Skip to main content
Log in

Impacts on freshwater macrophytes produced by small invertebrate herbivores: Afrotropical and Neotropical wetlands compared

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We compare invertebrate herbivory upon 13 macrophyte species in freshwater wetland systems located in two global ecozones, the Afrotropics and Neotropics, in the context of biotic and environmental factors influencing these wetlands. The two ecozones are climatically similar regions, with similar water chemistry, but experience contrasting grazing and disturbance pressures from large mammalian herbivores. Our results for macrophytes show that small invertebrates removed significantly more lamina biomass per leaf in Neotropical macrophytes (6.55%) than Afrotropical ones (4.99%). Overall, the results indicate that underestimation of up to 15.6% of leaf biomass may occur if plant tissue removal by invertebrate herbivores is not included in estimates of plant biomass. Regarding the contrasting grazing and disturbance pressures from large herbivores influencing these wetlands, seven mammal species (especially the Black Lechwe antelope, Kobus leche) were observed impacting macrophytes in the Afrotropical wetlands, while in the Neotropics, only much smaller rodents, capybara, (Hydrochoerus hydrochaeris) were sporadically observed. We discuss the relevance of results for invertebrate herbivory in the context of both the methodological approach and the importance of large mammalian herbivores as biotic factors additionally impacting macrophyte populations in these subtropical to tropical wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albertoni, E. F., L. J. Prellvitz & C. Palma-Silva, 2007. Macroinvertebrate fauna associated with Pistia stratiotes and Nymphoides indica in subtropical lakes (south Brazil). Brazilian Journal of Biology 67: 499–507.

    CAS  Google Scholar 

  • Arbo, M. M. & S. G. Tressens, 2002. Flora del Iberá. Eudene, Corrientes.

    Google Scholar 

  • Asner, G. P., S. R. Levick, T. Kennedy-Bowdoin, D. E. Knapp, R. Emerson, J. Jacobson, M. S. Colgan & R. E. Martin, 2009. Large-scale impacts of herbivores on the structural diversity of African savannas. PNAS 106: 4947–4952.

    CAS  PubMed  Google Scholar 

  • Bakker, E. S. & B. A. Nolet, 2014. Experimental evidence for enhanced top-down control of freshwater macrophytes with nutrient enrichment. Oecologia 176: 825–836.

    PubMed  PubMed Central  Google Scholar 

  • Bakker, E. S., K. A. Wood, J. F. Pagès, G. F. Veen Marjolijn, J. A. Christianen, L. Santamaría, B. A. Nolet & S. Hilt, 2016a. Herbivory on freshwater and marine macrophytes: a review and perspective. Aquatic Botany 135: 18–36.

    Google Scholar 

  • Bakker, E. S., J. F. Pagès, R. Arthur & T. Alcoverro, 2016b. Assessing the role of large herbivores in the structuring and functioning of freshwater and marine angiosperm ecosystems. Ecography 39: 162–179.

    Google Scholar 

  • Barone, J. A., 1998. Host-specificity of folivorous insects in a moist tropical forest. Journal of Animal Ecology 67: 400–409.

    Google Scholar 

  • Boar, R. R., D. M. Harper & C. S. Adams, 1999. Biomass allocation in Cyperus papyrus in a tropical wetland, Lake Naivasha, Kenya. Biotropica 31: 411–421.

    Google Scholar 

  • Borges, L. V. & I. Gonçalves Colares, 2007. Feeding habits of capybaras (Hydrochoerus hydrochaeris, Linnaeus 1766), in the Ecological Reserve of Taim (ESEC-Taim)-south of Brazil. Brazilian Archives of Biology and Technology 50: 409–416.

    Google Scholar 

  • Bottino, F., M. Calijuri & K. J. Murphy, 2014. Temporal and spatial variation of limnological variables and biomass of different macrophyte species in a Neotropical reservoir (São Paulo—Brazil). Acta Limnologica Brasiliensia 25: 387–397.

    Google Scholar 

  • Bownes, A., 2018. Suppression of the aquatic weed Hydrilla verticillata (L.f.) Royle (Hydrocharitaceae) by a leaf-cutting moth Parapoynx diminutalis Snellen (Lepidoptera: Crambidae) in Jozini Dam, South Africa. African Journal of Aquatic Science 43: 153–162.

    Google Scholar 

  • Cabrera Walsh, G., M. C. Hernández, F. McKay, M. Oleiro, M. Guala & A. Sosa, 2017. Lessons from three cases of biological control of native freshwater macrophytes isolated from their natural enemies. Aquatic Ecosystem Health & Management 20: 353–360.

    Google Scholar 

  • Chabwela, H. N. & G. A. Ellenbrook, 1990. The impact of hydroelectric developments on the lechwe and its feeding grounds at Kafue Flats, Zambia. In Whigham, D. F., R. C. Good & J. Kvet (eds), Wetland Ecology and Management: Case Studies. Kluwer Academic Publisher, Boston: 95–101.

    Google Scholar 

  • Chambers, P. A., P. Lacoul, K. J. Murphy & S. M. Thomaz, 2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595: 9–26.

    Google Scholar 

  • Coetzee, J. A., M. P. Hill, M. J. Byrne & A. Bownes, 2011. A review of the biological control programmes on Eichhornia crassipes (Mart.) Solms (Pontederiaceae), Salvinia molesta D.S. Mitch. (Salviniaceae), Pistia stratiotes L. (Araceae), Myriophyllum aquaticum (Vell.) Verdc. (Haloragaceae) and Azolla filiculoides Lam. (Azollaceae) in South Africa. African Entomology 19: 451–468.

    Google Scholar 

  • Corriale, M. J. & E. A. Herrera, 2014. Patterns of habitat use and selection by the capybara (Hydrochoerus hydrochaeris): a landscape-scale analysis. Ecological Research 29: 191–201.

    Google Scholar 

  • Cristoffer, C. & C. A. Peres, 2003. Elephants versus butterflies: the ecological role of large herbivores in the evolutionary history of two tropical worlds. Journal of Biogeography 30: 1357–1380.

    Google Scholar 

  • Cronin, G., K. D. Wissing & D. M. Lodge, 1998. Comparative feeding selectivity of herbivorous insects on water lilies: aquatic vs. semi-terrestrial insects and submersed vs. floating leaves. Freshwater Biology 39: 243–257.

    Google Scholar 

  • Cyr, H. & M. L. Pace, 1993. Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems. Nature 361: 148–150.

    Google Scholar 

  • Di Rienzo, J. A., F. Casanoves, M. G. Balzarini, L. Gonzalez, M. Tablada & C. W. Robledo, 2017. InfoStat Software versión 2017. Grupo InfoStat, F.C.A. Universidad Nacional de Córdoba, Córdoba.

    Google Scholar 

  • Dorn, N. J., G. Cronin & D. M. Lodge, 2001. Feeding preferences and performance of an aquatic lepidopteran on macrophytes: plant hosts as food and habitat. Oecologia 128: 406–415.

    PubMed  Google Scholar 

  • Esteves, F., 2011. Fundamentos de Limnología, 3rd ed. Editora Interciência, Rio de Janeiro.

    Google Scholar 

  • Ferreira, M., V. Wepener & J. H. J. van Vuren, 2012. Aquatic invertebrate communities of perennial pans in Mpumalanga, South Africa: a diversity and functional approach. African Invertebrates 53: 751–768.

    Google Scholar 

  • Franceschini, M. C., A. Poi de Neiff & M. E. Galassi, 2010. Is the biomass of water hyacinth lost through herbivory in native areas important? Aquatic Botany 92: 250–256.

    Google Scholar 

  • Franceschini, M. C., K. J. Murphy, M. P. Kennedy, F. S. Martínez, F. Willems & H. Sichingabula, 2020. Are invertebrate herbivores of freshwater macrophytes scarce in tropical wetlands? Aquatic Botany.

  • Gonçalves, C. V., A. Schwarzbold, A. Jasper & M. Castro Vasconcelos, 2010. Application of a non-destructive method to determine biomass in Pontederiaceae. Acta Limnologica Brasiliensia 22: 361–366.

    Google Scholar 

  • Grime, J. P., 1979. Plant Strategies and Vegetation Processes. Wiley, Chichester.

    Google Scholar 

  • Grutters, B. M. C., E. M. Gross & E. S. Bakker, 2016. Insect herbivory on native and exotic aquatic plants: phosphorus and nitrogen drive insect growth and nutrient release. Hydrobiologia 77: 209–220.

    Google Scholar 

  • Hamandawana, H., 2012. The impacts of herbivory on vegetation in Moremi Game Reserve, Botswana: 1967–2001. Regional Environmental Change 12: 1–15.

    Google Scholar 

  • Hrabar, H. & J. T. Du Toit, 2014. Interactions between megaherbivores and microherbivores: elephant browsing reduces host plant quality for caterpillars. Ecosphere 5: 1–6.

    Google Scholar 

  • Hurlbert, S., 1984. Pseudoreplication and the design of ecological field experiments. Ecological Monographs 54: 187–211.

    Google Scholar 

  • Jacobsen, D. & K. Sand-Jensen, 1994. Herbivory of invertebrates on submerged macrophytes from Danish freshwaters. Freshwater Biology 28: 301–308.

    Google Scholar 

  • Kennedy, M. P. & K. J. Murphy, 2012. A picture guide to aquatic plants of Zambian rivers. SAFRASS Deliverable Report to the African, Caribbean and Pacific Group of States (ACP Group) Science and Technology Programme, Contract No. AFS/2009/219013. University of Aberdeen, Aberdeen.

  • Kennedy, M. P., P. Lang, J. Tapia Grimaldo, S. Varandas Martins, A. Bruce, A. Hastie, S. Lowe, M. M. Ali, J. Briggs, H. Sichingabula & K. J. Murphy, 2015. Environmental drivers of aquatic macrophyte communities in southern tropical African river systems: Zambia as a case study. Aquatic Botany 124: 19–28.

    Google Scholar 

  • Kennedy, M. P., P. Lang, J. Tapia Grimaldo, S. Varandas Martins, A. Bruce, I. Moore, R. Taubert, C. Macleod-Nolan, S. McWaters, J. Briggs, S. Lowe, K. Saili, H. Sichingabula, F. Willems, H. Dallas, S. Morrison, C. Franceschini, F. Bottino & K. J. Murphy, 2017. Niche-breadth of freshwater macrophytes occurring in tropical southern African rivers predicts species global latitudinal range. Aquatic Botany 136: 121–130.

    Google Scholar 

  • Labandeira, C. C., 1998. Early history of arthropods and vascular plants associations. Annual Review of Earth and Planetary Sciences 26: 329–377.

    CAS  Google Scholar 

  • Lang, P. & K. J. Murphy, 2011. Environmental drivers, life strategies and bioindicator capacity of aquatic bryophyte communities in high-latitude upland streams. Hydrobiologia 679: 1–17.

    Google Scholar 

  • Lodge, D. M., G. Cronin, E. Van Donk & A. J. Froelich, 1998. Impact of herbivory on plant standing crop: comparisons among biomes, between vascular and nonvascular plants, and among freshwater herbivore taxa. In Jeppesen, E., M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submersed Macrophytes in Lakes. Springer, New York: 149–174.

    Google Scholar 

  • Madnes, N., R. D. Quintana, M. Biodini & D. Loponte, 2010. Relationships between photosynthetic plant types in the diet of herbivore mammals and in the environment in the lower Paraná River basin, Argentina. Revista Chilena de Historia Natural 83: 309–319.

    Google Scholar 

  • Marques, V. R., 1988. O gênero Holochilus (Mammalia: Cricetedidae) no Rio Grande do Sul: Taxonomia e distribução. Revista Brasilera de Zoologia 4: 347–360.

    Google Scholar 

  • Medeiros dos Santos, A. & F. A. Esteves, 2002. Primary production and mortality of Eleocharis interstincta in response to water level fluctuations. Aquatic Botany 74: 189–199.

    Google Scholar 

  • Milne, J. M., K. J. Murphy & S. M. Thomaz, 2008. Estudos experimentais dos impactos causados da atividade de pastagem em áreas de pasto na várzea do Alto Rio Paraná. Cadernos de Biodiversidade 5: 4–9.

    Google Scholar 

  • Moore, I. E. & K. J. Murphy, 2015. An evaluation of alternative macroinvertebrate sampling techniques for use in tropical freshwater biomonitoring schemes. Acta Limnologica Brasiliensia 27: 213–222.

    Google Scholar 

  • Morison, J. I. L., M. T. F. Piedade, E. Müller, S. P. Long, W. J. Junk & M. B. Jones, 2000. Very high productivity of the C4 aquatic grass Echinochloa polystachya in the Amazon floodplain confirmed by net ecosystem CO2 flux measurements. Oecologia 125: 400–411.

    CAS  PubMed  Google Scholar 

  • Murphy, K. J. & J. W. Eaton, 1983. Effects of pleasure-boat traffic on macrophyte growth in canals. Journal of Applied Ecology 20: 713–729.

    Google Scholar 

  • Murphy, K. J., G. Dickinson, S. M. Thomaz, L. M. Bini, K. Dick, K. Greaves, M. Kennedy, S. Livingstone, H. McFerran, J. Milne, J. Oldroyd & R. Wingfield, 2003. Aquatic plant communities and predictors of diversity in a sub-tropical river floodplain: the Upper Rio Paraná, Brazil. Aquatic Botany 77: 257–276.

    Google Scholar 

  • Murphy, K., A. Efremov, T. Davidson, E. Molina-Navarro, K. Fidanza, T. C. C. Betiol, P. Chambers, J. Tapia Grimaldo, S. Varandas Martins, I. Springuel, M. Kennedy, R. P. Mormul, E. Dibble, D. Hofstra, B. Lukács, D. Gebler, L. Baastrup-Spohr & J. Urrutia-Estrada, 2019. World distribution, diversity and endemism of aquatic macrophytes. Aquatic Botany. https://doi.org/10.1016/j.aquabot.2019.06.006.

    Article  Google Scholar 

  • Murphy, K., P. Carvalho, A. Efremov, J. Tapia Grimaldo, E. Molina-Navarro, T. A. Davidson & S. M. Thomaz, 2020. Latitudinal variation in global range-size of aquatic macrophyte species shows evidence for a Rapoport effect. Freshwater Biology. https://doi.org/10.1111/fwb.13528.

    Article  Google Scholar 

  • Nachtrieb, J. G., M. J. Grodowitz & R. M. Smart, 2011. Impact of invertebrates on three aquatic macrophytes: American pondweed, Illinois pondweed, and Mexican water lily. Journal of Aquatic Plant Management 49: 32–36.

    Google Scholar 

  • Newman, R. M., 1991. Herbivory and detritivory on freshwater macrophytes by invertebrates: a review. Journal of the North American Benthological Society 10: 89–114.

    Google Scholar 

  • Newman, R. M. & R. D. Rotjan, 2013. Re-examining the fundamentals of grazing: freshwater, marine and terrestrial similarities and contrasts (commentary on Burkepile 2013). Oikos 122: 317–320.

    Google Scholar 

  • Padial, A. A., L. M. Bini & S. M. Thomaz, 2008. The study of aquatic macrophytes in Neotropics: a scientometrical view of the main trends and gaps. Brazilian Journal of Biology 68: 1051–1059.

    CAS  Google Scholar 

  • Poi de Neiff, A., 2003. Invertebrados de la vegetación del Iberá. In Poi de Neiff., A. (ed.), Limnología del Iberá: Aspectos fiscos, químicos y biológicos de las aguas. Eudene, Corrientes: 171–191.

  • Poi de Neiff, A. S. & S. L. Casco, 2003. Biological agents that accelerate winter decay of Eichhornia crassipes Mart. Solms. in northeastern Argentina. In Thomaz, S. M. & L. M. Bini (eds), Ecología e manejo de macrófitas aquáticas. Maringá, UEM: 127–144.

    Google Scholar 

  • Poi de Neiff, A. & J. J. Neiff, 2006. Riqueza y similaridad de los invertebrados que viven en las plantas flotantes de la planicie de inundación del Río Paraná (Argentina). Interciencia 31: 220–225.

    Google Scholar 

  • Quintana, R. D., S. L. Malzof, M. V. Villar, P. L. Saccone, E. Astrada, W. Prado, S. Rosenfeldt & F. Brancolini, 2012. Plantas, animales y hongos de las islas. Una introducción a la biodiversidad del Bajo Delta del Río Paraná, Latingrafica, Buenos Aires.

    Google Scholar 

  • Ramos, Y. G. C., I. A. Aximoff & C. Alves da Rosa, 2018. Capybaras (Rodentia: Cavidae) in highlands: environmental variables related to distribution, and herbivory effects on a common plant species. Journal of Natural History 52: 1801–1815.

    Google Scholar 

  • Rasband W. S. ImageJ. U.S. National Institute of Health, Bethesda https://imagej.nih.gov/ij/, 1997–2016.

  • Redfern, J. V., R. Grant, H. Biggs & W. M. Getz, 2003. Surface water constraints on herbivore foraging in the Kruger National Park, South Africa. Ecology 84: 2092–2107.

    Google Scholar 

  • Reys, P., J. Sabino & M. Galetti, 2009. Frugivory by the fish Brycon hilarii (Characidae) in western Brazil. Acta Oecologica 35: 141–163.

    Google Scholar 

  • Sacco, J., G. Cabrera Walsh, M. C. Hernández, A. J. Sosa, M. V. Cardo & G. Elsesser, 2013. Feeding impact of the planthopper Taosa longula (Hemiptera: Dictyopharidae) on waterhyacinth, Eichhornia crassipes (Pontederiaceae). Biocontrol Science and Technology 23: 160–169.

    Google Scholar 

  • Selford, V. E., 1918. Conditions of existence. In Ward, H. B. & G. C. Whipple (eds), FreshWater Biology. Wiley, New York: 21–60.

    Google Scholar 

  • Schivo, F., P. P. Kandus, P. Minotti & R. Quintana, 2010. Mapa de aptitud ecológica potencial para el carpincho (Hydrochoerus hydrochaeris) en la provincia de Corrientes, Argentina. Rasadep 1: 83–100.

    Google Scholar 

  • Silva, T. S. F., M. P. F. Costa & J. M. Melack, 2009. Annual net primary production of macrophytes in the eastern Amazon Floodplain. Wetlands 29: 747–758.

    Google Scholar 

  • Soti, P. G. & J. C. Volin, 2010. Does water hyacinth (Eichhornia crassipes) compensate for simulated defoliation? Implications for effective biocontrol. Biological Control 54: 35–40.

    Google Scholar 

  • Strange, E., J. M. Hill & J. A. Coetzee, 2018. Evidence for a new regime shift between floating and submerged invasive plant dominance in South Africa. Hydrobiologia. https://doi.org/10.1007/s10750-018-3506-2.

    Article  Google Scholar 

  • Stuart, C. & M. Stuart, 2006. Field guide to the larger mammals of Africa, 3rd ed. Struik Nature, Cape Town.

    Google Scholar 

  • Tapia Grimaldo, J., L. M. Bini, V. Landeiro, M. T. O’Hare, J. Caffrey, A. Spink, S. Varandas Martins, M. P. Kennedy & K. J. Murphy, 2016. Spatial and environmental drivers of macrophyte diversity and community composition in temperate and tropical calcareous rivers. Aquatic Botany 132: 49–61.

    Google Scholar 

  • Tapia, Grimaldo J., M. O’Hare, M. Kennedy, T. A. Davidson, J. Bonilla-Barbosa, B. Santamaría, L. Gettys, S. Varandas Martins, S. Thomaz & K. J. Murphy, 2017. Environmental drivers of freshwater macrophyte diversity and community composition in calcareous warm-water rivers of America and Africa. Freshwater Biology 62: 1511–1527.

    Google Scholar 

  • Thomaz, S. M. & E. R. Da Cunha, 2010. The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnologica Brasiliensia 22: 218–236.

    Google Scholar 

  • Trindade, C. R. T., V. L. Landeiro & F. Schneck, 2018. Macrophyte functional groups elucidate the relative role of environmental and spatial factors on species richness and assemblage structure. Hydrobiologia. https://doi.org/10.1007/s10750-018-3709-6.

    Article  Google Scholar 

  • Varandas Martins, S., J. Milne, S. M. Thomaz, S. McWaters, R. P. Mormul, M. Kennedy & K. J. Murphy, 2013. Human and natural drivers of changing macrophyte community dynamics over twelve years in a Neotropical riverine floodplain system. Marine and Freshwater Ecosystems 23: 678–697.

    Google Scholar 

  • Viljoen, P., 2011. Bangweulu Wetlands Zambia. Aerial Wildlife Survey. African Parks Network Report, Lusaka.

  • Wantzen, K. M., M. R. Marchese, M. I. Marques & D. L. Battirola, 2016. Invertebrates in a Neotropical floodplain. In Batzer, D. & D. Boix (eds), Invertebrate in freshwater wetlands: an international Perspective of their ecology. Springer International Publishing, Switzerland: 493–524.

    Google Scholar 

  • Wetzel, R. G., 2001. Limnology. Lake and River Ecosystems, 3rd ed. Elsevier Academic Press, California.

    Google Scholar 

  • Wissinger, S. A., 1999. Ecology of wetlands invertebrates: Synthesis and application for conservation management. In Batzer, D., B. R. Russell & S. A. Wissinger (eds), Invertebrate in freshwater wetlands of North America: ecology and management. Wiley, New York: 1043–1086.

    Google Scholar 

  • Wood, K. A., M. T. O’Hare, C. McDonald, K. R. Searle, F. Daunt & R. A. Stillman, 2016. Herbivore regulation of plant abundance in aquatic ecosystems. Biological Review. https://doi.org/10.1111/brv12272.

    Article  Google Scholar 

  • Zamora, R. & J. M. Gómez, 1993. Vertebrate herbivores as predators of insect herbivores: an asymmetrical interaction mediated by size differences. Oikos 66: 223–228.

    Google Scholar 

Download references

Acknowledgements

We thank the Kasanka Trust and Zambia Wildlife Authority (ZAWA) for their support and assistance during sampling in Africa. This study was funded by PICT 2160-2011, PICT 1910-2015 of the Agencia Nacional de Promoción Científica y Tecnológica and PI 17Q003 of the Secretaría General de Ciencia Técnica de la Universidad Nacional del Nordeste (Argentina), the Carnegie Trust for the Universities of Scotland, and the Commission of the European Community/ACP Science and Technology Programme (Grant Number AFS/2009/219013). The authors declare no conflict of interest in undertaking this work. We are grateful for comments on the draft ms from Dr. Sidinei Thomaz (Universidade Estadual de Maringa, Brazil), Dr. Kim Canavan (Rhodes University, South Africa) and Dr. Martin Nuñez (Universidad Nacional del Comahue, Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Celeste Franceschini.

Additional information

Handling editor: André Padial

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 37 kb)

Supplementary material 2 (XLSX 165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franceschini, M.C., Murphy, K.J., Moore, I. et al. Impacts on freshwater macrophytes produced by small invertebrate herbivores: Afrotropical and Neotropical wetlands compared. Hydrobiologia 847, 3931–3950 (2020). https://doi.org/10.1007/s10750-020-04360-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04360-5

Keywords

Navigation