Skip to main content
Log in

The influence of an in-stream thermal gradient on chironomid emergence during winter

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The River Continuum Concept (RCC) predicts that aquatic insect communities undergo predictable changes in composition from headwaters to downstream regions relative to changes in habitat. An important aspect of this change is stream temperature. Studies have been conducted on thermal partitioning of chironomids within the RCC and across streams with different thermal regimes; however, few have focused on effects of fine-scale within-stream temperature variability on winter chironomid composition. Our objectives were to characterize thermal heterogeneity within a small headwater trout stream during winter using slope and Y-intercepts from linear regressions of air–water temperatures and to document patterns of chironomid emergence and taxonomic composition relative to mean water temperatures, regression slopes, and Y-intercepts along stream length. We developed air–water temperature regressions using mean daily air and water temperatures for three headwater trout streams. We assessed similarity in taxonomic composition across sites by collecting and analyzing chironomid surface floating pupal exuviae. We demonstrate that regressions of mean daily air and water temperatures can characterize fine-scale thermal heterogeneity within and among headwater trout streams during winter. We also demonstrate that chironomid taxonomic composition varied at spatial scales substantially less than a kilometer within a stream that possessed significant thermal heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson, A. M., E. Stur & T. Ekrem, 2013. Molecular and morphological methods reveal cryptic diversity and three new species of Nearctic Micropsectra (Diptera: Chironomidae). Freshwater Science 32: 892–921.

    Article  Google Scholar 

  • Bouchard, R. W. & L. C. Ferrington Jr., 2008. Determination of Chironomidae thermal preferences and thermal partitioning among closely related taxa in Minnesota streams using surface floating pupal exuviae. Boletim do Museu Municipal do Funchal (História Natural) 13: 197–204.

    Google Scholar 

  • Bouchard, R. W. & L. C. Ferrington Jr., 2009. Winter growth, development, and emergence of Diamesa mendotae (Diptera: Chironomidae) in Minnesota streams. Environmental Entomology 38: 250–259.

    Article  Google Scholar 

  • Caldwell, B. A., 1997. The American Chaetocladius stamfordi (Johannsen), a synonym of C. piger (Goetghebuer) from the Palaearctic (Diptera: Chironomidae). Aquatic Insects 19: 117–122.

    Article  Google Scholar 

  • Chao, A., 1984. Non-parametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11: 265–270.

    Google Scholar 

  • Coffman, W. & C. de la Rosa, 1998. Taxonomic composition and temporal organization of tropical and temperate species assemblages of lotic chironomidae. Journal of the Kansas Entomological Society 71: 388–406.

    Google Scholar 

  • Erickson, T. R. & H. Stefan, 2000. Linear air/water temperature correlations for streams during open water periods. Journal of Hydrological Engineering 5: 317–321.

    Article  Google Scholar 

  • Ferrington Jr., L. C., 2000. Hibernal emergence patterns of Chironomidae in lotic habitats of Kansas versus ambient air and water temperatures. In Hoffrichter, O. (ed.), Late 20th Century Research on Chironomidae. Shaker Verlag, Aachen: 375–382.

    Google Scholar 

  • Ferrington Jr., L. C. & M. B. Berg, 2019. Chapter 27: Chironomidae. In Merritt, R. W., K. W. Cummins & M. B. Berg (eds), An Introduction to the Aquatic Insects of North America, 5th ed. Kendall Hunt Publishing Company, Dubuque: 1119–1274.

    Google Scholar 

  • Ferrington Jr., L. C., M. A. Blackwood, C. A. Wright, N. H. Crisp, J. L. Kavanaugh & F. J. Schmidt, 1991. A protocol for using surface-floating pupal exuviae of Chironomidae for rapid bioassessment of changing water quality. In Peters, N. E. & D. E. Walling (eds), Sediment and Stream Water Quality in a Changing Environment: Trends and Explanation International Association of Hydrological Science Press. UK, Wallingford: 181–190.

    Google Scholar 

  • Ferrington, Jr, L. C., D. Hansen, B. Karns & R. W. Bouchard, 2010. Longevities of Diamesa mendotae Muttkowski, a hibernal emerging species of Diamesinae (Diptera: Chironomidae). In Ferrington, Jr, L. C. (ed), Proceedings of the XV International Symposium on Chironomidae. Chironomidae Research Group, University of Minnesota, Saint Paul, Minnesota: 22–29.

  • Hintze, J., 2007. NCSS and PASS. Number Cruncher Statistical Systems, Kaysville.

    Google Scholar 

  • Højsgaard, S. & U. Halekoh, 2018. doBy: Groupwise Statistics, LSmeans, Linear Contrasts, Utilities. R package version 4.6-2. https://CRAN.R-project.org/package=doBy.

  • Kanno, Y., J. C. Vokoun & B. H. Letcher, 2014. Paired stream-air temperature measurements reveal fine-scale thermal heterogeneity within headwater brook trout stream networks. River Research and Applications 30: 745–755.

    Article  Google Scholar 

  • Krider, L. A., J. A. Magner, J. Perry, B. Vondracek & L. C. Ferrington Jr., 2013. Air water temperature relationships in the trout streams of southeastern Minnesota’s carbonate-sandstone landscape. Journal of the American Water Resources Association 00: 1–12.

    Google Scholar 

  • Lindegaard, C. & K. P. Brodersen, 1995. Distribution of Chironomidae (Diptera) in the river continuum. In Cranston, P. S. (ed.), Chironomids: from genes to ecosystems. CRISO, East Melbourne: 257–271.

    Google Scholar 

  • Luhmann, A. J., M. D. Covington, A. J. Peters, S. C. Alexander, C. T. Anger, J. A. Green, A. C. Runkel & E. C. Alexander Jr., 2011. Classification of thermal patterns at karst springs and cave streams. Ground Water 49: 324–335.

    Article  CAS  Google Scholar 

  • Marine-on-St. Croix Watershed Management Organization, Carnelian-Marine Watershed District and New Scandia Township, 2003. Lower St. Croix River Spring Creek Stewardship Plan.

  • Marziali, L. & B. Rossaro, 2013. Response of chironomid species (Diptera, Chironomidae) to water temperature: effects on species distribution in specific habitats. Journal of Entomological and Acarological Research 45: 73–90.

    Article  Google Scholar 

  • Mazack, J. E., 2013. Emergence, survival and longevity of Diamesa mendotae Muttkowski (Dipter: Chironomidae) in groundwater-fed streams. M.S Thesis University of Minnesota.

  • Morrill, J. C., R. C. Bales & M. H. Conklin, 2005. Estimating stream temperature from air temperature: Implications for future water quality. Journal of Environmental Engineering 131: 139–146.

    Article  CAS  Google Scholar 

  • Pilgrim, J., X. Fang & H. Stefan, 1998. Stream temperature correlations with air temperatures in Minnesota: Implications for climate warming. Journal of the American Water Resources Association 34: 1109–1121.

    Article  CAS  Google Scholar 

  • Preud’homme, E. B & S. G. Heinz, 1992. Relationship Between Water Temperatures and Air Temperatures for Central U.S. Streams. St. Anthony Falls Hydraulic Laboratory. Retrieved from the University of Minnesota Digital Conservancy. http://hdl.handle.net/11299/108663.

  • R Studio Team, 2015. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA. URL http://www.rstudio.com/.

  • Rossaro, B., 1991. Chironomids and water temperature. Aquatic Insects 13: 87–98.

    Article  Google Scholar 

  • Sæther, O. A., 1969. Some Nearctic Podonominae, Diamesinae and Orthocladiinae (Diptera: Chironomidae). Bulletin of the Fisheries Research Board of Canada 170: 1–154.

    Google Scholar 

  • Sæther, O. A., 1975. Nearctic and Palaearctic Heterotrissocladius (Diptera: Chironomidae). Bulletin of the Fisheries Research Board of Canada 193: 1–67.

    Google Scholar 

  • Sæther, O. A., 1977. Taxonomic studies on Chironomidae: Nanocladius, Pseudochironomus, and the Harnischia complex. Bulletin of the Fisheries Research Board of Canada 196: 1–143.

    Google Scholar 

  • Sæther, O. A., 1990. A review of the genus Limnophyes Eaton from the Holarctic and Afrotropical regions (Diptera: Chironomidae, Orthocladiinae). Entomologica Scandinavica, Supplement 35: 1–139.

    Google Scholar 

  • Sealock, A. W. & L. C. Ferrington, Jr., 2008. Key and Descriptions of the Chironomidae Pupal Exuviae of Hardwood Creek, near Hugo, Minnesota. Unpublished master’s thesis, University of Minnesota, St. Paul, USA.

  • Sherry, V., 2016. Trout Stream Habitat at Minnesota Valley NWR. Poster presented at the Minnesota Valley National Wildlife Refuge 40th Birthday Party, Bloomington, MN.

  • Simpson, K. W., R. W. Bode & P. Albu, 1983. Keys for the genus Cricotopus adapted from “Revision der Gattung Cricotopus van der Wulp und ihrer Verwandten (Diptera, Chironomidae)” by M. Hirvenoja. New York State Museum Bulletin 450: 1–133.

    Google Scholar 

  • Soponis, O. A., 1977. A revision of the Nearctic species of Orthocladius (Orthocladius) Van Der Wulp (Diptera: Chironomidae). Memoirs of the Entomological Society of Canada 109: 1–187.

    Article  Google Scholar 

  • Thienemann, A., 1954. Chironomus. Leben, Verbreitung und wirtshaftliche Bedeutung der Chironomiden. Binnengewasser 20: 1–834.

    Google Scholar 

  • Vannote, R. & B. Sweeney, 1980. Geographic Analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. The American Naturalist 115: 667–695.

    Article  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Vondracek, B., 2012. Quality Assessments and Restoration Potential of Groundwater Fed Streams within the Watersheds of Minnesota Valley National Wildlife Refuge Final Report. U. S. Geological Survey, Minnesota Cooperative Fish and Wildlife Research Unit.

  • Wiederholm, T., 1986. Chironomidae of the Holarctic region: Part 2. Pupae. Vol. 28. Entomologica Scandinavica, Sandby, Sweden. pp. 482.

Download references

Acknowledgements

This publication is based upon research supported by the Minnesota Agricultural Experiment Station, and the National Institute of Food and Agriculture, US Department of Agriculture, Grant MIN-17-031 to Leonard C. Ferrington, Jr., as Principal Investigator. Permission to conduct field work was given by the Minnesota Valley National Wildlife Refuge. Field assistance was provided by staff of the Minnesota Department of Natural Resources. The findings and conclusions in this article are those of the authors and do not necessarily represent the views of the US Fish and Wildlife Service. The datasets generated and analyzed during the current study are available in the Data Repository for the University of Minnesota (DRUM) https://doi.org/10.13020/752d-8970. We extend our gratitude to the two anonymous reviewers whose constructive comments and edits led to improvements in our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corrie Nyquist.

Additional information

Handling editor: Verónica Ferreira

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyquist, C., Vondracek, B. & Ferrington, L. The influence of an in-stream thermal gradient on chironomid emergence during winter. Hydrobiologia 847, 3153–3167 (2020). https://doi.org/10.1007/s10750-020-04281-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04281-3

Keywords

Navigation