Skip to main content
Log in

Potential of an estuarine salt marsh plant (Phragmites australis (Cav.) Trin. Ex Steud10751) for phytoremediation of bezafibrate and paroxetine

  • WETLAND ECOSYSTEMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the potential of a salt marsh plant and its rhizosphere microorganisms for the removal of two pharmaceutical compounds, bezafibrate and paroxetine, from estuarine environment. Plants were exposed for 7 days to a simplified estuarine medium, elutriate solution with or without sediment, doped with bezafibrate or paroxetine. Tests were done in absence and presence of nutrients or copper. Phragmites australis (Cav.) Trin. Ex Steud, alone or with the sediment microbial communities, contributed for pharmaceuticals removal. In the presence of P. australis, for paroxetine a 65% removal was observed. Removal increased up to 90% when sediment was present. For bezafibrate, removals reached ca. 47% in P. australis presence, increasing to ca. 70% when nutrients were added to the medium, indicating a good nutritional state can contribute for a higher compound removal. When Cu was added, 75% removal for bezafibrate and 95% removal for paroxetine were observed indicating the metal might influence the removal of the pharmaceuticals. Overall, the plant and its rhizosediments and associated microorganisms showed potential for pharmaceuticals removal from estuaries, eventually degrading the selected compounds, a feature requiring more research. Results indicate that phytoremediation could be a viable option for eliminating/diminishing the environmental impact of pharmaceutical compounds in estuarine areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Almeida, C. M. R., A. P. Mucha, M. F. C. Delgado, M. Isabel Caçador, A. A. Bordalo & M. T. S. D. Vasconcelos, 2008. Can PAHs influence Cu accumulation by salt marsh plants? Marine Environmental Research 66: 311–318.

    CAS  PubMed  Google Scholar 

  • Almeida, C. M. R., A. Claúdia Dias, A. P. Mucha, A. A. Bordalo & M. T. S. D. Vasconcelos, 2009. Study of the influence of different organic pollutants on Cu accumulation by Halimione portulacoides. Estuarine, Coastal and Shelf Science 85: 627–632.

    CAS  Google Scholar 

  • Almeida, R., A. P. Mucha, C. Teixeira, A. A. Bordalo & C. M. R. Almeida, 2013. Biodegradation of petroleum hydrocarbons in estuarine sediments: metal influence. Biodegradation 24: 111–123.

    CAS  PubMed  Google Scholar 

  • Aminot, Y., K. Le Menach, P. Pardon, H. Etcheber & H. Budzinski, 2016. Inputs and seasonal removal of pharmaceuticals in the estuarine Garonne River. Marine Chemistry 185: 3–11.

    CAS  Google Scholar 

  • Bai, X., A. Lutz, R. Carroll, K. Keteles, K. Dahlin, M. Murphy & D. Nguyen, 2018. Occurrence, distribution, and seasonality of emerging contaminants in urban watersheds. Chemosphere 200: 133–142.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barbosa, M. O., A. R. Ribeiro, N. Ratola, E. Hain, V. Homem, M. F. R. Pereira, L. Blaney & A. M. T. Silva, 2018. Spatial and seasonal occurrence of micropollutants in four Portuguese rivers and a case study for fluorescence excitation-emission matrices. Science of the Total Environment 644: 1128–1140.

    CAS  Google Scholar 

  • Brown, A. K., J. K. Challis, C. S. Wong & M. L. Hanson, 2015. Selective serotonin reuptake inhibitors and β-blocker transformation products may not pose a significant risk of toxicity to aquatic organisms in wastewater effluent-dominated receiving waters. Integrated Environmental Assessment and Management 11: 618–639.

    CAS  PubMed  Google Scholar 

  • Cantwell, M. G., D. R. Katz, J. C. Sullivan, D. Shapley, J. Lipscomb, J. Epstein, A. R. Juhl, C. Knudson & G. D. O’Mullan, 2018. Spatial patterns of pharmaceuticals and wastewater tracers in the Hudson River Estuary. Water Research 137: 335–343.

    CAS  PubMed  Google Scholar 

  • Carvalho, P. N., M. C. P. Basto & C. M. R. Almeida, 2012. Potential of Phragmites australis for the removal of veterinary pharmaceuticals from aquatic media. Bioresource Technology 116: 497–501.

    CAS  PubMed  Google Scholar 

  • Cunningham, V. L., D. J. C. Constable & R. E. Hannah, 2004. Environmental risk assessment of paroxetine. Environmental Science & Technology 38: 3351–3359.

    CAS  Google Scholar 

  • da Silva, M. N., A. P. Mucha, A. C. Rocha, C. Silva, C. Carli, C. R. Gomes & C. M. R. Almeida, 2014. Evaluation of the ability of two plants for the phytoremediation of Cd in salt marshes. Estuarine, Coastal and Shelf Science 141: 78–84.

    Google Scholar 

  • Dordio, A. V. & A. J. P. Carvalho, 2013. Organic xenobiotics removal in constructed wetlands, with emphasis on the importance of the support matrix. Journal of Hazardous Materials 252–253: 272–292.

    PubMed  Google Scholar 

  • Duarte, P., C. M. R. Almeida, J. P. Fernandes, D. Morais, M. Lino, C. R. Gomes, M. F. Carvalho & A. P. Mucha, 2019. Bioremediation of bezafibrate and paroxetine by microorganisms from estuarine sediment and activated sludge of an associated wastewater treatment plant. Science of the Total Environment 655: 796–806.

    CAS  Google Scholar 

  • Fernandes, J. P., C. M. R. Almeida, M. C. P. Basto & A. P. Mucha, 2015. Response of a salt marsh microbial community to antibiotic contamination. Science of the Total Environment 532: 301–308.

    CAS  Google Scholar 

  • Fernandes, J. P., C. M. R. Almeida, F. Andreotti, L. Barros, T. Almeida & A. P. Mucha, 2017. Response of microbial communities colonizing salt marsh plants rhizosphere to copper oxide nanoparticles contamination and its implications for phytoremediation processes. Science of the Total Environment 581–582: 801–810.

    Google Scholar 

  • Jelic, A., M. Gros, A. Ginebreda, R. Cespedes-Sánchez, F. Ventura, M. Petrovic & D. Barcelo, 2011. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Research 45: 1165–1176.

    CAS  PubMed  Google Scholar 

  • Kwon, J.-W. & K. L. Armbrust, 2008. Aqueous solubility, n-octanol–water partition coefficient, and sorption of five selective serotonin reuptake inhibitors to sediments and soils. Bulletin of Environmental Contamination and Toxicology 81: 128–135.

    CAS  PubMed  Google Scholar 

  • López-Serna, R. & M. Petrović, 2012. Occurrence and distribution of multi-class pharmaceuticals and their active metabolites and transformation products in the Ebro River basin (NE Spain). Science of the Total Environment 440: 280–289.

    Google Scholar 

  • Madureira, T. V., J. C. Barreiro, M. J. Rocha, E. Rocha, Q. B. Cass & M. E. Tiritan, 2010. Spatiotemporal distribution of pharmaceuticals in the Douro River estuary (Portugal). Science of the Total Environment 408: 5513–5520.

    CAS  Google Scholar 

  • Mucha, A. P., C. M. R. Almeida, C. M. Magalhães, M. T. S. D. Vasconcelos & A. A. Bordalo, 2011. Salt marsh plant-microorganism interaction in the presence of mixed contamination. International Biodeterioration and Biodegradation 65: 326–333.

    CAS  Google Scholar 

  • Oyetibo, G. O., K. Miyauchi, Y. Huang, M.-F. Chien, M. O. Ilori, O. O. Amund & G. Endo, 2017. Biotechnological remedies for the estuarine environment polluted with heavy metals and persistent organic pollutants. International Biodeterioration & Biodegradation 119: 614–625.

    CAS  Google Scholar 

  • Paíga, P., L. H. M. L. M. Santos, S. Ramos, S. Jorge, J. G. Silva & C. Delerue-Matos, 2016. Presence of pharmaceuticals in the Lis river (Portugal): sources, fate and seasonal variation. Science of the Total Environment 573: 164–177.

    Google Scholar 

  • Pereira, A. M. P. T., L. J. G. Silva, L. M. Meisel, C. M. Lino & A. Pena, 2014. Environmental impact of pharmaceuticals from Portuguese wastewaters: geographical and seasonal occurrence, removal and risk assessment. Environmental Research 136: 108–119.

    PubMed  Google Scholar 

  • Reis-Santos, P., M. Pais, B. Duarte, I. Caçador, A. Freitas, A. S. Vila Pouca, J. Barbosa, S. Leston, J. Rosa, F. Ramos, H. N. Cabral, B. M. Gillanders & V. F. Fonseca, 2018. Screening of human and veterinary pharmaceuticals in estuarine waters: a baseline assessment for the Tejo estuary. Marine Pollution Bulletin 135: 1079–1084.

    CAS  PubMed  Google Scholar 

  • Ribeiro, H., A. P. Mucha, C. Marisa, R. Almeida & A. A. Bordalo, 2013. Bacterial community response to petroleum contamination and nutrient addition in sediments from a temperate salt marsh. Science of the Total Environment 458–460: 568–576.

    Google Scholar 

  • Rocha, A. C. S., C. M. R. Almeida, M. C. P. Basto & M. T. S. D. Vasconcelos, 2015. Influence of season and salinity on the exudation of aliphatic low molecular weight organic acids (ALMWOAs) by Phragmites australis and Halimione portulacoides roots. Journal of Sea Research 95: 180–187.

    Google Scholar 

  • Sauvêtre, A. & P. Schröder, 2015. Uptake of carbamazepine by rhizomes and endophytic bacteria of Phragmites australis. Frontiers in Plant Science 6: 83.

    PubMed  PubMed Central  Google Scholar 

  • Sayen, S., C. Rocha, C. Silva, E. Vulliet, E. Guillon & C. M. R. Almeida, 2019. Enrofloxacin and copper plant uptake by Phragmites australis from a liquid digestate: single versus combined application. Science of the Total Environment 664: 188–202.

    CAS  Google Scholar 

  • Schröder, P., D. Daubner, H. Maier, J. Neustifter & R. Debus, 2008. Phytoremediation of organic xenobiotics – glutathione dependent detoxification in Phragmites plants from European treatment sites. Bioresource Technology 99: 7183–7191.

    PubMed  Google Scholar 

  • Silva, L. J. G., A. M. P. T. Pereira, L. M. Meisel, C. M. Lino & A. Pena, 2014. A one-year follow-up analysis of antidepressants in Portuguese wastewaters: occurrence and fate, seasonal influence, and risk assessment. Science of the Total Environment 490: 279–287.

    CAS  Google Scholar 

  • Sophia, A. & E. C. Lima, 2018. Removal of emerging contaminants from the environment by adsorption. Ecotoxicology and Environmental Safety 150: 1–17.

    Google Scholar 

  • Sousa, A. F. P. de, 2014. Otimização de um método de análise de poluentes emergentes (fármacos) em águas. Report for Chemistry Degree. Faculty of Sciences, University of Porto, Portugal.

  • Sousa, J. C. G., A. R. Ribeiro, M. O. Barbosa, C. Ribeiro, M. E. Tiritan, M. F. R. Pereira & A. M. T. Silva, 2019. Monitoring of the 17 EU Watch List contaminants of emerging concern in the Ave and the Sousa Rivers. Science of the Total Environment 649: 1083–1095.

    CAS  Google Scholar 

  • Sun, J., M.-H. Wang & Y.-S. Ho, 2012. A historical review and bibliometric analysis of research on estuary pollution. Marine Pollution Bulletin 64: 13–21.

    CAS  PubMed  Google Scholar 

  • Taheran, M., M. Naghdi, S. K. Brar, M. Verma & R. Y. Surampalli, 2018. Emerging contaminants: here today, there tomorrow! Environmental Nanotechnology, Monitoring & Management 10: 122–126.

    Google Scholar 

  • Talaya, A. F. C., 2015. Desarrollo de métodos de análisis de contaminantes emergentes (fármacos) en sedimentos para un estudio futuro de la influencia de las plantas de sapal en su distribución en ambientes estuarinos. Report for Chemistry Degree. ERAMUS Programme. Valencia University, Spain.

  • Tang, Y., X.-M. Li, Z.-C. Xu, Q.-W. Guo, C.-Y. Hong & Y.-X. Bing, 2014. Removal of naproxen and bezafibrate by activated sludge under aerobic conditions: kinetics and effect of substrates. Biotechnology and Applied Biochemistry 61: 333–341.

    CAS  PubMed  Google Scholar 

  • Thiele-Bruhn, S. & M.-O. Aust, 2004. Effects of pig slurry on the sorption of sulfonamide antibiotics in soil. Archives of Environmental Contamination and Toxicology 47: 31–39.

    CAS  PubMed  Google Scholar 

  • Thomas, K. V. & M. J. Hilton, 2004. The occurrence of selected human pharmaceutical compounds in UK estuaries. Marine Pollution Bulletin 49: 436–444.

    CAS  PubMed  Google Scholar 

  • Trovó, A. G., S. A. S. Melo & R. F. P. Nogueira, 2008. Photodegradation of the pharmaceuticals amoxicillin, bezafibrate and paracetamol by the photo-Fenton process – application to sewage treatment plant effluent. Journal of Photochemistry and Photobiology A: Chemistry 198: 215–220.

    Google Scholar 

  • US EPA, 1991. Evaluation of dredged material proposed for ocean disposal. Evaluation 228: 220–228.

    Google Scholar 

  • Yan, C., Y. Yang, J. Zhou, M. Nie, M. Liu & M. F. Hochella, 2015. Selected emerging organic contaminants in the Yangtze Estuary, China: a comprehensive treatment of their association with aquatic colloids. Journal of Hazardous Materials 283: 14–23.

    CAS  PubMed  Google Scholar 

  • Yang, Y., J. Fu, H. Peng, L. Hou, M. Liu & J. L. Zhou, 2011. Occurrence and phase distribution of selected pharmaceuticals in the Yangtze Estuary and its coastal zone. Journal of Hazardous Materials 190: 588–596.

    CAS  PubMed  Google Scholar 

  • Yu, J. T., E. J. Bouwer & M. Coelhan, 2006. Occurrence and biodegradability studies of selected pharmaceuticals and personal care products in sewage effluent. Agricultural Water Management 86: 72–80.

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by national funds through FCT—Foundation for Science and Technology within the scope of UIDB/04423/2020 and UIDP/04423/2020 and by the structured Program of R&D&I INNOVMAR—Innovation and Sustainability in the Management and Exploitation of Marine Resources, reference NORTE-01-0145-FEDER-000035, namely within the Research Line ECOSERVICES (Assessing the environmental quality, vulnerability and risks for the sustainable management of the NW coast natural resources and ecosystem services in a changing world) within the R&D Institution CIIMAR (Interdisciplinary Centre of Marine and Environmental Research), supported by the Northern Regional Operational Programme (NORTE2020), through the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Marisa R. Almeida.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Franziska Eller, Hans Brix, Brian K. Sorrell & Carlos A. Arias / Wetland ecosystems: functions and use in a changing climate

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 548 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, S., Correia, B., Fraga-Santiago, P. et al. Potential of an estuarine salt marsh plant (Phragmites australis (Cav.) Trin. Ex Steud10751) for phytoremediation of bezafibrate and paroxetine. Hydrobiologia 848, 3291–3304 (2021). https://doi.org/10.1007/s10750-020-04245-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04245-7

Keywords