Skip to main content

Advertisement

Log in

Restoration of eutrophic lakes in Iowa, USA

  • RESTORATION OF EUTROPHIC LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Lakes provide significant ecosystem services that are compromised by human degradation. Watershed and in-lake restoration are used to improve the physical, chemical, and biological condition of lakes, but their success is rarely evaluated. Our objectives were to compare water quality and biological conditions following in-lake, watershed, or a combination of both restoration activities in 20 lakes throughout Iowa, USA compared to reference systems. Lake-specific responses to restoration were variable, making it challenging to detect systematic effects in water quality parameters. Secchi depth generally improved following restoration, particularly in natural in-lake restorations and following sediment removal, fishery renovation, and with the number of restoration practices implemented, but improvements were not sustained. Restoration also tended to reduce nutrient and plankton concentrations and relative abundance of some benthic fishes. Due to the prolonged degradation of eutrophic lakes, it may be unrealistic to expect immediate and long-lasting water quality improvements. In-lake restoration in natural lakes may be the most likely to have detectable effects, but our results also highlight the need for improved restoration documentation and additional research to identify factors associated with restoration success. Our results are useful for guiding lake restoration practices and educating lake users and stakeholders on expected restoration outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • APHA (American Public Health Association), 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Water Works Association and Water Environmental Federation, Washington, DC.

    Google Scholar 

  • Arar, E. J. & G. B. Collins, 1997. Method 445.0: In Vitro Determination of Chlorophyll a and Pheophytin a in Marine and Freshwater Algae by Fluorescence. United States Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Washington, DC.

    Google Scholar 

  • Baron, J. S., N. L. Poff, P. L. Angermeier, C. N. Dahm, P. H. Gleick, N. G. Hairston, R. B. Jackson, C. A. Johnston, B. D. Richter & A. D. Steinman, 2005. Meeting ecological and societal needs for freshwater. Ecological Applications 12: 1247–1260.

    Google Scholar 

  • Bormans, M., B. Marsalek & D. Jancula, 2016. Controlling internal phosphorus loading in lakes by physical methods to reduce cyanobacterial blooms: a review. Aquatic Ecology 50: 407–422.

    CAS  Google Scholar 

  • Carlson, R. E., 1977. A trophic state index for lakes. Limnology and Oceanography 22: 361–369.

    CAS  Google Scholar 

  • Carmichael, W. W., 2001. Health effects of toxin-producing cyanobacteria: “the CyanoHABs”. Human Ecological Risk Assessment 7: 1393–1407.

    Google Scholar 

  • Carpenter, S. R., J. J. Cole, J. R. Hodgson, J. F. Kitchell, M. L. Pace, D. Bade, K. L. Cottingham, T. E. Essington, J. N. Houser & D. E. Schindler, 2001. Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecological Monographs 71: 163–186.

    Google Scholar 

  • Chapman, M. G. & A. J. Underwood, 2010. The need for a practical scientific protocol to measure successful restoration. Wetlands Australia 19: 28–49.

    Google Scholar 

  • Costanza, R., R. d’Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. V. O’Neill, J. Paruelo, R. G. Raskin, P. Sutton & M. van den Belt, 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253–260.

    CAS  Google Scholar 

  • Cullum, R. F., M. A. Locke & S. S. Knight, 2010. Effects of conservation reserve program on runoff and lake water quality in an oxbow lake watershed. Journal of International Environmental Application and Science 5: 318–328.

    CAS  Google Scholar 

  • Cunningham, S., 2002. The Restoration Economy: The Greatest New Growth Frontier. Berrett-Koehler Publishers, San Francisco, CA.

    Google Scholar 

  • Dettmers, J. M. & R. A. Stein, 1992. Food consumption by larval gizzard shad: zooplankton effects and implications for reservoir communities. Transactions of the American Fisheries Society 121: 494–507.

    Google Scholar 

  • Dodds, W. K., W. W. Bouska, J. L. Eitzmann, T. J. Pilger, K. L. Pitts, A. J. Riley, J. T. Schloesser & D. J. Thornbrugh, 2009. Eutrophication of US freshwaters: analysis of potential economic damages. Environmental Science and Technology 43: 12–19.

    CAS  PubMed  Google Scholar 

  • Dodson, S. I., S. E. Arnott & K. L. Cottingham, 2000. The relationship in lake communities between primary productivity and species richness. Ecology 81: 2662–2679.

    Google Scholar 

  • Drenner, R. W. & K. D. Hambright, 1999. Review: Biomanipulation of fish assemblages as lake restoration technique. Archiv für Hydrobiologie 146: 129–165.

    Google Scholar 

  • Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.

    PubMed  Google Scholar 

  • Findenegg, I., 1974. Expressions of populations. In Vollenweider, R. A. (ed.), A Manual on Methods for Measuring Primary Production in Aquatic Environments. Blackwell Scientific Publications, Oxford, UK: 16–18.

    Google Scholar 

  • Fischer, J. R., 2012. Characterizing lentic fish assemblages and community-environment relationships: An evaluation of natural lakes and reservoirs in Iowa, USA. PhD dissertation. Iowa State University, Ames.

  • Flammang, M. K., 2014. Use of Low-Concentration Rotenone for Biomanipulation of Iowa Lakes. Iowa Department of Natural Resources, Des Moines, Iowa.

    Google Scholar 

  • Gbur, E. E., W. W. Stroup, K. S. McCarter, S. Durham, L. J. Young, M. Christman, M. West & M. Kramer, 2012. Analysis of Generalized Linear Mixed Models in the Agricultural and Natural Resources Sciences. American Society of Agronomy, Soil Science Society of American, and Crop Science Society of America, Madison, WI.

    Google Scholar 

  • Gulati, R. D., & E. van Donk, 2002. Lakes in the Netherlands, their origin, eutrophication and restoration: state-of-the-art review. Hydrobiologia 478: 73–106.

    Google Scholar 

  • Hayes, N. M., B. R. Deemer, J. R. Corman, N. R. Razavi & K. E. Strock, 2017. Key differences between lakes and reservoirs modify climate signals: a case for a new conceptual model. Limnology and Oceanography Letters 2: 47–62.

    Google Scholar 

  • Hickey, C. W. & M. M. Gibbs, 2009. Lake sediment phosphorus release management-decision support and risk assessment framework. New Zealand Journal of Marine and Freshwater Research 43: 819–854.

    CAS  Google Scholar 

  • Hillebrand, H., C. D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohar, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Google Scholar 

  • Hobbs, R. J. & J. A. Harris, 2001. Restoration ecology: repairing the earth’s ecosystems in the new millennium. Restoration Ecology 9: 239–246.

    Google Scholar 

  • Jeppesen, E., M. Meerhoff, B. A. Jacobsen, R. S. Hansen, M. Sondergaard, J. P. Jensen, T. L. Lauridsen, N. Mazzeo & C. W. C. Branco, 2007. Restoration of shallow lakes by nutrient control and biomanipulation—the successful strategy varies with lake size and climate. Hydrobiologia 581: 269–285.

    CAS  Google Scholar 

  • Keeler, B. L., S. A. Wood, S. Polasky, C. Kling, C. T. Filstrup & J. A. Downing, 2015. Recreational demand for clean water: evidence from geotagged photographs by visitors to a lake. Frontiers in Ecology and the Environment 13: 76–81.

    Google Scholar 

  • Kelly, P. T., M. J. Gonzalez, W. H. Renwick & M. J. Vanni, 2018. Increased light availability and nutrient cycling by fish provide resilience against reversing eutrophication in an agriculturally impacted reservoir. Limnology and Oceanography 63: 2647–2660.

    CAS  Google Scholar 

  • Larscheid, J., M. Hawkins, J. Downing, D. Bonneau & G. Antoniou, 2008. Iowa’s lakes program. Lakeline 28: 24–29.

    Google Scholar 

  • Letvin, A., M. L. Brown, K. Bertrand & M. J. Weber, 2017. Effects of common carp on trophic dynamics of sport fishes in shallow South Dakota water bodies. Transactions of the American Fisheries 146: 331–340.

    Google Scholar 

  • Lizotte, R. E., S. S. Knight, M. A. Locke & R. L. Bingner, 2014. Influence of integrated watershed-scale agricultural conservation practices on lake water quality. Journal of Soil and Water Conservation 69: 160–170.

    Google Scholar 

  • LRP (Lake Restoration Program Report and Plan), 2015. Lake restoration and water quality improvement. http://www.iowadnr.gov/Fishing/About-Fishing-in-Iowa/Lake-Restoration-Program. Accessed 13 Jan 2020.

  • Meador, M. R. & R. M. Goldstein, 2003. Assessing water quality at large geographic scales: relations among land use, water physicochemistry, riparian condition, and fish community structure. Environmental Management 31: 504–517.

    PubMed  Google Scholar 

  • Mehner, T., J. Benndorf, P. Kasprzak & R. Koschel, 2002. Biomanipulation of lake ecosystems: successful applications and expanding complexity in the underlying science. Freshwater Biology 47: 2453–2465.

    Google Scholar 

  • Milliken, G. A. & D. E. Johnson, 2009. Analysis of Messy Data. Chapman and Hall, London.

    Google Scholar 

  • Orihel, D. M., H. M. Baulch, N. J. Casson, R. L. North, C. T. Parsons, D. C. M. Seckar & J. J. Venkiteswaran, 2017. Internal phosphorus loadin in Canadian fresh waters: a critical review and data analysis. Canadian Journal of Fisheries and Aquatic Sciences 74: 2005–2029.

    CAS  Google Scholar 

  • Osgood, R. A., 2017. Inadequacy of best management practices for restoring eutrophic lakes in the United States: guidance for policy and practice. Inland Waters 7: 401–407.

    Google Scholar 

  • Paerl, H. W., J. T. Scott, M. J. McCarthy, S. E. Newell, W. S. Gardner, K. E. Havens, D. K. Hoffman, S. W. Wilhelm & W. A. Wurtsbaugh, 2016. It takes two to tango: when and where dual nutrient (N&P) reductions are needed to protect lakes and downstream ecosystems. Environmental Science and Technology 50: 10805–10813.

    CAS  PubMed  Google Scholar 

  • Palmer, M. A., E. S. Bernhardt, J. D. Allan, P. S. Lake, G. Alexander, S. Brooks, J. Carr, S. Clayton, C. N. Dahm, J. Follstad Shah, D. L. Galat, S. G. Loss, P. Goodwin, D. D. Hart, B. Hassett, R. Jenkinson, G. M. Kondolf, R. Lave, J. L. Meyer, T. K. O’Donnell, L. Pagano & E. Sudduth, 2005. Standards for ecologically successful river restoration. Journal of Applied Ecology 47: 208–217.

    Google Scholar 

  • Parkos, J. J., V. J. Santucci & D. H. Wahl, 2003. Effects of adult common carp (Cyprinus carpio) on multiple trophic levels in shallow mesocosms. Canadian Journal of Fisheries and Aquatic Sciences 60: 182–192.

    Google Scholar 

  • Perrow, M. R., M. L. Meijer, P. Dawidowicz & H. Coop, 1997. Biomanipulation in shallow lakes: state of the art. Hydrobiologia 342: 355–365.

    Google Scholar 

  • Postel, S. & S. Carpenter, 1997. Freshwater ecosystem services. In Daily, G. C. (ed.), Nature’s Services: Societal Dependence on Natural Ecosystems. Island Press, Washington, DC: 195–214.

    Google Scholar 

  • Ruttner-Kolisko, A., 1977. Suggestions for biomass calculations of planktonic rotifers. Archiv für Hydrobiologie 8: 71–76.

    Google Scholar 

  • Schaus, M. H. & M. J. Vanni, 2000. Effects of gizzard shad on phytoplankton and nutrient dynamics: role of sediment feeding and fish size. Ecology 81: 1701–1719.

    Google Scholar 

  • Schrage, L. J. & J. A. Downing, 2004. Pathways of increased water clarity after benthivorous fish removal from Ventura Marsh; a shallow, eutrophic wetland. Hydrobiologia 511: 215–231.

    Google Scholar 

  • Sharpley, A. N., S. C. Chapra, R. Wedepohl, J. T. Sims, T. C. Daniel & K. R. Reddy, 1994. Managing agricultural phosphorus for protection of surface waters: issues and options. Journal of Environmental Quality 23: 437–451.

    CAS  Google Scholar 

  • Sharpley, A., H. P. Jarvie, A. Buda, L. May, B. Spears & P. Kleinman, 2014. Phosphorus legacy: overcoming the effects of past management practices to mitigate future water quality impairment. Journal of Environmental Quality 42: 1308–1326.

    Google Scholar 

  • Smith, V. H., 2003. Eutrophication of freshwater and coastal marine ecosystems a global problem. Environmental Science and Pollution Research 10: 126–139.

    CAS  PubMed  Google Scholar 

  • Søndergaard, M., E. Jeppsesen, T. L. Lauridsen, C. Skov, E. H. Van Nes, R. Roijackers, E. Lammens & R. Portielje, 2007. Lake restoration: successes, failures and long-term effects. Journal of Applied Ecology 44: 1095–1105.

    Google Scholar 

  • Sournia, A., 1978. Phytoplankton Manual. Monographs on Oceanographic Methodology, Vol. 6. UNESCO, Paris.

    Google Scholar 

  • Stewart-Oaten, A., W. W. Murdoch & K. R. Parker, 1986. Environmental impact assessment: “Pseudoreplication” in time? Ecology 67: 929–940.

    Google Scholar 

  • Strayer, D. L., C. T. Solomon, S. E. G. Finlay & E. J. Rosi, 2018. Long-term research reveals multiple relationships between the abundance and impacts of a non-native species. Limnology and Oceanography 64: S105–S117.

    Google Scholar 

  • US EPA (Environmental Protection Agency), 2007. Survey of the Nation’s Lakes. Field Operations Manual. EPA 841-B-07-004. U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Van Meter, K. J., N. B. Basu, J. J. Veenstra & C. L. Burras, 2016. The nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapes. Environmental Research Letters 11: 035014.

    Google Scholar 

  • Vanni, M. J., K. K. Arend, M. T. Bremigan, D. B. Bunnell, J. E. Garvey, M. J. González & R. A. Stein, 2005. Linking landscapes and food webs: effects of omnivorous fish and watersheds on reservoir ecosystems. BioScience 55: 155–167.

    Google Scholar 

  • Viscusi, W. K., J. Huber & J. Bell, 2008. The economic value of water quality. Environmental and Resource Economics 41: 169–187.

    Google Scholar 

  • Watson, D. L., D. R. Bayne, D. R. DeVries & J. Williams, 2003. Influence of gizzard shad on phytoplankton size and primary productivity in mesocosms and earthen ponds in the southeastern U.S. Hydrobiologia 495: 17–32.

    Google Scholar 

  • Weber, M. J. & M. L. Brown, 2009. Effects of common carp on aquatic ecosystems 80 years after ‘Carp as a dominant’: ecological insights for fisheries management. Reviews in Fisheries Science 17: 524–537.

    Google Scholar 

  • Whittier, T. R., D. P. Larsen, S. A. Peterson & T. M. Kincaid, 2002. A comparison of impoundments and natural drainage lakes in the Northeast USA. Hydrobiologia 470: 157–171.

    Google Scholar 

  • Wilson, M. A. & S. R. Carpenter, 1999. Economic valuation of freshwater ecosystem services in the United States: 1971-1997. Ecological Applications 9: 772–783.

    Google Scholar 

Download references

Acknowledgements

We thank Iowa DNR staff throughout the state for conducting the lake restorations and for sharing data vital to the success of this project. Specifically, we thank D. Cashatt, J. Kopaska, and R. Krogman with the Iowa DNR for useful discussions and assistance with data compilation and interpretation. Map of lakes throughout Iowa was provided by B. Kelly. Funding for the Ambient Lake Monitoring Program (lake water quality data used for this study) was provided by the Iowa Department of Natural Resources. Funding for restoration projects included funding from Iowa’s Lake Restoration Program (Iowa Code Sect. 456A. 24), the US EPA Sect. 319 Program, local partner and friends groups, the Iowa Department of Agriculture and Land Stewardship, the Natural Resources Conservation Service, and the US Army Corps of Engineers. This analysis was funded by the Natural Resource Ecology and Management Department at Iowa State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Weber.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Tom Jilbert, Raoul-Marie Couture, Brian J. Huser & Kalevi Salonen / Restoration of eutrophic lakes: current practices and future challenges

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber, M.J., Wilkinson, G.M., Balmer, M.B. et al. Restoration of eutrophic lakes in Iowa, USA. Hydrobiologia 847, 4469–4486 (2020). https://doi.org/10.1007/s10750-020-04310-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04310-1

Keywords

Navigation