Burrowing behavior protects a threatened freshwater mussel in drying rivers

Abstract

Reduced streamflow because of climate change presents a major threat to aquatic biodiversity in arid, semi-arid and Mediterranean climatic regions. Freshwater mussels are particularly sensitive to this threat, because of their sedentary nature and limited mobility as juveniles or adults. The freshwater mussel Westralunio carteri, which is endemic to south-western Australia, has undergone a 49% reduction in range in the last 50 years, and a drying climate presents substantial extinction risk, as highlighted by two recent cases of mass mortality. Experimental studies found that mussels respond to water emersion by first tracking receding water levels, then burrowing. The amount of horizontal movement by mussels was not affected by size, but smaller mussels initiated burrowing sooner and were also more likely to be predated if they remained on the surface. Burrowing and shading both significantly reduced mortality rate and increased survival time when mussels were exposed to drying; when shaded or allowed to burrow, mussels could survive at least 62 days out of water. Predicted future reductions in streamflow are likely to increase the mortality rate in W. carteri, but it may be possible to partially avert the adverse effects of drying rivers by increasing riparian shading.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Allen, D. C. & C. C. Vaughn, 2009. Burrowing behavior of freshwater mussels in experimentally manipulated communities. Journal of the North American Benthological Society 28: 93–100.

    Article  Google Scholar 

  2. Amyot, J. P. & J. Downing, 1997. Seasonal variation in vertical and horizontal movement of the freshwater bivalve Elliptio complanata (mollusca: Unionidae). Freshwater Biology 37: 345–354.

    Article  Google Scholar 

  3. Amyot, J. P. & J. A. Downing, 1998. Locomotion in Elliptio complanata (Mollusca: Unionidae): a reproductive function? Freshwater Biology 39: 351–358.

    Article  Google Scholar 

  4. Annie, J., B. Ann & R. Mats, 2013. Spatial distribution and age structure of the freshwater unionid mussels Anodonta anatina and Unio tumidus: implications for environmental monitoring. Hydrobiologia 711: 61–70.

    Article  Google Scholar 

  5. Archambault, J. M., W. G. Cope & T. J. Kwak, 2014. Survival and behaviour of juvenile unionid mussels exposed to thermal stress and dewatering in the presence of a sediment temperature gradient. Freshwater Biology 59: 601–613.

    Article  Google Scholar 

  6. Bates, D., M. Maechler, B. Bolker, S. Walker, R. H. B. Christensen, H. Singmann, B. Dai, F. Scheipl, G. Grothendieck & P. Green, 2017. Lme4: Linear mixed-effects models using ‘Eigen’ and S4. [R package lme4 version 1.1-13]. See https://cran.r-project.org/web/packages/lme4/index.html.

  7. Beatty, S., M. Allen, A. Lymbery, M. S. Jordaan, D. Morgan, D. Impson, S. Marr, B. Ebner & O. L. F. Weyl, 2017. Rethinking refuges: implications of climate change for dam busting. Biological Conservation 209: 188–195.

    Article  Google Scholar 

  8. Bogan, A. E., 2008. Global diversity of freshwater mussels (Mollusca, Bivalvia) in freshwater. Hydrobiologia 595: 139–147.

    Article  Google Scholar 

  9. Byrne, R. A. & R. F. McMahon, 1994. Behavioral and physiological responses to emersion in freshwater bivalves. American Zoologist 34: 194–204.

    Article  Google Scholar 

  10. Collas, F. P. L., K. R. Koopman, A. J. Hendriks, G. van der Velde, L. N. H. Verbrugge & R. S. E. W. Leuven, 2014. Effects of desiccation on native and non-native molluscs in rivers. Freshwater Biology 59: 41–55.

    Article  Google Scholar 

  11. Daniel, W. M. & K. M. Brown, 2014. The role of life history and behavior in explaining unionid mussel distributions. Hydrobiologia 734: 57–68.

    Article  Google Scholar 

  12. Davies, P. M., 2010. Climate change implications for river restoration in global biodiversity hotspots. Restoration Ecology 18: 261–268.

    Article  Google Scholar 

  13. Davis, J., A. Pavlova, R. Thompson & P. Sunnucks, 2013. Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change. Global Change Biology 19: 1970–1984.

    PubMed  PubMed Central  Article  Google Scholar 

  14. Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A. H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.

    PubMed  Article  Google Scholar 

  15. Ferreira-Rodríguez, N., B. Yoshihiro, O. V. Akiyamab, R. A. Aksenovac, M. C. Barnhart, Y. V. Bespalayac, A. E. Bogan, I. N. Bolotov, P. B. Budha, C. Clavijo, S. J. Clearwater, G. Darrigran, V. T. Do, K. Douda, E. Froufe, C. Gumpinger, L. Henrikson, C. L. Humphrey, N. A. Johnson, O. Klishko, M. W. Klunzinger, S. Kovitvadhi, U. Kovitvadhi, J. Lajtner, M. Lopes-Lima, E. A. Moorkens, S. Nagayama, K. Nagel, M. Nakano, J. N. Negishi, P. Ondina, P. Oulasvirta, V. Prié, N. Riccardi, M. Rudzīte, F. Sheldon, R. Sousa, D. L. Strayer, M. Takeuchi, J. Taskinen, A. Teixeira, J. S. Tiemann, M. Urbańska, S. Varandas, M. V. Vinarski, B. J. Wicklow, T. Zając & C. C. Vaughn, 2019. Research priorities for freshwater mussel conservation assessment. Biological Conservation 231: 77–87.

    Article  Google Scholar 

  16. Fox, J. & S. Weisberg, 2019. An R companion to applied regression, 3rd edn. Sage, Thousand Oaks, CA.

    Google Scholar 

  17. Gagnon, P. M., S. W. Golladay, W. K. Michener & M. C. Freeman, 2004. Drought responses of freshwater mussels (Unionidae) in coastal plain tributaries of the Flint River basin, Georgia. Journal of Freshwater Ecology 19: 667–679.

    Article  Google Scholar 

  18. Galbraith, H. S., D. E. Spooner & C. C. Vaughn, 2010. Synergistic effects of regional climate patterns and local water management on freshwater mussel communities. Biological Conservation 143: 1175–1183.

    Article  Google Scholar 

  19. Golladay, S. W., P. Gagnon, M. Kearns, J. M. Battle & D. W. Hicks, 2004. Response of freshwater mussel assemblages (Bivalvia:Unionidae) to a record drought in the gulf coastal plain of southwestern Georgia. Journal of the North American Benthological Society 23: 494–506.

    Article  Google Scholar 

  20. Gough, H. M., A. M. Gascho Landis & J. A. Stoeckel, 2012. Behaviour and physiology are linked in the responses of freshwater mussels to drought. Freshwater Biology 57: 2356–2366.

    Article  Google Scholar 

  21. Haag, W. R. & M. L. Warren, 2008. Effects of severe drought on freshwater mussel assemblages. Transactions of the American Fisheries Society 137: 1165–1178.

    Article  Google Scholar 

  22. Hancock, C. N., P. G. Ladd & R. H. Froend, 1996. Biodiversity and management of riparian vegetation in Western Australia. Forest Ecology and Management 85: 239–250.

    Article  Google Scholar 

  23. IPCC, 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, Cambridge: 582.

    Google Scholar 

  24. Jaeger, K. L., J. D. Olden & N. A. Pelland, 2014. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proceedings of the National Academy of Sciences USA 111: 13894–13899.

    CAS  Article  Google Scholar 

  25. Jiménez-Cisneros, B. E., T. Oki, N. W. Arnell, G. Benito, J. G. Cogley, P. Döll, T. Jiang & S. S. Mwakalila, 2014. Freshwater resources. In Field, C. B., V. R. Barros, et al. (eds), Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge: 229–269.

    Google Scholar 

  26. Klunzinger, M. & K. F. Walker, 2014. Westralunio carteri. The IUCN Red List of Threatened Species 2014: e.T23073A58526341.

  27. Klunzinger, M. W., S. J. Beatty, D. L. Morgan, A. M. Pinder & A. J. Lymbery, 2015. Range decline and conservation status of Westralunio carteri Iredale, 1934 (Bivalvia: Hyriidae) from south-western Australia. Australian Journal of Zoology 63: 127–135.

    Article  Google Scholar 

  28. Klunzinger, M. W., M. Lopes-Lima, A. Gomes-dos-Santos, E. Froufe, A.J. Lymbery & L. Kirkendale, 2020. Phylogeographic study of the West Australian freshwater mussel, Westralunio carteri, uncovers evolutionarily significant units that raise new conservation concerns. Hydrobiologia, in press.

  29. Larned, S. T., T. Datry, D. B. Arscott & K. Tockner, 2010. Emerging concepts in temporary-river ecology. Freshwater Biology 55: 717–738.

    Article  Google Scholar 

  30. Lopes-Lima, M., L. E. Burlakova, A. Y. Karatayev, K. Mehler, M. Seddon & R. Sousa, 2018. Conservation of freshwater bivalves at the global scale: diversity, threats and research needs. Hydrobiologia 810: 1–14.

    Article  Google Scholar 

  31. Lydeard, C., R. H. Cowie, W. F. Ponder, A. E. Bogan, P. Bouchet, S. A. Clark, K. S. Cummings, T. J. Frest, O. Gargominy, D. G. Herbert, R. Hershler, K. E. Perez, B. Roth, M. Seddon, E. E. Strong & F. G. Thompson, 2004. The global decline of nonmarine mollusks. BioScience 54: 321–330.

    Article  Google Scholar 

  32. Magoulick, D. D. & R. M. Kobza, 2003. The role of refugia for fishes during drought: a review and synthesis. Freshwater Biology 48: 1186–1198.

    Article  Google Scholar 

  33. McMichael, D. F. & I. D. Hiscock, 1958. A monograph of the freshwater mussels (Mollusca: Pelecypoda) of the Australian region. Australian Journal Marine and Freshwater Research 9: 372–508.

    Article  Google Scholar 

  34. Milliman, J. D., K. L. Farnsworth, P. D. Jones, K. H. Xu & L. C. Smith, 2008. Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951–2000. Global and Planetary Change 62: 187–194.

    Article  Google Scholar 

  35. Mpelasoka, F., K. Hennessy, R. Jones & B. Bates, 2008. Comparison of suitable drought indices for climate change impacts assessment over Australia towards resource management. International Journal of Climatology 28: 1283–1292.

    Article  Google Scholar 

  36. Nakano, M., 2018. Survival duration of six unionid mussel species under experimental emersion. Hydrobiologia 809: 111–120.

    Article  Google Scholar 

  37. Negishi, J. N., H. Doi, I. Katano & Y. Kayaba, 2011. Seasonally tracking vertical and horizontal distribution of unionid mussels (Pronodularia japanensis): implications for agricultural drainage management. Aquatic Conservation: Marine and Freshwater Ecosystems 21: 49–56.

    Article  Google Scholar 

  38. Newton, T. J., S. J. Zigler & B. R. Gray, 2015. Mortality, movement and behaviour of native mussels during a planned water-level drawdown in the upper Mississippi river. Freshwater Biology 60: 1–15.

    Article  Google Scholar 

  39. Nichols, S. J. & D. A. Wilcox, 1997. Burrowing saves Lake Erie clams. Nature 389: 921.

    CAS  Article  Google Scholar 

  40. Petrone, K. C., J. D. Hughes, T. G. V. Niel & R. P. Silberstein, 2010. Streamflow decline in southwestern Australia, 1950–2008. Geophysical Research Letters 37: L11401.

    Article  Google Scholar 

  41. Core Team, R., 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  42. Saarinen, M. & J. Taskinen, 2003. Burrowing and crawling behaviour of three species of Unionidae in Finland. Journal of Molluscan Studies 69: 81–86.

    Article  Google Scholar 

  43. Schewe, J., J. Heinke, D. Gerten, I. Haddeland, N. W. Arnell, D. B. Clark, R. Dankers, S. Eisner, B. M. Fekete, F. J. Colón-González, S. N. Gosling, H. Kim, X. Liu, Y. Masaki, F. T. Portmann, Y. Satoh, T. Stacke, Q. Tang, Y. Wada, D. Wisser, T. Albrecht, K. Frieler, F. Piontek, L. Warszawski & P. Kabat, 2014. Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences USA 111: 3245–3250.

    CAS  Article  Google Scholar 

  44. Schwalb, A. N. & M. T. Pusch, 2007. Horizontal and vertical movements of unionid mussels in a lowland river. Journal of the North American Benthological Society 26: 261–272.

    Article  Google Scholar 

  45. Shanon, R. & R. W. Mendyk, 2009. Aquatic foraging behavior and freshwater mussel (Velesunio sp.) predation by Varanus panoptes panoptes in central-western Queensland. Biawak 3: 85–87.

    Google Scholar 

  46. Silberstein, R. P., S. K. Aryal, J. Durrant, M. Pearcey, M. Braccia, S. P. Charles, L. Boniecka, G. A. Hodgson, M. A. Bari, N. R. Viney & D. J. McFarlane, 2012. Climate change and runoff in south-western Australia. Journal of Hydrology 475: 441–455.

    Article  Google Scholar 

  47. Storey, A. W. & H. D. Edward, 1989. The freshwater mussel, Westralunio carteri Iredale, as a biological monitor of organochlorine pesticides. Australian Journal of Marine and Freshwater Research 40: 587–593.

    Article  Google Scholar 

  48. Strayer, D. L. & D. Dudgeon, 2010. Freshwater biodiversity conservation: recent progress and future challenges. Journal of the North American Benthological Society 29: 344–358.

    Article  Google Scholar 

  49. Suppiah, R., K. J. Hennessy, P. H. Whetton, K. L. Mcinnes, I. Macadam, J. M. Bathols, J. H. Ricketts & C. M. Page, 2007. Australian climate change projections derived from simulations performed for the IPCC 4th assessment report. Australian Meteorological Magazine 56: 131–152.

    Google Scholar 

  50. Therneau, T. M., 2020. Mixed-effects Cox models [R package coxme version 2.2-13]. See https://cran.r-project.org/web/packages/coxme/index.html.

  51. Uryu, Y., K. Iwasaki & M. Hinoue, 1996. Laboratory experiments on behaviour and movement of a freshwater mussel, Limnoperna fortunei (Dunker). Journal of Molluscan Studies 62: 327–341.

    Article  Google Scholar 

  52. Vaughn, C. C., 2018. Ecosystem services provided by freshwater mussels. Hydrobiologia 810: 15–27.

    Article  Google Scholar 

  53. Vaughn, C. C., C. L. Atkinson & J. P. Julian, 2015. Drought-induced changes in flow regimes lead to long-term losses in mussel-provided ecosystem services. Ecology and Evolution 5: 1291–1305.

    PubMed  PubMed Central  Article  Google Scholar 

  54. Vestjens, W. J. M., 1973. Feeding of white ibis on freshwater mussels. EMU 73: 73.

    Google Scholar 

  55. Vörösmarty, C. J., P. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan & C. R. Liermann, 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561.

    PubMed  Article  CAS  Google Scholar 

  56. Walker, K. F., 1981. Ecology of freshwater mussels in the River Murray. Australian Water Resources Council Technical Paper 63, Canberra, ACT: 119 pp.

  57. Walker, K. F., H. A. Jones & M. W. Klunzinger, 2014. Bivalves in a bottleneck: taxonomy, phylogeography and conservation of freshwater mussels (Bivalvia: Unionoida) in Australasia. Hydrobiologia 735: 61–79.

    Article  Google Scholar 

  58. Walters, A. D. & N. B. Ford, 2013. Impact of drought on predation of a state-threatened mussel, Potamilus amphichaenus. The Southwestern Naturalist 58: 479–481.

    Article  Google Scholar 

  59. Woollard, P., W. J. M. Vestjens & L. MacLean, 1978. The ecology of the eastern water rat Hydromys chrysogaster at Griffith, N.S.W.: food and feeding habits. Australian Wildlife Research 5: 59–73.

    Article  Google Scholar 

Download references

Acknowledgements

This research formed part of PhD degree fulfillments at Murdoch University for Le Ma and Michael Klunzinger. Funding was provided by the Holsworth Wildlife Research Endowment, the Australian Wildlife Society and the Swan River Trust. The authors declare no conflicts of interest. Permits and exemptions for all research were obtained from Western Australian Departments of Biodiversity, Conservation and Attractions and Primary Industries and Regional Development. Thanks to James Keleher for assistance with field work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alan J. Lymbery.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Manuel P. M. Lopes-Lima, Nicoletta Riccardi, Maria Urbanska & Ronaldo G. Sousa / Biology and Conservation of Freshwater Molluscs

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lymbery, A.J., Ma, L., Lymbery, S.J. et al. Burrowing behavior protects a threatened freshwater mussel in drying rivers. Hydrobiologia (2020). https://doi.org/10.1007/s10750-020-04268-0

Download citation

Keywords

  • Westralunio carteri
  • Mass mortality
  • Climate change
  • Drought
  • Extinction