Skip to main content
Log in

Reynolds Functional Groups: a trait-based pathway from patterns to predictions

  • COLIN S. REYNOLDS’ LEGACY
  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

To Colin Stanley Reynolds, in memoriam, for inspiring many generations of phytoplankton ecologists.

Thus, the circle has turned fully and the questions asked today are the same ones which engaged the pioneers of phytoplankton ecology: what lives where and why?’ C. S. Reynolds (1998).

Abstract

Reynolds Functional Groups (RFG) were designed to represent the diversity of phytoplankton assemblages of freshwater ecosystems and are among the most enduring legacies of C. S. Reynolds to freshwater phytoplankton ecologists. The RFG concept summarises a rich base of knowledge, clustering species according to functional criteria. RFG allow researchers to organise information, understand community and ecosystem functioning, and identify future outcomes, also contributing to construct hypotheses and define community assembly. This approach represents the environmental requirements, tolerances and sensitivities of species, organizing them into diagnostic environmental axes representing the habitat template of phytoplankton communities. In this contribution, we highlight the importance of this trait-based approach for phytoplankton ecology, and summarise its history and usage for phytoplankton species classifications and prediction based on environmental gradients. We present some of the applications of the approach, to describe patterns, explain mechanisms and predict new situations. We hope that this review will contribute both to describe the trajectory and practice of RFG and to encourage its use in addressing new ecological questions and in generating new avenues of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abonyi, A., M. Leitão, I. Stanković, G. Borics, G. Várbíró & J. Padisák, 2014. A large river (River Loire, France) survey to compare phytoplankton functional approaches: do they display river zones in similar ways? Ecological Indicators 46: 11–22.

    Google Scholar 

  • Abonyi, A., Z. Horváth & R. Ptacnik, 2018. Functional richness outperforms taxonomic richness in predicting ecosystem functioning in natural phytoplankton communities. Freshwater Biology 63: 178–186.

    CAS  Google Scholar 

  • Abonyi, A., J.-P. Descy, G. Borics & E. Smeti, 2020. From historical backgrounds towards the functional classification of river phytoplankton sensu Colin S. Reynolds: what future merits the approach may hold? Hydrobiologia (Colin S. Reynolds Special Issue). https://doi.org/10.1007/s10750-020-04300-3.

    Article  Google Scholar 

  • Allende, L. & I. Izaguirre, 2003. The role of physical stability on the establishment of steady states in the phytoplankton community of two Maritime Antarctic lakes. Hydrobiologia 502: 211–224.

    Google Scholar 

  • Alves-de-Souza, C., M. T. Gonzáles & J. L. Iriate, 2008. Functional groups in marine phytoplankton assemblages dominated by diatoms in fjords of southern Chile. Journal of Plankton Research 30: 1233–1243.

    CAS  Google Scholar 

  • Arrigo, K. R., 2005. Marine microorganisms and global nutrient cycles. Nature 437: 349–355.

    CAS  Google Scholar 

  • Baas-Becking, L. G. M., 1934. Geobiologie of Inleiding tot de Milieukunde. W. P. Van Stockum & Zoon, The Hague.

    Google Scholar 

  • Barbosa, L. G., G. J. M. Araujo, F. A. R. Barbosa & C. E. M. Bicudo, 2014. Morphological variation in Staurastrum rotula (Zygnemaphyceae, Desmidiales) in the deepest natural Brazilian lake: essence or accident? Brazilian Journal of Biology 74: 371–381.

    CAS  Google Scholar 

  • Beamud, S. G., J. G. León, C. Kruk, F. Pedrozo & M. Diaz, 2015. Using trait-based approaches to study phytoplankton seasonal succession in a subtropical reservoir in arid central western Argentina. Environmental Monitoring and Assessment 187(271): 1–16.

    CAS  Google Scholar 

  • Becker, V., L. Caputo, J. Ordóñez, R. Marcé, J. Armengol, L. O. Crossetti & V. L. M. Huszar, 2010. Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Research 44: 345–354.

    Google Scholar 

  • Benincà, E., B. Ballantine, S. P. Ellner & J. Huisman, 2015. Species fluctuations sustained by a cyclic succession at the edge of chaos. Proceedings of the National Academy of Sciences of the United States of America 112: 6389–6394.

    PubMed  PubMed Central  Google Scholar 

  • Borics, G., G. Várbíró, I. Grigorszky, E. Krasznai, S. Szabó & K. T. Kiss, 2007. A new evaluation technique of potamo-plankton for the assessment of the ecological status of rivers. Archiv für Hydrobiologie Suppl. 161: 465–486.

    Google Scholar 

  • Borics, G., B. Tóthmérész, B. A. Lukács & G. Várbíró, 2012. Functional groups of phytoplankton shaping diversity of shallow lake ecosystems. Hydrobiologia 698: 251–262.

    Google Scholar 

  • Borics, G., B. Tóthmérész, G. Várbíró, I. Grigorszky, A. Czébely & J. Görgényi, 2016. Functional phytoplankton distribution in hypertrophic systems across water body size. Hydrobiologia 764: 81–90.

    CAS  Google Scholar 

  • Bortolini, J. C., L. C. Rodrigues, S. Jati & S. Train, 2014. Phytoplankton functional and morphological groups as indicators of environmental variability in a lateral channel of the Upper Paraná River floodplain. Acta Limnologica Brasiliensia 26: 98–108.

    Google Scholar 

  • Bourel, M. & A. Segura, 2018. Multiclass classification methods in ecology. Ecological Indicators 85: 1012–1021.

    Google Scholar 

  • Bovo-Scomparin, V. M., S. Train & L. C. Rodrigues, 2013. Influence of reservoirs on phytoplankton dispersion and functional traits: a case study in the Upper Paraná River, Brazil. Hydrobiologia 702: 115–127.

    CAS  Google Scholar 

  • Braun-Blanquet, J., 1964. Pflanzensociologie. Springer, Vienna.

    Google Scholar 

  • Callieri, C., E. Caravati, G. Morabito & A. Oggioni, 2006. The unicellular freshwater cyanobacterium Synechococcus and mixotrophic flagellates: evidence for a functional association in an oligotrophic, subalpine lake. Freshwater Biology 51: 263–273.

    Google Scholar 

  • Çelik, K. & T. Ongun-Sevindik, 2015. The phytoplankton functional group concept provides a reliable basis for ecological status estimation in the Çaygören Reservoir (Turkey). Turkish Journal of Botany 39: 588–598.

    Google Scholar 

  • Costa, L. S., V. L. M. Huszar & R. Ovalle, 2009. Phytoplankton Functional Groups in a Tropical Estuary: hydrological control and nutrient limitation. Estuaries and Coasts 38: 502–521.

    Google Scholar 

  • Crisci, C., B. Ghattas & G. Perera, 2012. A review of supervised machine learning algorithms and their applications to ecological data. Ecological Modelling 240: 113–122.

    Google Scholar 

  • Crossetti, L. O. & C. E. M. Bicudo, 2008. Phytoplankton as a monitoring tool in a tropical urban shallow reservoir (Garças Pond): the assemblage index application. Hydrobiologia 610: 161–173.

    CAS  Google Scholar 

  • Cutler, D. R., T. C. Edwards, K. H. Beard, A. Cutler, K. T. Hess, J. Gibson & J. J. Lawler, 2007. Random forests for classification in ecology. Ecology 88: 2783–2792.

    Google Scholar 

  • de Vargas, C., S. Audic, N. Henry, J. Decelle, F. Mahé, R. Logares, E. Lara, C. Berney, N. Le Bescot, I. Probert, M. Carmichael, J. Poulain, S. Romac, S. Colin, J.-M. Aury, L. Bittner, S. Chaffron, M. Dunthorn, S. Engelen, O. Flegontova, L. Guidi, A. Horák, O. Jaillon, G. Lima-Mendez, J. Lukeš, S. Malviya, R. Morard, M. Mulot, E. Scalco, R. Siano, F. Vincent, A. Zingone, C. Dimier, M. Picheral, S. Searson, S. Kandels-Lewis, S. G. Acinas, P. Bork, C. Bowler, G. Gorsky, N. Grimsley, P. Hingamp, D. Iudicone, F. Not, H. Ogata, S. Pesant, J. Raes, M. E. Sieracki, S. Speich, L. Stemmann, S. Sunagawa, J. Weissenbach, P. Wincker & E. Karsenti, 2015. Eukaryotic plankton diversity in the sunlit ocean. Science 348(6237): 1261605.

    PubMed  Google Scholar 

  • Devercelli, M., 2006. Phytoplankton of the Middle Paraná River during an anomalous hydrological period: a morphological and functional approach. Hydrobiologia 563: 465–478.

    Google Scholar 

  • Devercelli, M., 2010. Changes in phytoplankton morpho-functional groups induced by extreme hydroclimatic events in the Middle Paraná River (Argentina). Hydrobiologia 639: 5–19.

    CAS  Google Scholar 

  • Devercelli, M. & I. O’Farrell, 2013. Factors affecting the structure and maintenance of phytoplankton functional groups in a nutrient rich lowland river. Limnologica 43: 67–78.

    Google Scholar 

  • De’ath, G. & K. E. Fabricius, 2000. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81: 3178–3192.

    Google Scholar 

  • Di Maggio, J., C. Fernández, E. R. Parodi, M. S. Diaz & V. Estrada, 2016. Modeling phytoplankton community in reservoirs. A comparison between taxonomic and functional groups-based models. Journal of Environmental Management 165: 31–52.

    Google Scholar 

  • Díaz, S. & M. Cabido, 2001. Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology and Evolution 16(646): 655.

    Google Scholar 

  • Elliott, J. A., C. S. Reynolds & A. E. Irish, 2001. An investigation of dominance in phytoplankton using the PROTECH model. Freshwater Biology 46: 99–108.

    Google Scholar 

  • Elliott, J. A., 2020. Modelling lake phytoplankton communities: recent applications of the PROTECH model. Hydrobiologia. https://doi.org/10.1007/s10750.

    Article  Google Scholar 

  • Enquist, B. J., J. Norberg, S. P. Bonser, C. Violle, C. T. Colleen, T. Webb, A. Henderson, L. L. Sloat & V. M. Savage, 2015. Scaling from traits to ecosystems: developing a general trait driver theory via integrating trait-based and metabolic scaling theories. In Pawar, S., G. Woodward & A. I. Dell (eds), Trait-Based Ecology - From Structure to Function. Elsevier Ltd., London: 249–318.

    Google Scholar 

  • Falkowski, P. G., E. A. Laws, R. T. Barber & J. W. Murray, 2003. Phytoplankton and their role in primary, new, and export production. In Fasham, M. J. R. (ed.), Ocean Biogeochemistry: A Synthesis of the Joint Global Ocean Flux Study (JGOFS). Springer, Berlin, Heidelberg: 99–121.

    Google Scholar 

  • Falkowski, P. G., M. E. Katz, A. H. Knoll, A. Quigg, J. A. Raven, O. Schofield & F. J. R. Taylor, 2004. The evolution of modern eukaryotic phytoplankton. Science 305(5682): 354–360.

    CAS  Google Scholar 

  • Follows, M. J., S. Dutkiewicz, S. Grant & S. W. Chisholm, 2007. Emergent biogeography of microbial communities in a model ocean. Science 315(5820): 1843–1846.

    CAS  Google Scholar 

  • Fontana, S., M. K. Thomas, M. Moldoveanu, P. Spaak & F. Pomati, 2018. Individual-level trait diversity predicts phytoplankton community properties better than species richness or evenness. The ISME Journal 12: 356–366.

    Google Scholar 

  • Gray, E., J. A. Elliott, E. B. Mackay, A. M. Folkard, O. Keenan & I. D. Jones, 2019. Modelling lake cyanobacterial blooms: disentangling the climate-driven impacts of changing mixed depth and water temperature. Freshwater Biology 64: 2141–2155.

    Google Scholar 

  • Grime, J. P., 1979. Plant Strategies and Vegetation Processes. John Wiley, Chichester.

    Google Scholar 

  • Hense, I. & A. Beckmann, 2015. A theoretical investigation of the diatom cell size reduction–restitution cycle. Ecological Modelling 317: 66–82.

    Google Scholar 

  • Hofmann, P., A. Chatzinotas, W. S. Harpole & S. Dunker, 2019. Temperature and stoichiometric dependence of phytoplankton traits. Ecology 100(e02875): 1–14.

    Google Scholar 

  • Hooper, D. U., F. S. Chapin, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, D. M. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Setälä, A. J. Symstad, J. Vandermeer & D. A. Wardle, 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75: 3–35.

    Google Scholar 

  • Hu, R., B. Han & L. Naselli-Flores, 2013. Comparing biological classifications of freshwater phytoplankton: a case study from South China. Hydrobiologia 701: 219–233.

    Google Scholar 

  • Hubbell, S. P., 2001. A Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton.

    Google Scholar 

  • Huisman, J. & F. J. Weissing, 2001. Fundamental unpredictability in multispecies competition. The American Naturalist 157: 488–494.

    CAS  Google Scholar 

  • Huszar, V. L. M. & C. S. Reynolds, 1997. Phytoplankton periodicity and sequences of dominance in an Amazonian floodplain lake (Lago Batata, Pará, Brazil): responses to gradual environmental change. Hydrobiologia 346: 169–181.

    Google Scholar 

  • Huszar, V. L. M., C. Kruk & N. Caraco, 2003. Steady-state assemblages of phytoplankton in four temperate lakes (NE U.S.A.). Hydrobiologia 502: 97–109.

    Google Scholar 

  • Hutchinson, G. E., 1961. The paradox of the plankton. The American Naturalist 95(882): 137–145.

    Google Scholar 

  • Ibelings, B. W., M. Bormans, J. Fastner & P. M. Visser, 2016. CYANOCOST special issue on cyanobacterial blooms: synopsis – a critical review of the management options for their prevention, control and mitigation. Aquatic Ecology 50: 595–605.

    CAS  Google Scholar 

  • Keddy, P. A., 1992. Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science 3: 157–164.

    Google Scholar 

  • Komárková, J. & R. Tavera, 2003. Steady state of phytoplankton assemblage in the tropical Lake Catemaco (Mexico). Hydrobiologia 502: 187–196.

    Google Scholar 

  • Kruk, C., N. Mazzeo, G. Lacerot & C. S. Reynolds, 2002. Classification schemes for phytoplankton: a local validation of a functional approach to the analysis of species temporal replacement. Journal of Plankton Research 24: 901–912.

    Google Scholar 

  • Kruk, C., V. L. M. Huszar, E. T. H. M. Peeters, S. Bonilla, L. S. Costa, M. Lürling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.

    Google Scholar 

  • Kruk, C., E. T. H. M. Peeters, E. H. van Nes, V. L. M. Huszar, L. S. Costa & M. Scheffer, 2011. Phytoplankton community composition can be predicted best in terms of morphological groups. Limnology and Oceanography 56: 110–118.

    Google Scholar 

  • Kruk, C., A. M. Segura, E. T. H. M. Peeters, V. L. M. Huszar, L. S. Costa, S. Kosten, G. Lacerot & M. Scheffer, 2012. Phytoplankton species predictability increases towards warmer regions. Limnology and Oceanography 57: 1126–1135.

    Google Scholar 

  • Kruk, C., M. Devercelli, V. L. M. Huszar, E. Hernández, G. Beamud, M. Diaz, L. H. S. Silva & A. M. Segura, 2017. Classification of Reynolds phytoplankton functional groups using individual traits and machine learning techniques. Freshwater Biology 62: 1681–1692.

    CAS  Google Scholar 

  • Lack, T. J. & S. W. G. Lund, 1974. The observations and experiments on the phytoplankton of Blelham Tarn, English Lake District. I. The experimental tubes. Freshwater Biology 4: 399–415.

    Google Scholar 

  • Lavorel, S. & E. Garnier, 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16(545): 556.

    Google Scholar 

  • Lewis, W. M., 1976. Surface/volume ratio: implications for phytoplankton morphology. Science 192: 885–887.

    Google Scholar 

  • Litchman, E. & C. A. Klausmeier, 2008. Trait-based community ecology of phytoplankton. Annual Review of Ecology, Evolution and Systematics 39: 615–639.

    Google Scholar 

  • Litchman, E., P. de Tezanos Pinto, K. F. Edwards, C. A. Klausmeier, C. T. Kremer & M. K. Thomas, 2015. Global biogeochemical impacts of phytoplankton: a trait-based perspective. Journal of ecology 103(6): 1384–1396.

    CAS  Google Scholar 

  • Liu, J., Y. Chen, M. Li, B. Liu, X. Liu, Z. Wu, Y. Cai, J. Xu & J. Wang, 2019. Water-level fluctuations are key for phytoplankton taxonomic communities and functional groups in Poyang Lake. Ecological Indicators 104: 470–478.

    Google Scholar 

  • Livingstone, D. & C. S. Reynolds, 1981. Algal sedimentation in relation to phytoplankton periodicity in Rostherne Mere. British Phycological Journal 16: 195–206.

    Google Scholar 

  • Machado, K., L. Cardoso & J. C. Nabout, 2019. Predicting the dynamics of taxonomic and functional phytoplankton compositions in different global warming scenarios. Hydrobiologia 830: 115–134.

    CAS  Google Scholar 

  • Magurran, A. E. & P. A. Henderson, 2003. Explaining the excess of rare species in natural species abundance distributions. Nature 422: 714–716.

    CAS  Google Scholar 

  • Margalef, R., 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1: 493–509.

    Google Scholar 

  • Margalef, R., M. Estrada & D. Blasco, 1979. Functional morphology of organisms involved in red tides, as adapted to decaying turbulence. In Taylor, D. L. & H. H. Seliger (eds), Toxic Dinoflagellate Blooms. Elsevier-North Holland, Amsterdam: 89–94.

    Google Scholar 

  • Martinet, J., S. Descloux, P. Guedant & F. Rimet, 2014. Phytoplankton functional groups for ecological assessment in young sub-tropical reservoirs: case study of the Nam-Theun 2 Reservoir, Laos, South-East Asia. Journal of Limnology 73: 53–550.

    Google Scholar 

  • McGill, B., B. J. Enquist, E. Weiher & M. Westoby, 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178–185.

    Google Scholar 

  • Melo, S., L. C. Torgan, M. Menezes, V. L. M. Huszar, J. D. M. Corrêa Jr. & R. L. Bozelli, 2003. Taxonomy and ecology of Synedropsis roundii sp. nov. (Bacillariophyta) from a tropical brackish coastal lagoon, south-eastern Brazil. Phycologia 42: 71–79.

    Google Scholar 

  • Mutshinda, C. M., Z. V. Finkel, C. E. Widdicombe & A. J. Irwin, 2016. Ecological equivalence of species within phytoplankton functional groups. Functional Ecology 30: 1714–1722.

    Google Scholar 

  • Naselli-Flores, L. & R. Barone, 2003. Steady-state assemblages in a Mediterranean hypertrophic reservoir. The role of Microcystis ecomorphological variability in maintaining an apparent equilibrium. Hydrobiologia 502: 133–143.

    Google Scholar 

  • Naselli-Flores, L. & R. Barone, 2007. Pluriannual morphological variability of phytoplankton in a highly productive Mediterranean reservoir (Lake Arancio, Southwestern Sicily). Hydrobiologia 578: 87–95.

    Google Scholar 

  • Nõges, P., U. Mischke, R. Laugaste & A. G. Solimini, 2010. Analysis of changes over 44 years in the phytoplankton of Lake Võrtsjärv (Estonia): the effect of nutrients, climate and the investigator on phytoplankton-based water quality indices. Hydrobiologia 646: 33–48.

    Google Scholar 

  • O’Farrell, I., R. Sinistro, I. Izaguirre & F. Unrein, 2003. Do steady state assemblages occur in shallow lentic environments from wetlands? Hydrobiologia 502: 197–209.

    Google Scholar 

  • Padisák, J. & C. S. Reynolds, 1998. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to the cyanoprokaryotes. Hydrobiologia 384: 41–53.

    Google Scholar 

  • Padisák, J., G. Borics, G. Fehér, I. Grigorszky, I. Oldal, A. Schmidt & Z. Zámbóné-Doma, 2003. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502: 157–168.

    Google Scholar 

  • Padisák, J., G. Borics, I. Grigorszky & E. Soróczki-Pintér, 2006. Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: the assemblage index. Hydrobiologia 553: 1–14.

    Google Scholar 

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Google Scholar 

  • Rangel, L. M., M. C. S. Soares, R. Paiva & L. H. S. Silva, 2016. Morphology-based functional groups as effective indicators of phytoplankton dynamics in a tropical cyanobacteria-dominated transitional river–reservoir system. Ecological Indicators 64: 217–227.

    Google Scholar 

  • Rojo, C., 2020. Community assembly: perspectives from phytoplankton’s studies. Hydrobiologia. https://doi.org/10.1007/s10750.

    Article  Google Scholar 

  • Reynolds, C. S., 1980. Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarctic Ecology 3: 141–159.

    Google Scholar 

  • Reynolds, C. S., 1982. Phytoplankton periodicity: its motivation, mechanisms and manipulation. Fiftieth annual report for the year 1982. Freshwater Biological Association, Ambleside: 60–75.

    Google Scholar 

  • Reynolds, C. S., 1984a. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwater Biology 14: 111–142.

    Google Scholar 

  • Reynolds, C. S., 1984b. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.

    Google Scholar 

  • Reynolds, C. S., 1986. Experimental manipulations of the phytoplankton periodicity in large limnetic enclosures in Blelham Tarn, English Lake District. Hydrobiologia 138: 43–64.

    Google Scholar 

  • Reynolds, C. S., 1987. The response of phytoplankton communities to changing lake environments. Schweizerische Zeitschrift für Hydrologie 49: 220–236.

    Google Scholar 

  • Reynolds, C. S., 1988. Functional morphology and the adaptive strategies of freshwater phytoplankton. In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 338–433.

    Google Scholar 

  • Reynolds, C. S., 1993. Scales of disturbance and their role in plankton ecology. Hydrobiologia 249: 157–171.

    Google Scholar 

  • Reynolds, C. S., 1996. Plant life of the pelagic. Verhandlungen der Internationalen Vereinigung fürr Theoretische und Angewandte Limnologie 26: 97–113.

    Google Scholar 

  • Reynolds, C. S., 1997. Vegetation Processes in the Pelagic: A Model for Ecosystem Theory. Ecology Institute, Oldendorf.

    Google Scholar 

  • Reynolds, C. S., 1998. What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia 369(370): 11–26.

    Google Scholar 

  • Reynolds, C. S., 1999. With or against the grain: responses of phytoplankton to pelagic variability. In Whitfield, M., J. Matthews & C. Reynolds (eds), Aquatic Life-Cycle Strategies: Marine Biological Association of the United Kingdom, Vol. 6. Occasional Publication, London: 15–43.

    Google Scholar 

  • Reynolds, C. S., 2000. Phytoplankton designer – or how to predict compositional responses to trophic-state change. Hydrobiologia 424: 123–132.

    Google Scholar 

  • Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Google Scholar 

  • Reynolds, C. S. & C. Butterwick, 1979. Algal bioassay of unfertilised and artificially fertilised lake water maintained in Lund Tubes. Archiv für Hydrobiologie Suppl. 56: 166–183.

    Google Scholar 

  • Reynolds, C. S., S. W. Wiseman, B. M. Godfrey & C. Butterwick, 1983. Some effects of artificial mixing on the dynamics of phytoplankton populations in large limnetic enclosures. Journal of Plankton Research 5: 203–234.

    Google Scholar 

  • Reynolds, C. S., S. W. Wiseman & M. J. O. Clarke, 1984. Growth- and loss-rate responses to intermittent artificial mixing and their potential application to the control of planktonic algal biomass. Journal of Applied Ecology 21: 11–39.

    Google Scholar 

  • Reynolds, C. S., J.-P. Descy & J. Padisák, 1994. Are phytoplankton dynamics in rivers so different from those in shallow lakes? Hydrobiologia 289: 1–7.

    Google Scholar 

  • Reynolds, C. S., M. Dokulil & J. Padisák, 2000. Understanding the assembly of phytoplankton in relation to the trophic spectrum: where are we now? Hydrobiologia 424: 147–152.

    Google Scholar 

  • Reynolds, C. S., A. E. Irish & J. A. Elliott, 2001. The ecological basis for simulating phytoplankton responses to environmental change (PROTECH). Ecological Modelling 140: 271–291.

    CAS  Google Scholar 

  • Reynolds, C. S., V. L. M. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Google Scholar 

  • Reynolds, C. S., J. A. Elliott & M. A. Frassl, 2014. Predictive utility of trait-separated phytoplankton groups: a robust approach to modeling population dynamics. Journal of Great Lakes Research 40: 143–150.

    Google Scholar 

  • Roselli, L., E. Litchman, E. Stanca, F. Cozzoli & A. Basset, 2017. Individual trait variation in phytoplankton communities across multiple spatial scales. Journal of Plankton Research 39: 577–588.

    Google Scholar 

  • Salmaso, N. & J. Pádisak, 2007. Morpho-Functional Groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578(1):97–112.

    Google Scholar 

  • Salmaso, N., L. Naselli-Flores & J. Padisák, 2015. Functional classifications and their application in phytoplankton ecology. Freshwater Biology 60: 603–619.

    Google Scholar 

  • Santana, L. M., L. O. Crossetti & C. Ferragut, 2017. Ecological status assessment of tropical reservoirs through the assemblage index of phytoplankton functional groups. Brazilian Journal of Botany 40: 695–704.

    Google Scholar 

  • Scheffer, M. & E. H. van Nes, 2006. Self-organized similarity, the evolutionary emergence of groups of similar species. Proceedings of the National Academy of Sciences of the United States of America 103: 6230–6235.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scheffer, M., S. Rinaldi, J. Huisman & F. J. Weissing, 2003. Why plankton communities have no equilibrium: solutions to the paradox. Hydrobiologia 491: 9–18.

    Google Scholar 

  • Shimoda, Y. & G. B. Arhonditsis, 2016. Phytoplankton functional type modelling: running before we can walk? A critical evaluation of the current state of knowledge. Ecological Modelling 320: 29–43.

    CAS  Google Scholar 

  • Smayda, T. J. & C. S. Reynolds, 2001. Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. Journal of Plankton Research 23: 447–461.

    Google Scholar 

  • Smayda, T. J. & C. S. Reynolds, 2003. Strategies of marine dinoflagellate survival and some rules of assembly. Journal of Sea Research 49: 95–106.

    Google Scholar 

  • Soares, M. C. S., V. L. M. Huszar & F. Roland, 2007. Phytoplankton dynamics in two tropical rivers with different degrees of human impact (Southeast Brazil). River Research and Applications 23: 698–714.

    Google Scholar 

  • Sournia, A., M.-J. Chrétiennot-Dinet & M. Ricard, 1991. Marine plankton: how many species in the world oceans? Journal of Plankton Research 13: 1093–1099.

    Google Scholar 

  • Souza, D. G., N. C. Bueno, J. C. Bortolini, L. C. Rodrigues, V. M. Bovo-Scomparin & G. M. S. Franco, 2016. Phytoplankton functional groups in a subtropical Brazilian reservoir: responses to impoundment. Hydrobiologia 779: 47–57.

    Google Scholar 

  • Souza, M. B. G., C. F. A. Barros, F. Barbosa, E. Hajnal & J. Padisák, 2008. Role of atelomixis in replacement of phytoplankton assemblages in Dom Helvécio Lake, South-East Brazil. Hydrobiologia 607: 211–224.

    CAS  Google Scholar 

  • Stanković, I., T. Vlahović, M. G. Udovič, G. Várbíró & G. Borics, 2012. Phytoplankton functional and morpho-functional approach in large floodplain rivers. Hydrobiologia 698: 217–231.

    Google Scholar 

  • Tett, P. & E. D. Barton, 1995. Why are there about 5000 species of phytoplankton in the sea? Journal of Plankton Research 17: 1693–1704.

    Google Scholar 

  • Thompson, J. M., A. J. D. Ferguson & C. S. Reynolds, 1982. Natural filtration rates of zooplankton in a closed system: the derivation of a community grazing index. Journal of Plankton Research 4: 545–560.

    Google Scholar 

  • Török, P., E. T. Krasznai, V. B. Béres, I. Bácsi, G. Borics & B. Tóthmérész, 2016. Functional diversity supports the biomass-diversity humped-back relationship in phytoplankton assemblages. Functional Ecology 30: 1593–1602.

    Google Scholar 

  • Tüxen, R., 1955. Das System der nordwestdeutschen Pflanzengesellschaften. Mitteilungen der Floristisch-soziologischen Arbeitsgemeinschaft N.F. 5: 1–119.

    Google Scholar 

  • Violle, C., M.-L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel & E. Garnier, 2007. Let the concept of trait be functional. Oikos 116: 882–892.

    Google Scholar 

  • Violle, C., P. B. Reich, S. W. Pacala, B. J. Enquist & J. Kattge, 2014. The emergence and promise of functional biogeography. Proceedings of the National Academy of Sciences of the United States of America 111: 13690–13696.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vollenweider, R. A., 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Memorie dell’Istituto Italiano di Idrobiologia 33: 53–83.

    CAS  Google Scholar 

  • Walker, B. H., A. Kinzig & J. Langridge, 1999. Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2: 95–113.

    Google Scholar 

  • Wang, C., V. B. Béres, C. Stenger-Kovács, X. Li & A. Abonyi, 2018. Enhanced ecological indication based on combined planktic and benthic functional approaches in large river phytoplankton ecology. Hydrobiologia 818: 163–175.

    CAS  Google Scholar 

  • Wang, L., Q. Cai, Y. Xu, L. Kong, L. Tan & M. Zhang, 2011. Weekly dynamics of phytoplankton functional groups under high water level fluctuations in a subtropical reservoir-bay. Aquatic Ecology 45: 197–212.

    Google Scholar 

  • Weithoff, G. & B. E. Beisner, 2019. Measures and approaches in trait-based phytoplankton community ecology – from freshwater to marine ecosystems. Frontiers in Marine Science 6: 1–11.

    Google Scholar 

  • Yang, C., J. Nan & J. Li, 2019. Driving factors and dynamics of phytoplankton community and functional groups in an estuary reservoir in the Yangtze River, China. Water 11(1184): 1–17.

    Google Scholar 

Download references

Acknowledgements

We are grateful to Judit Padisák, J. Alex Elliott, Martin T. Dokulil and Luigi Naselli-Flores for the organization of this Special Issue dedicated to Prof. Colin S. Reynolds and for their invitation. CK thanks the Sistema Nacional de Investigación e Innovación (SNI), Uruguay, for financial support. We are grateful to A. Segura and P. Pío for thoughtful discussions. MD was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas and the Agencia Nacional de Promoción Científica y Tecnológica, Argentina (PICT 2016-0465). VLH was partially supported by the National Council for Scientific and Technological Development, Brazil (CNPq; Grant 304284/2017-3). We thank Janet Reid, from JWR Associates for English revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Kruk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Judit Padisák, J. Alex Elliott, Martin T. Dokulil & Luigi Naselli-Flores / New, old and evergreen frontiers in freshwater phytoplankton ecology: the legacy of Colin S. Reynolds

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruk, C., Devercelli, M. & Huszar, V.L. Reynolds Functional Groups: a trait-based pathway from patterns to predictions. Hydrobiologia 848, 113–129 (2021). https://doi.org/10.1007/s10750-020-04340-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04340-9

Keywords

Navigation