595.

    Google Scholar 

  7. Brasil, L. S., L. Juen, N. F. S. Giehl & H. S. R. Cabette, 2016. Effect of environmental and temporal factors on patterns of rarity of ephemeroptera in stream of the Brazilian Cerrado. Neotropical Entomology 46: 29–35.

    PubMed  Google Scholar 

  8. Calvão, L. B., L. Juen, J. M. B. Oliveira-Junior, J. D. Batista & P. De Marco, 2018. Land use modifies Odonata diversity in streams of the Brazilian Cerrado. Journal of Insect Conservation 22: 675–685.

    Google Scholar 

  9. Carvalho, P. G. S., 1991. As veredas e sua importância no domínio dos cerrados. Informe Agropecuário 15: 54–56.

    Google Scholar 

  10. Carvalho, F. G., F. Oliveira Roque, L. Barbosa, L. F. Assis Montag & L. Juen, 2018. Oil palm platation is not a suitable environment for most forest specialist species of Odonata in Amazonia. Animal Conservation 21: 526–533.

    Google Scholar 

  11. Castro, D. M. P., S. Dolédec & M. Callisto, 2018. Land cover disturbance homogenizes aquatic insect functional structure in neotropical savanna streams. Ecological Indicators 84: 573–582.

    Google Scholar 

  12. Chazdon, R. L., A. Chao, R. K. Colwell, S. Y. Lin, N. Norden, S. G. Letcher, D. B. Clark, B. Finegan & J. P. Arroyo, 2011. A novel statistical method for classifying habitat generalists and specialists. Ecology 92: 1332–1343.

    PubMed  Google Scholar 

  13. Colwell, R. K. 2013. EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples. Version 9.1.0. https://www.purl.oclc.org/estimates. Accessed in June 2016. 

  14. Conama, 2012. Law no. 12.727, outubro 17, 2012. Conselho Nacional do Meio Ambiente, Brasília, Brasil. https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/L12727.htm. Accessed in September 2016.

  15. Connell, J. H., 1978. Diversity in tropical rain forest and coral reefs. Science 199: 1302–1310.

    CAS  PubMed  Google Scholar 

  16. Côrtes, L. G., M. C. Almeida, N. S. Pinto & P. De Marco, 2011. Fogo em Veredas: avaliação de impactos sobre Comunidades de Odonata (Insecta). Biodiversidade Brasileira 1: 128–145.

    Google Scholar 

  17. Cunha, E. & L. Juen, 2017. Impacts of oil palm plantations on changes in environmental heterogeneity and Heteroptera (Gerromorpha and Nepomorpha) diversity. Journal Insect Conservation 21: 111–119.

    Google Scholar 

  18. Cunha, E. J. & L. Juen, 2020. Environmental drivers of the metacommunity structure of insects on the surface of tropical streams of the Amazon. Austral Ecology. https://doi.org/10.1111/aec.12873.

    Article  Google Scholar 

  19. Cunha, E. J., L. F. A. Montag & L. Juen, 2015. Oil palm crops effects on environmental integrity of Amazonian streams and Heteropteran (Hemiptera) species diversity. Ecological Indicators 52: 422–429.

    Google Scholar 

  20. Dias-Silva, K., H. R. S. Cabette, L. Juen & P. De Marco, 2010. The of habitat integrity and physical-chemical water variables on the structure of aquatic and semi-aquatic Heteroptera. Revista Brasileira de Zoologia 27: 918–930.

    Google Scholar 

  21. Dias-Silva, K., F. F. F. Moreira, N. F. S. Giehl, C. C. Nóbrega & H. S. R. Cabette, 2013. Gerromorpha (Hemiptera: Heteroptera) of eastern Mato Grosso State, Brazil: checklist, new records, and species distribution modeling. Zootaxa 3736: 201–235.

    PubMed  Google Scholar 

  22. Dias-Silva, K., L. S. Brasil, G. K. O. Veloso, H. S. R. Cabette & L. Juen, 2020a. Land use change causes environmental homogeneity and low beta-diversity in Heteroptera of streams. Annales de Limnologie International Journal of Limnology. https://doi.org/10.1051/limn/2020007.

    Article  Google Scholar 

  23. Dias-Silva, K., L. S. Brasil, L. Juen, H. S. R. Cabette, C. C. Costa, P. V. Freitas & P. De Marco Jr, 2020b. Influence of local variables and landscape metrics on Gerromorpha (Insecta: Heteroptera) assemblages in Savanna streams, Brazil. Neotropical Entomology 49: 191–202.

    CAS  PubMed  Google Scholar 

  24. Eiten, G., 1972. The cerrado vegetation of Brazil. The Botanical Review 38: 201–341.

    Google Scholar 

  25. Epele, L. B. & M. L. Miserendino, 2015. Environmental quality and aquatic invertebrate metrics relationships at Patagonian wetlands subjected to livestock grazing pressures. PLoS ONE 10: 1–19.

    Google Scholar 

  26. Felfili, J. M., M. C. Da Silva Júnior, A. C. Sevilha, C. W. Fagg, B. M. T. Walter, P. E. Nogueira & A. V. Rezende, 2004. Diversity, floristic and structural patterns of Cerrado vegetation in Central Brazil. Plant Ecology 175: 37–46.

    Google Scholar 

  27. Firmiano, K. R., R. Ligeiro, D. R. Macedo, L. Juen, R. M. Hughes & M. Callisto, 2017. Mayfly bioindicator thresholds for several anthropogenic disturbances in neotropical savanna streams. Ecological Indicators 74: 276–284.

    CAS  Google Scholar 

  28. Floriano, C. F. B., A. Paladini & R. R. Cavichioli, 2016. Systematics of the South American species of Cylindrostethus Mayr, 1865 (Hemiptera: Heteroptera: Gerridae), with a new species from Amazonian Brazil and Peru. Invertebrate Systematics 30: 431–462.

    Google Scholar 

  29. Floriano, C. F. B., F. F. F. Moreira & P. C. Bispo, 2017. South American Species of Stridulivelia (Hemiptera: Heteroptera: Veliidae): Identification Key, Diagnoses, Illustrations, and Updated Distribution. Proceedings of the Entomological Society of Washington 119: 24–46.

    Google Scholar 

  30. Fornaroli, R., R. Cabrini, L. Sartori, F. Marazzi, D. Vracevic, V. Mezzanotte, M. Annala & M. S. Canobbio, 2015. Predicting the constraint effect of environmental characteristics on macroinvertebrate density and diversity using quantile regression mixed model. Hydrobiologia 742: 153–167.

    Google Scholar 

  31. Galford, G. L., J. F. Mustard, J. Melillo, A. Gendrin, C. C. Cerri & C. E. P. Cerri, 2008. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sensing of Environment 112: 576–587.

    Google Scholar 

  32. Giehl, N. F. S., P. V. B. Fonseca, K. Dias-Silva, L. S. Brasil & H. S. R. Cabette, 2015. Efeito de fatores abióticos sobre Brachymetra albinervis albinervis (Heteroptera: Gerridae). Iheringia, Série Zoológica 105: 411–415.

    Google Scholar 

  33. Giehl, N. F. S., L. S. Brasil, K. Dias-Silva, D. S. Nogueira & H. S. R. Cabette, 2019. Environmental thresholds of Nepomorpha in Cerrado streams, Brazilian Savannah. Neotropical Entomology 48: 186–196.

    CAS  PubMed  Google Scholar 

  34. Guimarães, A. J. M., G. M. Araújo & G. F. Corrêa, 2002. Estrutura fitossociológica em área natural e antropizada de uma vereda em Uberlândia, MG. Acta Botanica Brasilica 16: 317–329.

    Google Scholar 

  35. Guterres, A. P. M., E. J. Cunha, B. S. Godoy, R. R. Silva & L. Juen, 2019. Co-occurrence patterns and morphological similarity of semiaquatic insects (Hemiptera: Gerromorpha) in streams of Eastern Amazonia. Ecological Entomology 45: 155–166.

    Google Scholar 

  36. Hungerford, H. B., 1954. The genus Rheumatobates Bergroth (Hemiptera, Gerridae). University of Kansas Science Bulletin 36: 529–588.

    Google Scholar 

  37. Karaouzas, I. & K. C. Gritzalis, 2006. Local and regional factors determining aquatic and aquatic bug (Heteroptera) assemblages in rivers and streams of Greece. Hydrobiologia 573: 199–212.

    Google Scholar 

  38. Kenaga, E. E., 1941. The genus Telmatometra Bergroth (Hemiptera-Gerridae). University of Kansas 17: 169–183.

    Google Scholar 

  39. Kweka, E. J., G. Zhou, S. Munga, M. C. Lee, H. E. Atieli, M. Nyindo, A. K. Githeko & G. Yan, 2012. Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes. PLoS ONE 7: e52084.

    PubMed  PubMed Central  Google Scholar 

  40. Laabs, W., A. Wehrhan, A. A. Pinto, E. F. G. C. Dores & W. Amelung, 2007. Pesticide fate in tropical wetlands of Brazil: an aquatic microcosm study under semifield conditions. Chemosphere 67: 975–989.

    CAS  PubMed  Google Scholar 

  41. Legendre, P. & L. Legendre, 2012. Numerical Ecology. Elsevier, Amsterdam.

    Google Scholar 

  42. Liess, A., A. Le Gros, A. Wagenhoff, C. R. Townsend & C. D. Matthaei, 2012. Land use intensity in stream catchments affects the benthic food web: consequences for nutrient supply, periphyton C, nutrient ratios, and invertebrate richness and abundance. Freshwater Science 31: 813–824.

    Google Scholar 

  43. Lock, K., T. Adriaens, F. Van De Meutter & P. Goethals, 2013. Effect of water quality on waterbugs (Hemiptera: Gerromorpha & Nepomorpha) in Flanders (Belgium): results from a large-scale field survey. Annales de Limnologie International Journal of Limnology 49: 121–128.

    Google Scholar 

  44. Magalhães, O. M., F. F. F. Moreira & C. Galvão, 2016. A new species of Rhagovelia Mayr, 1865 (Hemiptera: Heteroptera: Veliidae) from Pará state, with an updated key to Brazilian species of the robusta group. Zootaxa 4171: 586–594.

    PubMed  Google Scholar 

  45. Meirelles, M. L., A. B. Ferreira & A. C. Franco, 2006. Dinâmica sazonal do carbono em campo úmido do cerrado. Embrapa Cerrados, Planaltina.

    Google Scholar 

  46. Ministério do meio ambiente – MMA, 2019. O Bioma Cerrado e o Bioma Amazônia. https://www.mma.gov.br/biomas.html Acesso em março de 2019.

  47. Mondy, C. P. & P. Usseglio-Polatera, 2014. Using fuzzy-coded traits to elucidate the non- random role of anthropogenic stress in the functional homogenisation of invertebrate assemblages. Freshwater Biology 59: 584–600.

    Google Scholar 

  48. Moreira, S. N., P. V. Eisenlohr, A. Pott, V. J. Pott & A. T. Oliveira-Filho, 2015. Similar vegetation structure in protected and non-protected wetlands in Central Brazil: conservation significance. Environmental Conservation 42: 356–362.

    Google Scholar 

  49. Moretti, M., P. Duelli & M. K. Obrist, 2006. Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests. Oecologia 149: 312–327.

    PubMed  Google Scholar 

  50. Naranjo, C., S. M. Riviaux, F. F. F. Moreira & R. C. Court, 2010. Taxonomy and distribution of aquatic and semiaquatic Heteroptera (Insecta) from Cuba. Revista de Biología Tropical 58: 897–907.

    PubMed  Google Scholar 

  51. Nieser, N., 1994. A new species and a new status in Neogerris Matsumura (Heteroptera: Gerridae) with a key to American species. Storkia 3: 27–37.

    Google Scholar 

  52. Nieser, M. & A. L. Melo, 1997. Os Heterópteros Aquáticos de Minas Gerais. UFMG, Belo Horizonte.

    Google Scholar 

  53. Nieser, N. & A. L. Melo, 1999. A new species of Halobatopsis (Heteroptera: Gerridae) from Minas Gerais (Brazil), with a key to the species. Entomologische Berichten 59: 97–102.

    Google Scholar 

  54. Ohba, S., H. Kawada, G. O. Dida, D. Juma, G. Sonye, N. Minakawa & M. Takagi, 2010. Predators of Anopheles gambiae sensu lato (Diptera: Culicidae) Larvae in Wetlands, Western Kenya: confirmation by polymerase chain reaction method. Journal of Medical Entomology 47: 783–787.

    PubMed  PubMed Central  Google Scholar 

  55. Ohba, S., T. T. Huynh, K. Hitoshi, L. Loan, T. N. Huu, H. San, H. Yukiko & T. Masahiro, 2011. Heteropteran insects as mosquito predators in water jars in southern Vietnam. Journal of the Society for Vector Ecology 36: 170–174.

    Google Scholar 

  56. Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R., Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. Henry, S. S. Eduard & H. Wagner, 2019. vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan. Accessed in August 2019.

  57. Oliveira-Filho, A. T. & J. A. Ratter, 2002. Vegetation physiognomies and woody flora of the Cerrado Biome. In Oliveira, P. S. & R. J. Marquis (eds), The Cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York: 91–120.

    Google Scholar 

  58. Olosutean, H. & D. M. Ilie, 2013. Are semi-aquatic bugs (Heteroptera: Nepomorpha) indicators of hydrological stability of permanent ponds? Aquatic Insects: International Journal of Freshwater Entomology 35: 105–118.

    Google Scholar 

  59. Olosutean, H., S. Bungiac & M. Perju, 2019. Are aquatic and semiaquatic true bugs (Hemiptera: Nepomorpha; Gerromorpha) distinct aquatic ommunities? A case study in homogeneous habitats. Inland Waters 9: 513–521.

    CAS  Google Scholar 

  60. Overbeck, G., E. V. Elez-Martin, F. R. Scarano, T. M. Lewinsohn, C. R. Fonseca, S. T. Meyer, S. C. Muller, P. Ceotto, L. Dadalt, G. Durigan, G. Ganade, M. M. Gossner, D. L. Guadagnin, K. Lorenzen, C. M. Jacobi, W. W. Weisser & V. D. Pillar, 2015. Conservation in Brazil needs to include non-forest ecosystems. Diversity and Distributions 21: 1455–1460.

    Google Scholar 

  61. Papácek, M., 2001. Small aquatic and ripicolous bugs (Heteroptera: Nepomorpha) as predators and prey: the question of economic importance. European Journal of Entomology 98: 1–12.

    Google Scholar 

  62. Peel, M. C., B. L. Finlayson & T. A. McMahon, 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 4: 439–473.

    Google Scholar 

  63. Pereira, L. C. & F. Lombardi-Neto, 2004. Avaliação da aptidão agrícola das terras: proposta metodológica. Jaguariúna, Embrapa Meio Ambiente.

    Google Scholar 

  64. Polhemus, D. A., 1997. Systematics of the Genus Rhagovelia Mayr (Heteroptera: Veliidae) in the Western Hemisphere (Exclusive of the angustipes Complex). Entomological Society of America, Langham.

    Google Scholar 

  65. Quantum GIS Development Team, 2016. Quantum GIS geographic information system. Open Source Geospatial Foundation Project. https://qgis.org/en/site/. Accessed in April 2016.

  66. R Development Core Team, 2016. R: A Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed in August 2016.

  67. Ramos, M. V. V., N. Curi, P. E. F. Motta, A. C. T. Vitorino, M. M. Ferreira & M. L. N. Silva, 2006. Veredas do triângulo mineiro: solos, água e uso. Ciência e Agrotecnologia 30: 283–293.

    CAS  Google Scholar 

  68. Ribeiro, J. F. & B. M. T. Walter, 2008. As principais fitofisionomias do bioma Cerrado. In Ribeiro, J. F., S. P. Almeida & S. M. Sano (eds), Cerrado: Ecologia e Flora. Embrapa Cerrados, Brasília: 153–212.

    Google Scholar 

  69. Rodrigues, M. E., F. Oliveira-Roque, J. M. O. Quintero, J. C. Castro-Pena, D. C. Sousa & P. De Marco, 2016. Nonlinear responses in damselfly community along a gradient of habitat loss in a savanna landscape. Biological Conservation 194: 113–120.

    Google Scholar 

  70. Rúdio, J. A. & F. F. F. Moreira, 2011. A new species of Microvelia (Insecta: Hemiptera: Heteroptera: Gerromorpha) from coastal Espírito Santo State, with a key to the species of the genus recorded from southeastern Brazil. Zootaxa 3004: 63–68.

    Google Scholar 

  71. Saha, N., G. Aditya, A. Bal & G. K. Saha, 2008. Influence of light and habitat on predation of Culex quinquefasciatus (Diptera: Culicidae) larvae by the waterbugs (Hemiptera: Heteroptera). Insect Science 15: 461–469.

    Google Scholar 

  72. Sánchez-Bayo, F. & K. A. G. Wyckhuys, 2019. Worldwide decline of the entomofauna: a review of its drivers. Biological Conservation 232: 8–27.

    Google Scholar 

  73. Sano, E. E., A. A. Rodrigues, E. S. Martins, G. M. Bettiol, M. M. C. Bustamante, A. S. Bezerra, A. F. Couto, V. Vasconcelos, J. Schuler & E. L. Bolf, 2019. Cerrado ecoregions: a spatial framework to assess and prioritize Brazilian savanna environmental diversity for conservation. Journal of Environmental Management 232: 818–828.

    PubMed  Google Scholar 

  74. Schenkel, A. C. & J. D. Medeiros, 2016. Regularização de passivos decorrentes das infrações ao regime de Área de Preservação Permanente na lei de proteção da vegetação nativa. Biotemas 29: 155–167.

    Google Scholar 

  75. Silva, M. T. G., M. P. C. Lacerda & A. A. A. Chaves, 2009. Geotecnologia aplicada na avaliação do uso das terras da microbacia do Ribeirão João Leite, Goiás. Pesquisa Agropecuária Tropical 39: 330–337.

    Google Scholar 

  76. Skern, M., I. Zweimüller & F. Schiemer, 2010. Aquatic heteroptera as indicators for terrestrialisation of floodplain habitats. Limnologica 40: 241–250.

    Google Scholar 

  77. Souto, R. M. G., K. G. Facure, L. A. Pavanin & G. B. Jacobucci, 2012. Influence of environmental factors on benthic macroinvertebrate communities of urban streams in Vereda habitats, Central Brazil. Acta Limnologica Brasiliensia 23: 293–306.

    Google Scholar 

  78. Spangler, P. J., 1990. A new species of halophilous water-strider, Mesovelia polhemusi, from Belize and a key and checklist of new world species of the genus (Heteroptera: Mesoveliidae). Proceedings of the Biological Society of Washington 21: 86–94.

    Google Scholar 

  79. Stine, R. A., 1995. Graphical interpretation of variance inflation factors. The American Statistician 49: 53–56.

    Google Scholar 

  80. Strieder, M. N., J. E. Santos & E. M. Vieira, 2006. Distribuição, abundância e diversidade de Simuliidae (Diptera) em uma bacia hidrográfica impactada no sul do Brasil. Revista Brasileira de Entomologia 50: 119–124.

    Google Scholar 

  81. Tonkin, J., R. Death & K. Collier, 2013. Do productivity and disturbance interact to modulate macroinvertebrate diversity in streams? Hydrobiologia 701: 159–172.

    Google Scholar 

  82. Tubelis, D. P., 2009. Veredas and their use by birds in the Cerrado, South America: a review. Biota Neotropica 9: 363–374.

    Google Scholar 

  83. Turić, N., E. Merdić, B. K. Hackenberger, Ž. Jeličić, G. Vignjević & Z. Csabai, 2012. Structure of aquatic assemblages of Coleoptera and Heteroptera in relation to habitat type and flood dynamic structure. Aquatic Insects 34: 189–205.

    Google Scholar 

  84. Vieira, T. B., K. Dias-Silva & E. S. Pacífico, 2014. Effects of riparian vegetation integrity on fish and Heteroptera communities. Applied Ecology and Environmental Research 13: 53–65.

    Google Scholar 

  85. Weterings, R., C. Umponstira & H. Buckley, 2018. Landscape variation influences trophic cascades in dengue vector food webs. Science Advances 4: 1–9.

    Google Scholar 

  86. Zar, J. H., 2010. Biostatistical analysis. Prentice Hall, New Jersey.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mato Grosso State Research Support Foundation (FAPEMAT, process: 300321/2013), for the funding of the study; the Coordination for the Improvement of Higher Education Personnel (CAPES), for granting a PhD scholarship to NFSG; Resende B., for their help in collecting data of the first sampling stage; the Entomology Laboratory (LENX) and PPGEC-UNEMAT, for logistical support (infrastructure and equipment); the Hydroecology Laboratory, UNEMAT, NX, for the measurement of nitrate, phosphorus and ammonia; and researchers Silvério, D.V., Maracahipes L., Lopes, V.G., and Silveira-Filho, R.R., for their valuable suggestions. LJ thanks CNPq for the research productivity Grant (process: 304710/2019-9). FFFM benefited from grants provided by the State of Rio de Janeiro Research Foundation, FAPERJ (#210.508/2016 and #203.207/2017) and the National Council for Scientific and Technological Development, CNPq (#301942/2019-6).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nubia França da Silva Giehl.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Marcelo S. Moretti

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 128 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giehl, N.F.S., Cabette, H.S.R., Dias-Silva, K. et al. Variation in the diversity of semiaquatic bugs (Insecta: Heteroptera: Gerromorpha) in altered and preserved veredas. Hydrobiologia (2020). https://doi.org/10.1007/s10750-020-04364-1

Download citation

Keywords

  • Aquatic bugs
  • Cerrado
  • Conservation
  • Environmental legislation
  • Hemiptera