Skip to main content
Log in

Intermediate-size cell dominance in the phytoplankton community of an eutrophic, estuarine ecosystem (Guadalhorce River, Southern Spain)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The size–abundance spectrum (SAS) of phytoplankton is controlled by the interplay of physical and biological factors whose particular relevance varies between ecosystems. Here we report the results of a study of phytoplankton SAS in a system of eight estuarine shallow, eutrophic lagoons (Guadalhorce river, South Spain). SAS were obtained through a combination of flow cytometry and image analysis microscopy techniques covering six orders of magnitude from picoplankton to microplankton. Cell numbers were classified into a log2 scale of cell volume to model the log–log relation between cell abundance (cells/mL) and cell volume (μm3). The resulting averaged phytoplankton SAS can be described by a log–log transformed, power model with a slope of – 0.62 (that is, there is an allometric relation between the size and abundance of cells). The distribution of biovolume (μm3/l) in broader size categories is characterized by the dominance of nanoplankton (67.4%), followed by microplankton (30.1%) and picoplankton (2.5%). The minor relative contribution of picoplankton to total biovolume can be explained by a combination of high and variable rates of nutrient inputs, light stress and grazing. The biomass dominance of intermediate-size cells (nanoplankton) is coherent with experimental findings describing the unimodal size scaling of growth rate, with maximum values centered in this size category.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acevedo-Trejos, E., G. Brandt, J. Bruggeman & A. Merico, 2015. Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean. Scientific Reports 5: 8918.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agawin, N. S. R., C. M. Duarte & S. Agustí, 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnology and Oceanography 45: 591–600.

    CAS  Google Scholar 

  • Aguilera, J., M. Victoria de Gálvez, R. Conde, E. Pérez-Rodríguez, B. Viñegla, R. Abdala, M. Segovia, E. Herrera & F. L. Figueroa, 2003. Series temporales de medida de radiación solar ultravioleta y fotosintética en Málaga. Actas Dermo-Sifiliográficas Elsevier Doyma 95: 25–31.

    Google Scholar 

  • Agustí, S. & M. Llabrés, 2007a. Solar Radiation-induced Mortality of Marine Pico-phytoplankton in the Oligotrophic Ocean†. Photochemistry and Photobiology John Wiley & Sons, Ltd (10.1111) 83: 793–801.

    PubMed  Google Scholar 

  • Batanero, G. L., E. León-Palmero, L. Li, A. J. Green, M. Rendón-Martos, C. A. Suttle & I. Reche, 2017. Flamingos and drought as drivers of nutrients and microbial dynamics in a saline lake. Scientific Reports Nature Publishing Group 7: 12173, http://www.nature.com/articles/s41598-017-12462-9.

    PubMed  PubMed Central  Google Scholar 

  • Bec, B., Y. Collos, P. Souchu, A. Vaquer, J. Lautier, A. Fiandrino, L. Benau, V. Orsoni & T. Laugier, 2011. Distribution of picophytoplankton and nanophytoplankton along an anthropogenic eutrophication gradient in French Mediterranean coastal lagoons. Aquatic Microbial Ecology 63: 29–45.

    Google Scholar 

  • Bell, T. & J. Kalff, 2001. The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depth. Limnology and Oceanography 46: 1243–1248.

    Google Scholar 

  • Blanco, J. M., F. Echevarría & C. M. García, 1994. Dealing with size-spectra: some conceptual and mathematical problems. Scientia Marina 58: 17–29.

    Google Scholar 

  • Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.

    Google Scholar 

  • Burns, C. W. & L. M. Galbraith, 2007. Relating planktonic microbial food web structure in lentic freshwater ecosystems to water quality and land use. Journal of Plankton Research 29: 127–139.

    CAS  Google Scholar 

  • Calder, W. A., 1983. Body size, mortality, and longevity. Journal of Theoretical Biology 102: 135–144.

    PubMed  Google Scholar 

  • Callieri, C., 2008. Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshwater Reviews 1: 1–28.

    Google Scholar 

  • Caroppo, C., 2000. The contribution of picophytoplankton to community structure in a Mediterranean brackish environment. Journal of Plankton Research 22: 381–397.

    Google Scholar 

  • Cavender-Bares, K. K., A. Rinaldo & S. W. Chisholm, 2001. Microbial size spectra from natural and nutrient enriched ecosystems. Limnology and Oceanography 46: 778–789.

    Google Scholar 

  • Cermeño, P., E. Marañón, J. Rodríguez & E. Fernández, 2005. Large-sized phytoplankton sustain higher carbon-specific photosynthesis than smaller cells in a coastal eutrophic ecosystem. Marine Ecology Progress Series 297: 51–60.

    Google Scholar 

  • Chisholm, S. W., 1992. Phytoplankton Size Primary Productivity and Biogeochemical Cycles in the Sea. Springer, Boston, MA: 213–237.

    Google Scholar 

  • Conejo-Orosa, T. & E. Moreno-Ostos, 2018. Estimación de cargas de nutrientes por aves acuáticas en las lagunas costera del paraje natural de la Desembocadura del Guadalhorce (Málaga). I Congreso de Jóvenes Investigadores del Mar.: 335–337.

  • Cózar, A., C. M. García & J. A. Gálvez, 2003. Analysis of plankton size spectra irregularities in two subtropical shallow lakes (Esteros del Iberá, Argentina). Canadian Journal of Fisheries and Aquatic Sciences 60: 411–420.

    Google Scholar 

  • Crouzet, P., J. Leonard, S. Nixon, Y. Rees, W. Parr, L. Laffon, J. Bøgestrand & P. Kristensen, 1999. Nutrients in European Ecosystems. European Environmental Agency, Copenhagen, Denmark.

    Google Scholar 

  • Echevarría, F., P. Carrillo, F. Jiménez, P. Sanchez-Castillo, L. Cruz-pizarro & J. Rodríguez, 1990. The size-abundance distribution and taxonomic composition of plankton in an oligotrophic, high mountain lake (La Caldera, Sierra Nevada, Spain). Journal of Plankton Research 12: 415–422.

    Google Scholar 

  • Falkowski, P. G. & M. J. Oliver, 2007. Mix and match: how climate selects phytoplankton. Nature Reviews Microbiology 5: 813–819.

    CAS  Google Scholar 

  • Fenchel, T., 1974. Intrinsic rate of natural increase: the relationship with body size. Oecologia 14: 317–326.

    PubMed  Google Scholar 

  • Finkel, Z. V., J. Beardall, K. J. Flynn, A. Quigg, T. A. V Rees & J. A. Raven, 2010. Phytoplankton in a changing world: cell size and elemental stoichiometry. Journal of Plankton Research 32: 119–137.

    CAS  Google Scholar 

  • Gaedke, U., 1992. The size distribution of plankton biomass in a large lake and its seasonal variability. Limnology and Oceanography 37: 1202–1220.

    Google Scholar 

  • Gaedke, U., A. Seifried & R. Adrian, 2004. Biomass Size Spectra and Plankton Diversity in a Shallow Eutrophic Lake. International Review of Hydrobiology 89: 1–20.

    Google Scholar 

  • Garcia-Pichel, F., 1994. A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnology and Oceanography 39: 1704–1717.

    Google Scholar 

  • García, C. M., F. Echevarría & F. X. Niell, 1995. Size structure of plankton in a temporary, saline inland lake. Journal of Plankton Research 17: 1803–1817.

    Google Scholar 

  • Gasol, J. M., R. Guerrero, & C. Pedró Alió, 1991. Seasonal variations in size structure and procaryotic dominance in sulfurous Lake Cisó. Limnology and Oceanography 36 (5):860–872.

    Google Scholar 

  • Garmendia, M., M. Revilla, J. Bald, J. Franco, A. Laza-Martínez, E. Orive, S. Seoane, V. Valencia & Á. Borja, 2011. Phytoplankton communities and biomass size structure (fractionated chlorophyll “a”), along trophic gradients of the Basque coast (northern Spain). Biogeochemistry 106: 243–263.

    CAS  Google Scholar 

  • Geider, R. J., T. Platt & J. A. Raven, 1986. Size dependence of growth and photosynthesis in diatoms: a synthesis. Marine Ecology Progress Series 30: 93–104.

    CAS  Google Scholar 

  • Glazier, D. S., 2009. Metabolic level and size scaling of rates of respiration and growth in unicellular organisms. Functional Ecology 23: 963–968.

    Google Scholar 

  • Glibert, P. M., T. M. Kana & K. Brown, 2013. From limitation to excess: the consequences of substrate excess and stoichiometry for phytoplankton physiology, trophodynamics and biogeochemistry, and the implications for modeling. Journal of Marine Systems 125: 14–28.

    Google Scholar 

  • Gobler, C. J., M. J. Renaghan & N. J. Buck, 2002. Impacts of nutrients and grazing mortality on the abundance of Aureococcus anophagefferens during a New York brown tide bloom. Limnology and Oceanography 47: 129–141.

    Google Scholar 

  • Gutiérrez Parejo, P., 2017. Estudio de la fracción orgánica del sedimento de cinco lagunas costeras de la desembocadura del río Guadalhorce. Encuentros en la Biología X: 243–246.

  • Hashimoto, S. & A. Shiomoto, 2002. Light utilization efficiency of size-fractionated phytoplankton in the subarctic Pacific, spring and summer 1999: high efficiency of large-sized diatom. Journal of Plankton Research 24: 83–87.

    Google Scholar 

  • Hillebrand, H., C.-D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Google Scholar 

  • Huete-Ortega, M., P. Cermeño, A. Calvo-Díaz & E. Marañón, 2012. Isometric size-scaling of metabolic rate and the size abundance distribution of phytoplankton. Proceedings of the Royal Society 279: 1815–1823.

    Google Scholar 

  • Huete-Ortega, M., E. Marañón, M. Varela & A. Bode, 2010. General patterns in the size scaling of phytoplankton abundance in coastal waters during a 10-year time series. Journal of Plankton Research 32: 1–14.

    CAS  Google Scholar 

  • Huete-Ortega, M., T. Rodríguez-Ramos, D. C. López-Sandoval, P. Cermeño, J. M. Blanco, R. L. Palomino, J. Rodríguez & E. Marañón, 2014. Distinct patterns in the size-scaling of abundance and metabolism in coastal and open-ocean phytoplankton communities. Marine Ecology Progress Series 515: 61–71.

    Google Scholar 

  • Irigoien, X., K. J. Flynn & R. P. Harris, 2005. Phytoplankton blooms: a “loophole” in microzooplankton grazing impact? Journal of Plankton Research 27: 313–321.

    Google Scholar 

  • Justić, D., N. N. Rabalais & R. E. Turner, 1995a. Stoichiometric nutrient balance and origin of coastal eutrophication. Marine Pollution Bulletin 30: 41–46.

    Google Scholar 

  • Justić, D., N. N. Rabalais, R. E. Turner & Q. Dortch, 1995b. Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuarine, Coastal and Shelf Science 40: 339–356.

    Google Scholar 

  • Kennison, R. L. & P. Fong, 2014. Extreme eutrophication in shallow estuaries and lagoons of California is driven by a unique combination of local watershed modifications that Trump variability associated with wet and dry seasons. Estuaries and Coasts 37: 164–179.

    CAS  Google Scholar 

  • Kiørboe, T., 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Advances in Marine Biology 29: 1–72.

    Google Scholar 

  • Koenings, J. P. & J. A. Edmundson, 1991. Secchi disk and photometer estimates of light regimes in Alaskan lakes: effects of yellow color and turbidity. Limnology and Oceanography 36: 91–105.

    Google Scholar 

  • Leentvaar, P., 1967. Observations in guanotrophic environments. Hydrobiologia 29: 441–489.

    Google Scholar 

  • Litchman, E., C. A. Klausmeier, O. M. Schofield & P. G. Falkwoski, 2007. The role of functional traits and trade-offs in structuring phytoplankton communities: Scaling from cellular to ecosystem level. Ecology Letters 10: 1170–1181.

    PubMed  Google Scholar 

  • Llabrés, M. & S. Agustí, 2006a. Picophytoplankton cell death induced by UV radiation: evidence for oceanic Atlantic communities. Limnology and Oceanography 51: 21–29.

    Google Scholar 

  • Lugoli, F., M. Garmendia, S. Lehtinen, P. Kauppila, S. Moncheva, M. Revilla, L. Roselli, N. Slabakova, V. Valencia, K. M. Dromph & A. Basset, 2012. Application of a new multi-metric phytoplankton index to the assessment of ecological status in marine and transitional waters. Ecological Indicators 23: 338–355.

    Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Google Scholar 

  • Maberly, S. C., L. King, M. M. Dent, R. I. Jones & C. E. Gibson, 2002. Nutrient limitation of phytoplankton and periphyton growth in upland lakes. Freshwater Biology 47: 2136–2152.

    Google Scholar 

  • Malone, T. C., 1980. Algal size. In Morris, I. (ed.), The Physiological Ecology of Phytoplankton. Blackwell, London: 433–465.

    Google Scholar 

  • Marañón, E., 2009. Phytoplankton size structure. In Steele, J. H., K. K. Turekian & S. A. Thorpe (eds), Encyclopedia of Ocean Sciences. Academic Press, Oxford: 4252–4256.

    Google Scholar 

  • Marañón, E., 2015. Cell size as a key determinant of phytoplankton metabolism and community structure. Annual Review of Marine Science 7: 241–264.

    PubMed  Google Scholar 

  • Marañón, E., P. Cermeño, M. Latasa & R. D. Tadonléké, 2012. Temperature, resources, and phytoplankton size structure in the ocean. Limnology and Oceanography 57: 1266–1278.

    Google Scholar 

  • Marañón, E., P. Cermeño, D. C. López-Sandoval, T. Rodríguez-Ramos, C. Sobrino, M. Huete-Ortega, J. M. Blanco & J. Rodríguez, 2013. Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. Ecology Letters 16: 371–379.

    PubMed  Google Scholar 

  • Moreno-Ostos, E., J. M. Blanco, S. Agustí, L. M. Lubián, V. Rodríguez, R. L. Palomino, M. Llabrés & J. Rodríguez, 2015. Phytoplankton biovolume is independent from the slope of the size spectrum in the oligotrophic Atlantic Ocean. Journal of Marine Systems 152: 42–50.

    Google Scholar 

  • Moreno-Ostos, E., A. Fernández, M. Huete-Ortega, B. Mouriño-Carballido, A. Calvo-Díaz, X. A. G. Morán & E. Marañón, 2011. Size-fractionated phytoplankton biomass and production in the tropical Atlantic. Scientia Marina CSIC Consejo Superior de Investigaciones Cientificas 75: 379–389.

    Google Scholar 

  • Neale, P. J., A. L. Pritchard & R. Ihnacik, 2014. UV effects on the primary productivity of picophytoplankton: biological weighting functions and exposure response curves of Synechococcus. Biogeosciences 11: 2883–2895.

    Google Scholar 

  • Nidzieko, N. J., 2018a. Allometric scaling of estuarine ecosystem metabolism. Proceedings of the National Academy of Sciences of the United States of America National Academy of Sciences 115: 6733–6738.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlidou, A., N. Simboura, E. Rousselaki, M. Tsapakis, K. Pagou, P. Drakopoulou, G. Assimakopoulou, H. Kontoyiannis & P. Panayotidis, 2015. Methods of eutrophication assessment in the context of the water framework directive: examples from the Eastern Mediterranean coastal areas. Continental Shelf Research 108: 156–168.

    Google Scholar 

  • Peters, R. H., 1983. The Ecological Implications of Body Size. Cambridge University Press, New York.

    Google Scholar 

  • Platt, T. & K. Denman, 1977. Organisation in the pelagic ecosystem. Helgoländer Wissenschaftliche Meeresuntersuchungen 30: 575–581.

    Google Scholar 

  • Platt, T., M. Lewis & R. Geider, 1984. Thermodynamics of the pelagic ecosystem: elementary closure conditions for biological production in the open ocean. In Fasham, M. J. R. (ed.), Flows of Energy and Materials in Marine Ecosystems. Springer, Boston: 49–84.

    Google Scholar 

  • Quiñones, R. A., T. Platt & J. Rodríguez, 2003. Patterns of biomass-size spectra from oligotrophic waters of the Northwest Atlantic. Progress in Oceanography 57: 405–427.

    Google Scholar 

  • Quintana, X. D., F. A. Comín & R. Moreno-Amich, 2002. Biomass-size spectra in aquatic communities in shallow fluctuating Mediterranean salt marshes (Emporda wetlands, NE Spain). Journal of Plankton Research 24: 1149–1161.

    Google Scholar 

  • Raven, A., Z. Finkel & A. Irwin, 2005. Picophytoplankton: bottom-up and top-down controls on ecology and evolution. Vie et Milieu 55: 209–215.

    Google Scholar 

  • Reul, A., M. Muñoz, F. Criado-Aldeanueva & V. Rodríguez, 2006. Spatial distribution of phytoplankton <13 μm in the Gulf of Cádiz in relation to water masses and circulation pattern under westerly and easterly wind regimes. Deep Sea Research Part II: Topical Studies in Oceanography 53: 1294–1313.

    Google Scholar 

  • Reynolds, C. S., 2006. The Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Google Scholar 

  • Rodriguez, J., F. Echevarria & F. Jimenez-Gomez, 1990. Physiological and ecological scalings of body size in an oligotrophic, high mountain lake (La Caldera, Sierra Nevada, Spain). Journal of Plankton Research 12: 593–599.

    Google Scholar 

  • Rodríguez, J., F. Jiménez-Gómez, J. M. Blanco & F. L. Figueroa, 2002. Physical gradients and spatial variability of the size structure and composition of phytoplankton in the Gerlache Strait (Antarctica). Deep-Sea Research Part II: Topical Studies in Oceanography 49: 693–706.

    Google Scholar 

  • Rodríguez, J. & W. Li, 1994. The size structure and metabolism of the pelagic ecosystem. Scientia Marina 58: 67–79.

    Google Scholar 

  • Rodríguez, J. & M. M. Mullin, 1986. Relation between biomass and body weight of plankton in a steady state oceanic ecosystem. Limnology and Oceanography 31: 361–370.

    Google Scholar 

  • Rodríguez, J., J. Tintoré, J. T. Allen, J. M. Blanco, D. Gomis, A. Reul, J. Ruiz, V. Rodríguez, F. Echevarria & F. Jiménez-Gómez, 2001. Mesoscale vertical motion and the size structure of phytoplankton in the ocean. Nature 410: 360–363.

    PubMed  Google Scholar 

  • Rodríguez, J., J. M. Blanco, F. Jiménez-Gómez, F. Echevarría, J. Gil, V. Rodríguez, J. Ruiz, B. Bautista & F. Guerrero, 1998. Patterns in the size structure of the phytoplankton community in the deep fluorescence maximum of the Alboran Sea (southwestern Mediterranean). Deep Sea Research Part I: Oceanographic Research Papers 45: 1577–1593.

    Google Scholar 

  • Roesler, C. S., C. W. Culbertson, S. M. Etheridge, R. Goericke, R. P. Kiene, L. G. Miller & R. S. Oremland, 2002. Distribution, production, and ecophysiology of Picocystis strain ML in Mono Lake, California. Limnology and Oceanography 47: 440–452.

    CAS  Google Scholar 

  • Rojo, C., G. Herrera, M. A. Rodrigo, M. J. Ortíz-Llorente & P. Carrillo, 2012. Mixotrophic phytoplankton is enhanced by UV radiation in a low altitude, P-limited Mediterranean lake. Hydrobiologia 698: 97–110.

    CAS  Google Scholar 

  • Rojo, C. & J. Rodríguez, 1994. Seasonal variability of phytoplankton size structure in a hypertrophic lake. Journal of Plankton Research 16: 317–335.

    Google Scholar 

  • Ryding, S.-O. & W. Rast, 1992. El control de la eutrofización en lagos y pantanos. https://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=QUV.xis&method=post&formato=2&cantidad=1&expresion=mfn=000893.

  • Schapira, M., M.-J. Buscot, T. Pollet, S. C. Leterme & L. Seuront, 2010. Distribution of picophytoplankton communities from brackish to hypersaline waters in a South Australian coastal lagoon. Saline Systems 6: 2.

    PubMed  PubMed Central  Google Scholar 

  • Segovia, B. T., C. D. Domingues, B. R. Meira, F. M. Lansac-Toha, P. Fermani, F. Unrein, L. M. Lobão, F. Roland, L. F. M. Velho & H. Sarmento, 2016. Coupling between heterotrophic nanoflagellates and bacteria in fresh waters: does latitude make a difference? Frontiers in Microbiology 7: 114.

    PubMed  PubMed Central  Google Scholar 

  • Sieburth, J. M., V. Smetacek & J. Lenz, 1978. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions 1. Limnology and Oceanography 23: 1256–1263.

    Google Scholar 

  • Smith, R. C., K. S. Baker & P. Dustan, 1981. Fluorometric techniques for the measurement of oceanic chlorophyll in the support of remote sensing. Western Journal of Emergency Medicine 14: 1–10.

    Google Scholar 

  • Sommaruga, R. & R. D. Robarts, 1997. The significance of autotrophic and heterotrophic picoplankton in hypertrophic ecosystems. FEMS Microbiology Ecology 24: 187–200.

    CAS  Google Scholar 

  • Somogyi, B., L. Vörös, K. Pálffy, G. Székely, C. Bartha & Z. G. Keresztes, 2014. Picophytoplankton predominance in hypersaline lakes (Transylvanian Basin, Romania). Extremophiles 18: 1075–1084.

    CAS  PubMed  Google Scholar 

  • Sousa, R., S. Dias & C. Antunes, 2007. Subtidal macrobenthic structure in the lower lima estuary, NW of Iberian Peninsula. Annales Zoologici Fennici 44: 303–313.

    Google Scholar 

  • Sprules, W. G. & M. Munawar, 1986. Plankton size spectra in relation to ecosystem productivity, size, and perturbation. Canadian Journal of Fisheries and Aquatic Sciences 43: 1789–1794.

    Google Scholar 

  • Steinberg, C. E. W., H. Schäfer & W. Beisker, 1998a. Do acid-tolerant cyanobacteria exist? Acta Hydrochimica et Hydrobiologica 26: 13–19.

    CAS  Google Scholar 

  • Steinberg, C. E. W., H. Schäfer, J. Tittel & W. Beisker, 1998b. Phytoplankton composition and biomass spectra created by flow cytometry and zooplankton composition in mining lakes of different states of acidification. In Geller, W., H. Klapper & W. Salomons W. (eds), Acidic Mining Lakes. Environmental Science. Springer, Berlin: 127–145.

    Google Scholar 

  • Stolte, W. & R. Riegman, 1995. Effect of phytoplankton cell size on transient-state nitrate and ammonium uptake kinetics. Microbiology 141: 1221–1229.

    CAS  Google Scholar 

  • Takamura, N. & Y. Nojiri, 1994. Picophytoplankton biomass in relation to lake trophic state and the TN:TP ratio of lake water in Japan. Journal of Phycology 30: 439–444.

    CAS  Google Scholar 

  • Thomas, C. M., R. Perissinotto & I. Kibirige, 2005. Phytoplankton biomass and size structure in two South African eutrophic, temporarily open/closed estuaries. Estuarine, Coastal and Shelf Science 65: 223–238.

    Google Scholar 

  • Verdy, A., M. Follows & G. Flierl, 2009. Optimal phytoplankton cell size in an allometric model. Marine Ecology Progress Series 379: 1–12.

    Google Scholar 

  • Vollenweider, R. A., F. Giovanardi, G. Montanari & A. Rinaldi, 1998. Characterization of the trophic conditions of marine coastal waters with special reference to the NW Adriatic Sea: proposal for a trophic scale, turbidity and generalized water quality index. Environmetrics 9: 329–357.

    CAS  Google Scholar 

  • Ward, B. A., E. Marañón, B. Sauterey, J. Rault & D. Claessen, 2017. The size dependence of phytoplankton growth rates: a trade-off between nutrient uptake and metabolism. American Naturalist 189: 170–177.

    PubMed  Google Scholar 

  • Wehr, J. D., 1989. Experimental tests of nutrient limitation in freshwater picoplankton. Applied and Environmental Microbiology 55: 1605–1611.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Witek, Z. & A. Krajewska-Soltys, 1989. Some examples of the epipelagic plankton size structure in high latitude oceans. Journal of Plankton Research 11: 1143–1155.

    Google Scholar 

Download references

Acknowledgements

We dedicate this paper to the memory of our colleague and friend Luis Lubián (Andalusian Marine Sciences Institute, CSIC), who always kindly supported our research. This study was supported by the Spanish Ministry of Economy and Competitiveness through grant CTM2014-53582-R. Sampling was conducted with permission from the Andalusian Environmental Authority (Consejería de Medio Ambiente y Ordenación del Territorio, Junta de Andalucía). We thank the CMOT staff for their support and help during surveys. We also thank Katja Aikas and Estela Rodríguez for their valuable assistance in field and laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge J. Montes-Pérez.

Additional information

Handling editor: Luigi Naselli-Flores

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montes-Pérez, J.J., Moreno-Ostos, E., Marañón, E. et al. Intermediate-size cell dominance in the phytoplankton community of an eutrophic, estuarine ecosystem (Guadalhorce River, Southern Spain). Hydrobiologia 847, 2241–2254 (2020). https://doi.org/10.1007/s10750-020-04251-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04251-9

Keywords

Navigation