Skip to main content
Log in

Trophic ecology of tadpoles in floodplain wetlands: combining gut contents, selectivity, and stable isotopes to study feeding segregation of syntopic species

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Little consensus exists on the role of food partitioning in the organization of tadpole assemblages. We studied trophic ecology of syntopic tadpoles through the analysis of gut contents, selectivity, and stable isotopes to assess the occurrence of food partitioning in tadpole assemblages. Tadpoles (n = 194) were collected in three wetlands and corresponded to four species: Elachistocleis bicolor (Eb), Scinax nasicus (Sn), Physalaemus albonotatus (Pa), and Dendropsophus sp. (D); and belonged to four ecomorphological groups (EMGs): suspension feeders (Eb), nektonic (Sn), benthic (Pa) and macrophagous (D). Sn, and Pa showed low selective diet and a wider trophic spectrum than Eb and D, which mainly consumed one or two food categories. Diet overlap was higher between Sn and Pa. Still, Sn and Pa presented some differences in the food resources consumed. Stable isotopes analysis showed that Eb, Sn, and Pa had a lower trophic position than D, explained by the high contribution of animal food oligochaete in D diet, in contrast to the importance of algae in the diet of Eb, Sn, and Pa. Diet specialization of some species, combined with the low dietary and isotopic overlap among the ecomorphological groups, suggests that trophic partitioning facilitates coexistence of syntopic tadpoles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson, J. T., F. Zilli, L. Montalto, M. Marchese, M. McKinney & Y. Lak Park, 2013. Sampling of aquatic and terrestrial invertebrates in wetlands. In Anderson, J. T. & C. A. Davis (eds), Wetland Techniques. Organisms. Springer Science+Business Media, Dordrecht: 143–195.

    Chapter  Google Scholar 

  • Altig, R. & G. F. Johnston, 1989. Guilds of anuran larvae: relationships among developmental modes, morphologies, and habitats. Herpetological Monographs 3: 81.

    Article  Google Scholar 

  • Altig, R., M. R. Whiles & C. L. Taylor, 2007. What do tadpoles really eat? Assessing the trophic status of an understudied and imperiled group of consumers in freshwater habitats. Freshwater Biology 52: 386–395.

    Article  Google Scholar 

  • Asrafuzzaman, S., S. Mahapatra, J. Rout & G. Sahoo, 2018. Dietary assessment of five species of anuran tadpoles from northern Odisha, India. Journal of Threatened Taxa 10: 12382–12388.

    Article  Google Scholar 

  • Batzer, D. P., & V. H. Resh, 1992. Macroinvertebrates of a California seasonal wetland and responses to experimental habitat manipulation. Wetlands 12: 1–7.

    Article  Google Scholar 

  • Cáceres, M. D. & P. Legendre, 2009. Associations between species and groups of sites: indices and statistical inference. Ecology 90: 3566–3574.

    Article  PubMed  Google Scholar 

  • Caut, S., E. Angulo, C. Díaz-Paniagua & I. Gomez-Mestre, 2013. Plastic changes in tadpole trophic ecology revealed by stable isotope analysis. Oecologia 173: 95–105.

    Article  PubMed  Google Scholar 

  • Chen, H. C., B. C. Lai, G. M. Fellers, W. L. Wang & Y. C. Kam, 2008. Diet and foraging of Rana sauteri and Bufo bankorensis tadpoles in subtropical Taiwanese streams. Zoological Studies 47: 685–696.

    Google Scholar 

  • Dalu, T., O. L. F. Weyl, P. W. Froneman & R. J. Wasserman, 2015. Trophic interactions in an austral temperate ephemeral pond inferred using stable isotope analysis. Hydrobiologia 768: 81–94.

    Article  CAS  Google Scholar 

  • de Rossa-Feres, D., C. J. Jim & M. G. Fonseca, 2004. Diets of tadpoles from a temporary pond in southeastern Brazil (Amphibia, Anura). Revista Brasileira de Zoologia 21: 745–754.

    Article  Google Scholar 

  • de Sousa Filho, I. F., C. C. Branco, A. M. Carvalho-e-Silva, G. R. da Silva & L. T. Sabagh, 2007. The diet of Scinax angrensis (Lutz) tadpoles in an area of the Atlantic Forest (Mangaratiba, Rio de Janeiro) (Amphibia, Anura, Hylidae). Revista Brasileira de Zoologia 24: 965–970.

    Article  Google Scholar 

  • Diaz-Paniagua, C., 1985. Larval diets related to morphological characters of five anuran species in the Biological Reserve of Doñana (Huelva, Spain). Amphibia-Reptilia 6: 307–321.

    Article  Google Scholar 

  • Duellman, W. E., & L. Trueb, 1986. Biology of Amphibians. New York.

  • Echeverría, D. D., A. V., Volpedo, & V. I., Mascitti, 2007. Diet of tadpoles from a pond in Iguazu National Park, Argentina. Gayana 71: 8–14.

    Google Scholar 

  • Fay, M. P., 2010. Two-sided exact tests and matching confidence intervals for discrete data. R Journal 2: 53–58.

    Article  Google Scholar 

  • Fry, B., 2007. Stable isotope ecology. Springer Science & Business Media, New York.

    Google Scholar 

  • Ghioca-Robrecht, D. M. & L. M. Smith, 2010. The role of Spadefoot Toad tadpoles in wetland trophic structure as influenced by environmental and morphological factors. Canadian Journal of Zoology 89: 47–59.

    Article  Google Scholar 

  • Gosner, K. L., 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183–190.

    Google Scholar 

  • Hart, S. L. & C. M. Christensen, 2002. The great leap: driving innovation from the base of the pyramid. MIT Sloan Management Review 44: 51–56.

    Google Scholar 

  • Heyer, W. R., 1973. Ecological interactions of frog larvae at a seasonal tropical location in Thailand. Journal of Herpetology 7: 337.

    Article  Google Scholar 

  • Heyer, W. R., 1974. Niche measurements of frog larvae from a seasonal tropical location in Thailand. Ecology 55: 651–656.

    Article  Google Scholar 

  • Huckembeck, S., D. Loebmann, E. F. Albertoni, S. M. Hefler, M. C. Oliveira & A. M. Garcia, 2014. Feeding ecology and basal food sources that sustain the Paradoxal frog Pseudis minuta: a multiple approach combining stomach content, prey availability, and stable isotopes. Hydrobiologia 740: 253–264.

    Article  Google Scholar 

  • Hunte-Brown, M. E., 2006. The effects of extirpation of frogs on the trophic structure in tropical montane streams in Panama. Ph dissertation. ©Copyright Meshagae E. Hunte-Brown. 175pp.

  • Johnson, L. M., 1991. Growth and development of larval northern cricket frogs (Acris crepitans) in relation to phytoplankton abundance. Freshwater Biology 25: 51–59.

    Article  Google Scholar 

  • Kehr, A. I. & M. I. Duré, 1995. Descripción de la larva de Scinax nasica (Cope, 1862) (Anura, Hylidae). Facena 11: 99–103.

    Google Scholar 

  • Kehr, A. I., E. F. Schaefer & M. I. Duré, 2004. The tadpole of Physalaemus albonotatus (Anura: Leptodactylidae). Journal of Herpetology 38: 145–148.

    Article  Google Scholar 

  • Kloh, J. S., C. C. Figueredo & P. C. Eterovick, 2019. How close is microhabitat and diet association in aquatic ecomorphotypes? A test with tadpoles of syntopic species. Hydrobiologia 828: 271–285.

    Article  Google Scholar 

  • Kruk, C., V. L. M. Huszar, E. T. H. M. Peeters, S. Bonilla, L. Costa, M. LüRling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.

    Article  Google Scholar 

  • Kupferberg, S. J., 1997. The role of larval diet in anuran metamorphosis. American Zoologist 37: 146–159.

    Article  CAS  Google Scholar 

  • Lajmanovich, R. C., 2000. Interpretación ecológica de una comunidad larvaria de anfibios anuros. Interciencia 25: 71–79.

    Google Scholar 

  • López, J. A., P. A. Scarabotti, M. C. Medrano & R. Ghirardi, 2009. Is red spotted green frog (Hypsiboas punctatus, Anura: Hylidae) selecting its preys? Prey availability importance when analyzing trophic selectivity. Revista de Biología Tropical 57: 847–857.

    PubMed  Google Scholar 

  • López, J. A., P. A. Scarabotti & R. Ghirardi, 2015. Amphibian trophic ecology in increasingly human-altered wetlands. Herpetological Conservation and Biology 10: 819–832.

    Google Scholar 

  • Maneyro, R. & I. da Rosa, 2004. Temporal and spatial changes in the diet of Hyla pulchella (Anura, Hylidae) in southern Uruguay. Phyllomedusa: Journal of Herpetology 3: 101–103.

    Article  Google Scholar 

  • Marker, A. F. H. & P. M. Bolas, 1984. Sampling of Non-planktonic Algae (Benthic Algae or Periphyton). HM Stationery Office, Richmond.

    Google Scholar 

  • Matthews, B. & A. Mazumder, 2005. Temporal variation in body composition (C: N) helps explain seasonal patterns of zooplankton δ13C. Freshwater Biology 50: 502–515.

    Article  Google Scholar 

  • Molina, F. R., J. C. Paggi & M. Devercelli, 2010. Zooplanktophagy in the natural diet and selectivity of the invasive mollusk Limnoperna fortunei. Biological Invasions 12: 1647–1659.

    Article  Google Scholar 

  • Oksanen, J., 2011. Multivariate Analysis of Ecological Communities in R: vegan tutorial. http://cran.r-project.org.

  • Oksanen, J., R. Blanchet, P. Kindt, B. Legendre, Minchin, O’Hara, Simpson, Solymos, Stevens, & Wagner, 2015. The vegan package. Community ecology package 10. http://cran.r-project.org/.

  • Paggi, A. C., H. R. Fernández & E. Domínguez, 2001. Díptera: Chironomidae. In Hernández, H. R. & E. Domínguez (eds), Guía Para la Determinación de los Artrópodos Bentónicos Sudamericanos. Investigaciones de la UNT, Serie: 167–193.

    Google Scholar 

  • Pavignano, I., 1990. Niche overlap in tadpole populations of Pelobates fuscus insubricus and Hyla arborea at a pond in north western Italy. Italian Journal of Zoology 57: 83–87.

    Google Scholar 

  • Peltzer, P. M. & R. C. Lajmanovich, 2004. Anuran tadpole assemblages in riparian areas of the Middle Paraná River, Argentina. Biodiversity & Conservation 13: 1833–1842.

    Article  Google Scholar 

  • Pianka, E. R., 1973. The structure of lizard communities. Annual Review of Ecology and Systematics 4: 53–74.

    Article  Google Scholar 

  • Pianka, E. R., 1986. Ecology and Natural History of Desert Lizards: Analyses of the Ecological Niche and Community Structure. Princeton University Press, Princeton.

    Book  Google Scholar 

  • Pinkas, L. M., M. S. Oliphant & Z. L. Iverson, 1971. Food habits of albacore, bluefin tuna and bonito in California waters. California Department of Fish and Game Bulletin, Fishery Bulletin U.S. 152: 1–105.

    Google Scholar 

  • Pollo, F. E., L. C. Martina, C. L. Bionda, N. E. Salas & A. L. Martino, 2015. Trophic ecology of syntopic anuran larvae, Rhinella arenarum (Anura: Bufonidae) and Hypsiboas cordobae (Anura: Hylidae): its relation to the structure of periphyton. EDP Sciences 51: 211–217.

    Google Scholar 

  • Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718.

    Article  Google Scholar 

  • Post, D. M., C. A. Layman, D. A. Arrington, G. Takimoto, J. Quattrochi & C. G. Montana, 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152: 179–189.

    Article  PubMed  Google Scholar 

  • Quiroga, V., R. E. Lorenzón, G. Maglier & A. L. Ronchi-Virgolini, 2018. Relationship between morphology and trophic ecology in an assemblage of passerine birds in riparian forests of the Paraná River (Argentina). Avian Biology Research 11: 44–53.

    Article  Google Scholar 

  • R Core Team, 2016. R: A Language and Environment for Statistical Computing. Version 3.3.0. R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org/.

  • Ricklefs, R. E. & D. B. Miles, 1994. Ecological and evolutionary inferences from morphology: an ecological perspective. Ecological Morphology: Integrative Organismal Biology 1: 13–41.

    Google Scholar 

  • Rojas, A. E & J. H. Saluso, 1987. Informe climático de la provincia de Entre Ríos. Publicación Técnica Nº 14. INTA-EEA Paraná (E.R). 20pp.

  • Sabagh, L. T., G. L. Ferreira, C. W. Branco, C. F. D. Rocha & N. Y. Dias, 2012. Larval diet in bromeliad pools: a case study of tadpoles of two species in the genus Scinax (Hylidae). Copeia 2012: 683–689.

    Article  Google Scholar 

  • San Sebastián, O., J. Navarro, G. A. Llorente & Á. Richter-Boix, 2015. Trophic strategies of a non-native and a native amphibian species in shared ponds. PLoS ONE 10: 1–17.

    Article  CAS  Google Scholar 

  • Santos, F. J. M., A. S. Protázio, C. W. N. Moura & F. A. Juncá, 2015. Diet and food resource partition among benthic tadpoles of three anuran species in Atlantic Forest tropical streams. Journal of Freshwater Ecology 31: 53–60.

    Article  CAS  Google Scholar 

  • Schalk, C. M., C. G. Montaña, J. L. Klemish & E. R. Wild, 2014. On the Diet of the Frogs of the Ceratophryidae: Synopsis and New Contributions. South American Journal of Herpetology 9: 90–105.

    Article  Google Scholar 

  • Schalk, C. M., C. G. Montaña, K. O. Winemiller & L. A. Fitzgerald, 2017. Trophic plasticity, environmental gradients and food-web structure of tropical pond communities. Freshwater Biology 62: 519–529.

    Article  CAS  Google Scholar 

  • Schiesari, L., E. E. Werner & G. W. Kling, 2009. Carnivory and resource-based niche differentiation in anuran larvae: implications for food web and experimental ecology. Freshwater Biology 54: 572–586.

    Article  Google Scholar 

  • Seale, D. B. & N. Beckvar, 1980. The comparative ability of anuran larvae (Genera: Hyla, Bufo and Rana) to Ingest suspended blue-green algae. Copeia 1980: 495.

    Article  Google Scholar 

  • Schmidt, K., M. L. Blanchette, R. G. Pearson, R. A. Alford & A. M. Davis, 2017. Trophic roles of tadpoles in tropical Australian streams. Freshwater Biology 62: 1929–1941.

    CAS  Google Scholar 

  • Starrett, P. H., 1960. Description of tadpoles of Middle America frogs. Miscellaneous Publications of the Museum of Zoology 110: 1–37.

    Google Scholar 

  • Strauss, R. E., 1979. Reliability estimates for Ivlev’s electivity index, the forage ratio, and proposed linear index of food selection. Transactions of the American Fisheries Society 108: 344–352.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Internationalen Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Vander Zanden, M. J., & J. B. Rasmussen, 1999. Primary consumer δ 13 C and δ 15 N and the trophic position of aquatic consumers. Ecology 80: 1395–1404.

    Article  Google Scholar 

  • Vassilieva, A. B., A. Y. Sinev & A. V. Tiunov, 2017. Trophic segregation of anuran larvae in two temporary tropical ponds in southern Vietnam. Herpetological Journal 27: 217–229.

    Google Scholar 

  • Venesky, M., D. R. J. Wassersug & M. J. Parris, 2010. The impact of variation in labial tooth number on the feeding kinematics of tadpoles of southern leopard frog (Lithobates sphenocephalus). Copeia 3: 481–486.

    Article  Google Scholar 

  • Vera Candioti, M. F., 2007. Anatomy of anuran tadpoles from lentic water bodies: systematic relevance and correlation with feeding habits. Zootaxa 1600: 1–175.

    Article  Google Scholar 

  • Vera Candioti, M. F., E. O. Lavilla & D. D. Echeverría, 2004. Feeding mechanisms in two treefrogs, Hyla nana and Scinax nasicus (Anura: Hylidae): Feeding Mechanisms in two treefrogs. Journal of Morphology 261: 206–224.

    Article  CAS  PubMed  Google Scholar 

  • Verburg, P., S. S. Kilham, C. M. Pringle, K. R. Lips & D. L. Drake, 2007. A stable isotope study of a neotropical stream food web prior to the extirpation of its large amphibian community. Journal of Tropical Ecology 23: 643–651.

    Article  Google Scholar 

  • Waringer-Löschenkohl, A. & M. Schagerl, 2001. Algal exploitation by tadpoles—an experimental approach. International Review of Hydrobiology 86: 105–125.

    Article  Google Scholar 

  • Wassersug, R. J., 1972. The mechanism of ultraplanktonic entrapment in anuran larvae. Journal of Morphology 137: 279–288.

    Article  PubMed  Google Scholar 

  • Wassersug, R. J., 1980. Internal oral features of larvae from eight anuran families. Functional, systematics, evolutionary and ecological considerations. Miscellaneous Publications of the Museum of Natural History 65: 1–146.

    Google Scholar 

Download references

Acknowledgements

This study was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina) with a PhD fellowship to CE Antoniazzi. This study was financed by PIP-CONICET 2013-2017, PICT 2016-0916, PIP 112-201301-00790-CO and CAI+D-UNL PJoven-50020150100009LI. Collection of animals was authorized (Administrative Resolution 152-2016) by the Environmental Agency of Santa Fe Province, Argentine (Ministerio de Medio Ambiente de la Provincia de Santa Fe, Argentina) and use of specimens are in accordance with animal care guidelines of Regional and National Fauna Administrators. We are grateful to an anonymous reviewer and Associate Editor Lee Kats for the suggestions that contributed to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Alejandro López.

Additional information

Handling editor: Lee B. Kats

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antoniazzi, C.E., López, J.A., Lorenzón, R.E. et al. Trophic ecology of tadpoles in floodplain wetlands: combining gut contents, selectivity, and stable isotopes to study feeding segregation of syntopic species. Hydrobiologia 847, 3013–3024 (2020). https://doi.org/10.1007/s10750-020-04303-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04303-0

Keywords

Navigation