Skip to main content

Advertisement

Log in

Food web structure of three Mediterranean stream reaches along a gradient of anthropogenic impact

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Anthropogenic impact can alter food web structure through changes in species interactions. In this study, we explored the food web of three Mediterranean stream reaches (two seasonal and one permanent) along an anthropogenic impact gradient to test the hypothesis that increasing impact simplifies food webs. To test this, we applied the isotopic (δ13C and δ15N) niche concept to compare reaches using isotopic metrics (isotopic richness, divergence, dispersion, evenness, and redundancy). The isotopic indices were useful to identify differences in food web architecture among the three reaches. The least impacted site had the highest isotopic richness, dispersion, and isotopic redundancy, suggesting higher ecological resilience at this site. The effect of disturbance in the remaining two sites was masked by the presence of invasive crayfish, which increased isotopic divergence and was responsible for higher food-chain length in the most impacted reach, but not in the moderately impacted reach. Consumers displayed generalistic feeding habits, with Bayesian mixing models indicating that they relied primarily on a mixture of periphyton, other macroinvertebrates, and to a lesser extent, detritus. Some taxa displayed changes in their dietary habitats depending on the site, indicating that the same type of taxa fed on distinct foods at each stream reach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acuña, V., M. Hunter & A. Ruhí, 2017. Managing temporary streams and rivers as unique rather than second-class ecosystems. Biological Conservation 211: 12–19.

    Google Scholar 

  • Álvarez, M. & I. Pardo, 2009. Dynamics in the trophic structure of the macroinvertebrate community in a Mediterranean, temporary stream. Aquatic Sciences 71: 202–213.

    Google Scholar 

  • APHA, 2012. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington, DC.

    Google Scholar 

  • Arcagni, M., A. Rizzo, L. M. Campbell, M. A. Arribére, R. Juncos, M. Reissig, K. Kyser, J. P. Barriga, M. Battini & S. R. Guevara, 2015. Stable isotope analysis of trophic structure, energy flow and spatial variability in a large ultra oligotrophic lake in Northwest Patagonia. Journal of Great Lakes Research 41: 916–925.

    Google Scholar 

  • Bateman, A. S. & S. D. Kelly, 2007. Fertilizer nitrogen isotope signatures. Isotopes in Environmental and Health Studies 43: 237–247.

    CAS  PubMed  Google Scholar 

  • Biggs, B. J. F. & M. E. Close, 1989. Periphyton biomass dynamics in gravel bed rivers: the relative effects of flows and nutrients. Freshwater Biology 22: 209–231.

    CAS  Google Scholar 

  • Biggs, B. J. & C. Kilroy, 2000. Stream periphyton monitoring manual. National Institute of Water and Atmospheric Research, Christchurch.

    Google Scholar 

  • Blanchette, M. L., A. M. Davis, T. D. Jardine & R. G. Pearson, 2014. Omnivory and opportunism characterize food webs in a large dry-tropics river system. Freshwater Science 33: 142–158.

    Google Scholar 

  • Broderius, C., 2013. Anthropogenically altered land and its effect on d15 N values in periphyton on a fourth order stream inUtah’s Cache Valley. Natural Resources and Environmental Issues 18: 61–69.

    Google Scholar 

  • Bunn, S. E., D. R. Barton, H. N. Hynes, G. Power & M. A. Pope, 1989. Stable isotope analysis of carbon flow in a tundra river system. Canadian Journal of Fisheries and Aquatic Sciences 46: 1769–1775.

    CAS  Google Scholar 

  • Bunn, S. E., P. M. Davies & T. D. Mosisch, 1999. Ecosystem measures of river health and their response to riparian and catchment degradation. Freshwater Biology 41: 333–345.

    Google Scholar 

  • Bunn, S. E., C. Leigh & T. D. Jardine, 2013. Diet-tissue fractionation of δ15N by consumers from streams and rivers. Limnology and Oceanography 58: 765–773.

    CAS  Google Scholar 

  • Cardinale, B. J., J. E. Duffy, A. Gonzalez, D. U. Hooper, C. Perrings, P. Venail, et al., 2012. Biodiversity loss and its impact on humanity. Nature 486: 59.

    CAS  PubMed  Google Scholar 

  • Ceneviva-Bastos, M., C. G. Montaña, C. M. Schalk, P. B. Camargo & L. Casatti, 2017. Responses of aquatic food webs to the addition of structural complexity and basal resource diversity in degraded Neotropical streams. Australian Ecology 42: 908–919.

    Google Scholar 

  • Chicharo, L. M. Z., F. Leitão, I. Máximo, R. Ben Hamadou, M. Moreira da Silva. 2009. Caracterização da Qualidade Ecológica da Água das Ribeiras do Algarve-Macroinvertebrados bentónicos como bioindicadores. Relatório de Monitorização Relativo ao ano de 2009.

  • Chicharo, L. M. Z., F. Leitão, I. Máximo, R. Ben Hamadou, M. Moreira da Silva & A. Furtado, 2010. Caracterização Sazonal da Qualidade Ecológica da Água das Ribeiras do Algarve: Ribeira de Quarteira/Algibre e Ribeira da Seixe. ICCE-International Center for Coastal Ecohydrology, Faro, Portugal.

    Google Scholar 

  • Coll, M., A. Schmidt, T. Romanuk & H. K. Lotze, 2011. Food-web structure of seagrass communities across different spatial scales and human impacts. PLoS ONE. https://doi.org/10.1371/journal.pone.0022591.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cucherousset, J. & S. Villeger, 2015. Quantifying the multiple facets of isotopic diversity: new metrics for stable isotope ecology. Ecological Indicators 56: 152–160.

    CAS  Google Scholar 

  • Cucherousset, J., S. Blanchet & J. D. Olden, 2012. Non-native species promote trophic dispersion of food webs. Frontiers in Ecology and the Environment 10: 406–408.

    Google Scholar 

  • Dézerald, O., D. S. Srivastava, R. Céréghino, J. F. Carrias, B. Corbara, V. F. Farjalla, et al., 2018. Functional traits and environmental conditions predict community isotopic niches and energy pathways across spatial scales. Functional Ecology 32: 2423–2434.

    Google Scholar 

  • Diebel, M. W. & M. J. V. Zanden, 2009. Nitrogen stable isotopes in streams: effects of agricultural sources and transformations. Ecological Applications 19: 1127–1134.

    PubMed  Google Scholar 

  • Dodds, W. K., S. M. Collins, S. K. Hamilton, J. L. Tank, S. Johnson, J. R. Webster, et al., 2014. You are not always what we think you eat: selective assimilation across multiple whole-stream isotopic tracer studies. Ecology 95: 2757–2767.

    Google Scholar 

  • Douglas, M. M., S. E. Bunn & P. M. Davies, 2005. River and wetland food webs in Australia’s wet-dry tropics: general principles and implications for management. Marine and Freshwater Research 56: 329–342.

    Google Scholar 

  • Estes, J. A., J. Terborgh, J. S. Brashares, M. E. Power, J. Berger, W. J. Bond, S. R. Carpenter, T. E. Essington, R. D. Holt, J. B. Jackson & R. J. Marquis, 2011. Trophic downgrading of planet Earth. Science 333: 301–306.

    CAS  PubMed  Google Scholar 

  • EU. (2005). Common Implementation Strategy for the Water Framework Directive (2000/60/EC) Guidance document no 13. Overall approach to the classification of ecological status and ecological potential.

  • Ficetola, G. F. M., E. Siesa, F. De Bernardi & E. Padoa-Schioppa, 2012. Complex impact of an invasive crayfish on freshwater food webs. Biodiversity and Conservation 21: 2641–2651.

    Google Scholar 

  • Finlay, J. C., 2004. Patterns and controls of lotic stable carbon isotope ratios. Limnology and Oceanography 49: 850–861.

    CAS  Google Scholar 

  • Finlay, J. C., M. E. Power & G. Cabana, 1999. Effects of water velocity on algal carbon isotope ratios: implications for river food web studies. Limnology and Oceanography 44: 1198–1203.

    Google Scholar 

  • France, R. L., 1995. Critical examination of stable isotope analysis as a means for tracing carbon pathways in stream ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 52: 651–656.

    Google Scholar 

  • France, R. L., 1996a. Carbon-13 conundrums: limitations and cautions in the use of stable isotope analysis in stream ecotonal research. Canadian Journal of Fisheries and Aquatic Sciences 53: 1916–1919.

    Google Scholar 

  • France, R. L., 1996b. Absence or masking of metabolic fractionations of 13C in a freshwater benthic food web. Freshwater Biology 36: 1–6.

    CAS  Google Scholar 

  • France, R., J. Holmquist, M. Chandler & A. Cattaneo, 1998. delta super (15) N evidence for nitrogen fixation associated with macroalgae from a seagrass-mangrove-coral reef system. Marine Ecology Progress Series 167: 297–299.

    CAS  Google Scholar 

  • García, L., W. F. Cross, I. Pardo & J. S. Richardson, 2017. Effects of landuse intensification on stream basal resources and invertebrate communities. Freshwater Science 36: 609–625.

    Google Scholar 

  • Gasith, A. & V. H. Resh, 1999. Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annual Review of Ecology, Evolution and Systematics 30: 51–81.

    Google Scholar 

  • González-Pérez, J. A., N. T. Jiménez-Morilloa, J. M. de la Rosa, G. Almendros & F. J. González-Vila, 2015. Pyrolysis-gas chromatography–isotope ratio mass spectrometryof polyethylene. Journal of Chromatography A 1388: 236–243.

    PubMed  Google Scholar 

  • Gray, C., D. J. Baird, S. Baumgartner, U. Jacob, G. B. Jenkins, E. J. O’Gorman, X. Lu, A. Ma, M. J. Pocock, N. Schuwirth, M. Thompson & G. Woodward, 2014. FORUM: ecological networks: the missing links in biomonitoring science. Journal of Applied Ecology 51: 1444–1449.

    Google Scholar 

  • Gutierrez-Yurrita, P. J. & C. Montes, 2001. Bioenergetics of juveniles of red swamp crayfish (Procambarus clarkii). Comparative Biochemistry and Physiology, Part A. Molecular and Integrative Physiology 130: 29–38.

    CAS  PubMed  Google Scholar 

  • Hamilton, S. K. & W. M. Lewis, 1992. Stable carbon and nitrogen isotopes in algae and detritus from the Orinoco River floodplain, Venezuela. Geochimica et Cosmochimica Acta 56: 4237–4246.

    CAS  Google Scholar 

  • Hamilton, S. K., J. L. Tank, D. F. Raikow, W. M. Wollheim, B. J. Peterson & J. R. Webster, 2001. Nitrogen uptake and transformation in a midwestern US stream: a stable isotope enrichment study. Biogeochemistry 54: 297–340.

    CAS  Google Scholar 

  • Ilhéu, M., J. M. Bernardo & S. Fernandes, 2007. Predation of invasive crayfish on aquatic vertebrates: the effect of Procambarus clarkii on fish assemblages in Mediterranean temporary streams. In Gherardi, F. (ed.), Biological Invaders in Inland Waters: Profiles, Distribution, and Threats. Springer, Dordrecht: 543–558.

    Google Scholar 

  • Ishikawa, N. F., H. Doi & J. C. Finlay, 2012. Global meta-analysis for controlling factors on carbon stable isotope ratios of lotic periphyton. Oecologia 170: 541–549.

    PubMed  Google Scholar 

  • Jackson, A. L., R. Inger, A. C. Parnell & S. Bearhop, 2011. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology 80: 595–602.

    Google Scholar 

  • Jackson, M. C., I. Donohue, A. L. Jackson, J. R. Britton, D. M. Harper & J. Grey, 2012. Population-level metrics of trophic structure based on stable isotopes and their application to invasion ecology. PLoS ONE. https://doi.org/10.1371/journal.pone.0031757.

    Article  PubMed  PubMed Central  Google Scholar 

  • Junker, B. H., 2008. Networks in biology. In Junker, B. H. & F. Schreiber (eds), Analysis of biological networks. Wiley, Hoboken (NJ): 3–14.

    Google Scholar 

  • Lauridsen, R. B., F. K. Edwards, W. F. Cross, G. Woodward, A. G. Hildrew & J. I. Jones, 2014. Consequences of inferring diet from feeding guilds when estimating and interpreting consumer resource stoichiometry. Freshwater Biology 59: 1497–1508.

    Google Scholar 

  • Layer, K., J. O. Riede, A. G. Hildrew & G. Woodward, 2010. Food web structure and stability in 20 streams across a wide ph gradient. Advances In Ecological Research, Academic Press 42: 265–299.

    Google Scholar 

  • Layman, C. A., D. A. Arrington, C. G. Montaña & D. M. Post, 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88: 42–48.

    PubMed  Google Scholar 

  • Layman, C. A., B. D. Araujo, R. Boucek, C. M. Hammerschlag-Peyer, E. Harrison, Z. R. Jud, P. Matich, A. E. Rosenblatt, J. J. Vaudo, L. A. Yeager & D. M. Post, 2012. Applying stable isotopes to examine food web structure: an overview of analytical tools. Biological Reviews 87: 545–562.

    PubMed  Google Scholar 

  • Ledger, M. E., L. E. Brown, F. K. Edwards, A. M. Milner & G. Woodward, 2013. Drought alters the structure and functioning of complex food webs. Nature Climate Change 3: 223.

    Google Scholar 

  • Lewis Jr., W. M., S. K. Hamilton, M. A. Rodriguez, J. F. Saunders III & M. A. Lasi, 2001. Food web analysis of the Orinoco floodplain based the aquatic food web of a tropical lowland stream based on production estimates and stable isotope data. Journal of the North American Benthological Society 20: 241–254.

    Google Scholar 

  • López-Rodríguez, M. J., J. M. Luzón-Ortega & J. M. Tierno de Figueroa, 2012a. On the biology of two high mountain populations of stoneflies (Plecoptera, Perlodidae) in the southern Iberian Peninsula. Limnetica 31: 205–212.

    Google Scholar 

  • López-Rodríguez, M. J., I. Peralta-Maraver, B. Gaetani, C. E. Sainz-Cantero, R. Fochetti & J. M. T. de Figueroa, 2012b. Diversity patterns and food web structure in a Mediterranean intermittent stream. International Review of Hydrobiology 97: 485–496.

    Google Scholar 

  • Macko, S. A., M. L. Fogel, P. E. Hare & T. C. Hoering, 1987. Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms. Chemical Geology 65: 79–92.

    CAS  Google Scholar 

  • McHugh, P. A., R. M. Thompson, H. S. Greig, H. J. Warburton & A. R. McIntosh, 2015. Habitat size influences food web structure in drying streams. Ecography 38: 700–712.

    Google Scholar 

  • McKane, R. B., L. C. Johnson, G. R. Shaver, K. J. Nadelhoffer, E. B. Rastetter, B. Fry, et al., 2002. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415: 68–71.

    CAS  PubMed  Google Scholar 

  • McNelly, C., S. M. Clinton & J. M. Erbe, 2006. Landscape variation in C sources of scraping primary consumers in streams. Journal of the North American Benthological Society 25: 787–799.

    Google Scholar 

  • McWilliam-Hughes, S., M. Jardine & R. A. Cunjak, 2009. Instream C sources for primary consumers in two temperate, oligotrophic rivers: possible evidence of bryophytes as a food source. Journal of the North American Benthological Society 28: 733–743.

    Google Scholar 

  • Merritt, R. K. & K. W. Cummins, 1996. An introduction to the aquatic insects of North America, 3rd ed. Dubuque Iowa, Kendall/Hunt Publishers.

    Google Scholar 

  • Mihuc, T. B., 1997. The functional trophic role of lotic primary consumers: generalist versus specialist strategies. Freshwater Biology 37: 455–462.

    Google Scholar 

  • Minagawa, M. & E. Wada, 1984. Stepwise enrichment of 15 N along food chains: further evidence and the relation between d15 N and animal age. Geochimica et Cosmochimica Acta 48: 1135–1140.

    CAS  Google Scholar 

  • Mor, J. R., A. Ruhí, E. Tornés, H. Valcárcel, I. Muñoz & S. Sabater, 2018. Dam regulation and riverine food-web structure in a Mediterranean river. Science of the Total Environment 625: 301–310.

    CAS  Google Scholar 

  • Mulholland, P. J., J. L. Tank, D. M. Sanzone, W. M. Wollheim, B. J. Peterson, J. R. Webster & J. L. Meyer, 2000. Food resources of stream macroinvertebrates determined by natural-abundance stable C and N isotopes and a 15 N tracer addition. Journal of the North American Benthological Society 19: 145–157.

    Google Scholar 

  • Nielsen, J. M., E. L. Clare, B. Hayden, M. T. Brett & P. Kratina, 2018. Diet tracing in ecology: method comparison and selection. Methods in Ecology and Evolution 9: 278–291.

    Google Scholar 

  • O’Gorman, E. J., J. E. Fitch & T. P. Crowe, 2012. Multiple anthropogenic stressors and the structural properties of food webs. Ecology 93: 441–448.

    PubMed  Google Scholar 

  • Osmond, C. B., N. Valaane, S. M. Haslam, P. Uotila & Z. Roksandic, 1981. Comparisons of δ13C values in leaves of aquatic macrophytes from different habitats in Britain and Finland; some implications for photosynthetic processes in aquatic plants. Oecologia 50: 117–124.

    CAS  PubMed  Google Scholar 

  • Palmer, S. M., D. Hope, M. F. Billett, J. J. Dawson & C. L. Bryant, 2001. Sources of organic and inorganic carbon in a headwater stream: evidence from carbon isotope studies. Biogeochemistry 52: 321–338.

    CAS  Google Scholar 

  • Parnell, A. & A. Jackson, 2013. siar: Stable Isotope Analysis in R. R package version 4.2. https://CRAN.R-project.org/package=siar.

  • Pascual, M. & J. A. Dunne (eds), 2006. Ecological Networks: Linking Structure to Dynamics in Food Webs. Oxford University Press, Oxford.

    Google Scholar 

  • Pearson, T. H. & R. Rosenberg, 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology 16: 229–311.

    Google Scholar 

  • Peipoch, M., E. Martí & E. Gacia, 2012. Variability in δ15N natural abundance of basal resources in fluvial ecosystems: a meta-analysis. Freshwater Science 31: 1003–1015.

    Google Scholar 

  • Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Annual review of ecology and systematics 18: 293–320.

    Google Scholar 

  • Pusey, B. J., A. H. Arthington, B. Stewart-Koster, M. J. Kennard & M. G. Read, 2010. Widespread omnivory and low temporal and spatial variation in the diet of fishes in a hydrologically variable northern Australian river. Journal of Fish Biology 77: 731–753.

    CAS  PubMed  Google Scholar 

  • R Core Team, 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria URL http://www.R-project.org/.

  • Rezanka, K. M. & A. E. Hershey, 2003. Examining primary producer–consumer interactions in a Lake Superior tributary using 15N-tracer, grazer-reduction, and nutrient-bioassay experiments. Journal of the North American Benthological Society 22: 371–387.

    Google Scholar 

  • Rosenfeld, J. S. & J. C. Roff, 1992. Examination of the carbon base in southern Ontario streams using stable isotopes. Journal of the North American Benthological Society 11: 1–10.

    Google Scholar 

  • Sabater, S., H. Guasch, A. M. Romaní, I. Muñoz & S. S. Cortés, 2006. Hydrology, light and the use of organic and inorganic materials as structuring factors of biological communities in Mediterranean streams. Limnetica 25: 335–348.

    Google Scholar 

  • Sabo, J. L., J. C. Finlay, T. Kennedy & D. M. Post, 2010. The role of discharge variation in scaling of drainage area and food chain length in rivers. Science 330: 965–967.

    CAS  PubMed  Google Scholar 

  • Sackett, W. M., W. R. Eckelmann, M. L. Bender & A. W. Bé, 1965. Temperature dependence of carbon isotope composition in marine plankton and sediments. Science (Washington, DC) 148: 235–237.

    CAS  Google Scholar 

  • Sánchez-Carmona, R., L. Encina, A. Rodríguez-Ruiz, M. V. Rodríguez-Sánchez & C. Granado-Lorencio, 2012. Food web structure in Mediterranean streams: exploring stabilizing forces in these ecosystems. Aquatic Ecology 46: 311–324.

    Google Scholar 

  • Schmidt, S. N., C. J. Harvey & M. J. Vander Zanden, 2011. Historical and contemporary trophic niche partitioning among Laurentian Great Lakes coregonines. Ecological Applications 3: 888–896.

    Google Scholar 

  • SNIRH, Sistema Nacional de Informação de Recursos Hídricos - http://www.snirhpt/. Accessed 05 December 2016.

  • Sroczyńska, K., M. Claro, A. Kruk, A. Wojtal-Frankiewicz, P. Range & L. Chícharo, 2017. Indicator macroinvertebrate species in a temporary Mediterranean river: Recognition of patterns in binary assemblage data with a Kohonen artificial neural network. Ecological Indicators 73: 319–330.

    Google Scholar 

  • Stewart, K.W. & B.P. Stark,1988. Nymphs of North American stonefly genera (Plecoptera). Entomological Society of America.

  • Stubbington, R., J. England, P. J. Wood & C. E. M. Sefton, 2017. Temporary streams in temperate zones: recognizing, monitoring and restoring transitional aquatic-terrestrial ecosystems. WIREs Water 4: e1223.

    Google Scholar 

  • Tachet, H., M. Bournaud, P. Richoux & P. Usseglio-Polatera, 2002. Invertébrés d’eau douce: systématique, biologie, écologie. CNRS Editions, Paris: 588.

    Google Scholar 

  • Tank, J. L., J. L. Meyer, D. M. Sanzone, P. J. Mulholland, J. R. Webster, B. J. Peterson & N. E. Leonard, 2000. Analysis of nitrogen cycling in a forest stream during autumn using a 15 N-tracer addition. Limnology and Oceanography 45: 1013–1029.

    CAS  Google Scholar 

  • Thompson, R. M., U. Brose, J. A. Dunne, R. O. Hall, S. Hladyz, R. L. Kitching & J. M. Tylianakis, 2012. Food webs: reconciling the structure and function of biodiversity. Trends in Ecology and Evolution 27: 689–697.

    PubMed  Google Scholar 

  • Tylianakis, J. M., T. Tscharntke & O. T. Lewis, 2007. Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445: 202.

    CAS  PubMed  Google Scholar 

  • Vanderklift, M. A. & S. Ponsard, 2003. Sources of variation in consumer-diet δ15N enrichment: a metaanalysis. Oecologia 136: 169–182.

    PubMed  Google Scholar 

  • Vannucchi, P. E., M.J. López-Rodríguez, J.M. Tierno de Figueroa & E. Gaino, 2013. Structure and dynamics of a benthic trophic web in a Mediterranean Seasonal Stream. https://doi.org/10.4081/jlimnol.2013.e51

  • Vannucchi, P. E., I. Peralta-Maraver, J. M. Tierno de Figueroa & M. J. López-Rodríguez, 2017. Dynamics of the macroinvertebrate community and food web of a Mediterranean stream. Journal of Freshwater Ecology 32: 229–245.

    Google Scholar 

  • Villéger, S., N. W. H. Mason & D. Mouillot, 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89: 2290–2301.

    PubMed  Google Scholar 

  • Wienke, C. & G. Fisher, 1990. Growth and stable carbon isotope composition of cold-water macroalgae in relation to light and temperature. Marine Ecology Progress Series 65: 283–292.

    Google Scholar 

  • Williams, D. D., 2006. The Biology of Temporary Waters. Oxford University Press, Oxford.

    Google Scholar 

  • Winterbourn, M. J., J. S. Rounick & A. G. Hildrew, 1986. Patterns of carbon resource utilization by benthic invertebrates in two river systems: a stable carbon isotope study. Archive fur Hydrobiologie 107: 349–361.

    CAS  Google Scholar 

  • Zanden, M. & J. B. Rasmussen, 2001. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46: 2061–2066.

    Google Scholar 

Download references

Acknowledgements

The authors specially acknowledge Paulo Zaragosa Pedro, Marta Ribeiro e Bruno Garcia from Laboratório de Análises Quimicas (LAQ) from University of Algarve for their technical support in chemical analysis of nutrients. We also acknowledge Alba Carmona Navarro from IRNAS-CSIC for her assistance with isotopic analysis. The following work was a part of the IMPACT project funded by Foundation for Science and Technology (FCT) of Portugal (ERA558IWRM/0003/2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Sroczyńska.

Additional information

Handling editor: María del Mar Sánchez-Montoya

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 447 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sroczyńska, K., Williamson, T.J., Claro, M. et al. Food web structure of three Mediterranean stream reaches along a gradient of anthropogenic impact. Hydrobiologia 847, 2357–2375 (2020). https://doi.org/10.1007/s10750-020-04263-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04263-5

Keywords

Navigation