Skip to main content

Advertisement

Log in

Impact of abiotic factors on microbialite growth (Great Salt Lake, Utah, USA): a tank experiment

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Microbialites are microbial communities that create a carbonate structure. They are abundant in the Great Salt Lake, a hypersaline lake in the arid Great Basin of the USA, where they contribute to overall primary production, seasonally up to 55%. While the microbial diversity of microbialites has been investigated, how abiotic factors affect the abundance of their primary constituents is not well understood. We examined how microbialite primary producers respond to varying levels of temperature, salinity, and nitrogen within ranges observed in the Great Salt Lake. All abiotic factors and their interactions significantly affected the maximum chlorophyll-a abundance, suggesting that these factors co-limit microbialite primary producers in the Great Salt Lake. Maximum chlorophyll-a concentrations increased with nitrogen additions and showed a parabolic relationship with salinity and temperature with peaks around 60 ppt and 20°C, respectively. While salinity had a strong effect on microbialite primary producers, we found that temperature and nitrogen were more impactful, accounting for 40 and 30% of the variance in maximum abundance, respectively, while salinity contributed just 15%. Our results show the importance of the interplay of abiotic factors on Great Salt Lake microbialites and highlight the need for increased study of benthic communities in inland saline lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data is available by contacting the corresponding author (kbailey9@nd.edu).

References

  • Alcorlo, P., A. Baltanas & C. Montes, 2001. Food-web structure in two shallow salt lakes in Los Monegros (NE Spain): energetic vs dynamic constraints. Hydrobiologia 466: 307–316.

    Google Scholar 

  • Arar, E. J. & G. B. Collins, 1997. Method 445.0: In Vitro Determination of Chlorophyll a and Pheophytin a in Marine and Freshwater Algae by Fluorescence. U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Barrett, K. L. & G. E. Belovsky, 2020. Invertebrates and phytoplankton: is salinity the driving factor? In Baxter, B. K. & J. K. Butler (eds), Great Salt Lake Biology: A Terminal Lake in a Time of Change. Springer, Dordrecht.

    Google Scholar 

  • Baskin, R. L., 2014. Occurrence and Spatial Distribution of Microbial Bioherms in Great Salt Lake, Utah. The University of Utah, Utah.

    Google Scholar 

  • Baulch, H. M., D. W. Schindler & M. A. Turner, 2005. Effects of warming on benthic communities in a boreal lake: implications of climate change. Limnology and Oceanography 50: 1377–1392.

    Google Scholar 

  • Belovsky, G. E., D. Stephens, C. Perschon, P. Birdsey, D. Paul, D. Naftz, R. Baskin, C. Larson, C. Mellison, J. Luft, R. Mosley, H. Mahon, J. Van Leeuwen & D. V. Allen, 2011. The Great Salt Lake Ecosystem (Utah, USA): long term data and a structural equation approach. Ecosphere 2: 1–40.

    Google Scholar 

  • Camacho, A. & R. de Wit, 2003. Effect of nitrogen and phosphorus additions on a benthic microbial mat from a hypersaline lake. Aquatic Microbial Ecology 32: 261–273.

    Google Scholar 

  • Cao, Y., S. Olsen, M. Florencia Gutierrez, S. Brucet, T. A. Davidson, W. Li, T. L. Lauridsen, M. Sondergaard & E. Jeppesen, 2017. Temperature effects on periphyton, epiphyton and epipelon under a nitrogen pulse in low-nutrient experimental freshwater lakes. Hydrobiologia 795: 267–279.

    CAS  Google Scholar 

  • Carozzi, A. V., 1962. Observations on algal biostromes in the Great Salt Lake, Utah. The Journal of Geology 70: 246–252.

    Google Scholar 

  • Caumette, P., R. Matheron, N. Raymond & J.-C. Relexans, 1994. Microbial mats in the hypersaline ponds of Mediterranean salterns (Salins-de-Giraud, France). FEMS Microbiology Ecology 13: 273–286.

    CAS  Google Scholar 

  • Centeno, C. M., O. Mejía & L. I. Falcón, 2016. Habitat conditions drive phylogenetic structure of dominant bacterial phyla of microbialite communities from different locations in Mexico. Revista de Biologia Tropical 64: 1057–1065.

    PubMed  Google Scholar 

  • Chiu, J. M. Y., V. Thiyagarajan, M. M. Y. Tsoi & P. Y. Qian, 2005. Qualitative and quantitative changes in marine biofilms as a function of temperature and salinity in summer and winter. Biofilms 2: 183–195.

    Google Scholar 

  • Collins, N., 1980. Population ecology of Ephydra cinerea Jones (Diptera: Ephydridae), the only benthic metazoan of the Great Salt Lake, USA. Hydrobiologia 68: 99–112.

    Google Scholar 

  • Cook, B. I., T. R. Ault & J. E. Smerdon, 2015. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Science Advances 1: e1400082.

    PubMed  PubMed Central  Google Scholar 

  • Diaz, P., M. C. Guerrero, P. Alcorlo, A. Baltanas, M. Florin & C. Montes, 1998. Anthropogenic perturbations to the trophic structure in a permanent hypersaline shallow lake: La Salada de Chiprana (north-eastern Spain). International Journal of Salt Lake Research 7: 187–210.

    Google Scholar 

  • Edgcomb, V. P., J. M. Bernhard, R. E. Summons, W. Orsi, D. Beaudoin & P. T. Visscher, 2014. Active eukaryotes in microbialites from Highborne Cay, Bahamas, and Hamelin Pool (Shark Bay), Australia. The ISME Journal 8: 418–429.

    CAS  PubMed  Google Scholar 

  • Edwards, E. C. & S. E. Null, 2019. The cost of addressing saline lake level decline and the potential for water conservation markets. Science of the Total Environment 651: 435–442.

    CAS  PubMed  Google Scholar 

  • Frank, M. G. & M. R. Conover, 2019. Threatened Habitat at Great Salt Lake: Importance of Shallow-Water and Brackish Habitats to Wilson’s and Red-Necked Phalaropes. The Condor Oxford University Press, Oxford.

    Google Scholar 

  • Guerrero, M. C. & R. de Wit, 1992. Microbial mats in the inland saline lakes of Spain. Limnetica 8: 197–204.

    Google Scholar 

  • Havemann, S. A. & J. S. Foster, 2008. Comparative characterization of the microbial diversities of an artificial microbialite model and a natural stromatolite. Applied and Environmental Microbiology 74: 7410–7421.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Havens, K. & E. Jeppesen, 2018. Ecological responses of lakes to climate change. WATER 10: 917.

    Google Scholar 

  • Herbst, D. B. & D. W. Blinn, 1998. Experimental mesocosm studies of salinity effects on the benthic algal community of a saline lake. Journal of Phycology 34: 772–778.

    Google Scholar 

  • Herbst, D. B. & T. J. Bradley, 1989. Salinity and nutrient limitations on growth of benthic algae from two alkaline salt lakes of the western Great Basin (USA). Journal of Phycology 25: 673–678.

    CAS  Google Scholar 

  • Hong, H. P. & J. K. Choi, 2015. Can the halophilic ciliate Fabrea salina be used as a bio-control of microalgae blooms in solar salterns? Ocean Science Journal 50: 529–536.

    CAS  Google Scholar 

  • Kirchman, D. L., 2016. Growth rates of microbes in the oceans. Annual Review of Marine Science 8: 285–309.

    PubMed  Google Scholar 

  • Larson, C. A. & G. E. Belovsky, 2013. Salinity and nutrients influence species richness and evenness of phytoplankton communities in microcosm experiments from Great Salt Lake, Utah, USA. Journal of Plankton Research 35: 1154–1166.

    Google Scholar 

  • Lee, K. H., H. J. Jeong, K. Lee, P. J. S. Franks, K. A. Seong, S. Y. Lee, M. J. Lee, S. Hyeon Jang, E. Potvin, A. Suk Lim, E. Y. Yoon, Y. D. Yoo, N. S. Kang & K. Y. Kim, 2019. Effects of warming and eutrophication on coastal phytoplankton production. Harmful Algae 81: 106–118.

    PubMed  Google Scholar 

  • Li, W., X. Xu, M. Fujibayashi, Q. Niu, N. Tanaka & O. Nishimura, 2016. Response of microalgae to elevated CO2 and temperature: impact of climate change on freshwater ecosystems. Environmental Science and Pollution Research International 23: 19847–19860.

    CAS  PubMed  Google Scholar 

  • Lind, L., M. S. Schuler, W. D. Hintz, A. B. Stoler, D. K. Jones, B. M. Mattes & R. A. Relyea, 2018. Salty fertile lakes: how salinization and eutrophication alter the structure of freshwater communities. Ecosphere 9: 1–19.

    Google Scholar 

  • Lindsay, M. R., C. Anderson, N. Fox, G. Scofield, J. Allen, E. Anderson, L. Bueter, S. Poudel, K. Sutherland, J. H. Munson-McGee, J. D. Van Nostrand, J. Zhou, J. R. Spear, B. K. Baxter, D. R. Lageson & E. S. Boyd, 2017. Microbialite response to an anthropogenic salinity gradient in Great Salt Lake, Utah. Geobiology 15: 131–145.

    CAS  PubMed  Google Scholar 

  • Lindsay, M. R., R. E. Johnston, B. K. Baxter & E. S. Boyd, 2019. Effects of salinity on microbialite-associated production in Great Salt Lake, Utah. Ecology 100: e02611.

    PubMed  Google Scholar 

  • Naftz, D., 2017. Inputs and internal cycling of nitrogen to a causeway influenced, hypersaline lake, Great Salt Lake, Utah, USA. Aquatic Geochemistry 23: 199–216.

    CAS  Google Scholar 

  • Norf, H. & M. Weitere, 2010. Resource quantity and seasonal background alter warming effects on communities of biofilm ciliates. FEMS Microbiology Ecology 74: 361–370.

    CAS  PubMed  Google Scholar 

  • Pei, G.-F., G.-X. Liu & Z.-Y. Hu, 2010. A comparative study of benthic algal colonization in shallow lakes of China. Journal of Freshwater Ecology 25: 403–411.

    CAS  Google Scholar 

  • Pinckney, J., H. W. Paerl & B. M. Bebout, 1995. Salinity control of benthic microbial mat community production in a Bahamian hypersaline lagoon. Journal of Experimental Marine Biology and Ecology 187: 223–237.

    CAS  Google Scholar 

  • Prieto-Barajas, C. M., E. Valencia-Cantero & G. Santoyo, 2018. Microbial mat ecosystems: structure types, functional diversity, and biotechnological application. Electronic Journal of Biotechnology 31: 48–56.

    Google Scholar 

  • R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Roberts, A. J. & M. R. Conover, 2014. Role of benthic substrate in waterbird distribution on Great Salt Lake, Utah. Waterbirds 37: 298–306.

    Google Scholar 

  • Roberts, A. J., M. R. Conover, J. Luft & J. Neill, 2013. Population fluctuations and distribution of staging Eared Grebes (Podiceps nigricollis) in North America. Canadian Journal of Zoology 91: 906–913.

    Google Scholar 

  • Ruvindy, R., R. A. White 3rd, B. A. Neilan & B. P. Burns, 2016. Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics. The ISME Journal 10: 183–196.

    CAS  PubMed  Google Scholar 

  • Scholz, B. & G. Liebezeit, 2012. Growth responses of 25 benthic marine Wadden Sea diatoms isolated from the Solthörn tidal flat (southern North Sea) in relation to varying culture conditions. Diatom Research 27: 65–73.

    Google Scholar 

  • Shadrin, N. V., 2018. The alternative saline lake ecosystem states and adaptive environmental management. Journal of Oceanology and Limnology 36: 2010–2017.

    Google Scholar 

  • Smith, M. D., S. E. Goater, E. S. Reichwaldt, B. Knott & A. Ghadouani, 2010. Effects of recent increases in salinity and nutrient concentrations on the microbialite community of Lake Clifton (Western Australia): are the thrombolites at risk? Hydrobiologia 649: 207–216.

    CAS  Google Scholar 

  • Stenger-Kovacs, C., E. Lengyel, K. Buczko, F. M. Toth, L. O. Crossetti, A. Pellinger, Z. Z. Doma & J. Padisak, 2014. Vanishing world: alkaline, saline lakes in Central Europe and their diatom assemblages. Inland Waters 4: 383–396.

    Google Scholar 

  • Stephens, D. W., 1990. Changes in lake levels, salinity and the biological community of Great Salt Lake (Utah, USA), 1847–1987. Hydrobiologia 197: 139–146.

    CAS  Google Scholar 

  • Stephens, D. W., 1998. Salinity-Induced Changes in the Aquatic Ecosystem of Great Salt Lake, Utah Utah Geological Association Guidebook 26. U.S. Geological Survey, Salt Lake City.

    Google Scholar 

  • Stephens, D. W. & D. M. Gillespie, 1976. Phytoplankton production in Great Salt Lake, Utah, and a laboratory study of algal response to enrichment. Limnology and Oceanography 21: 74–87.

    CAS  Google Scholar 

  • Stolz, J. F., 1990. Distribution of phototrophic microbes in the flat laminated microbial mat at Laguna Figueroa, Baja California, Mexico. BioSystems 23: 345–357.

    CAS  PubMed  Google Scholar 

  • Vadeboncoeur, Y. & M. E. Power, 2017. Attached algae: the cryptic base of inverted trophic pyramids in freshwaters. Annual Review of Ecology, Evolution, and Systematics 48: 255–279.

    Google Scholar 

  • Vadeboncoeur, Y., M. J. Vander Zanden & D. M. Lodge, 2002. Putting the lake back together: reintegrating benthic pathways into lake food web models. AIBS Bulletin 52: 44–54.

    Google Scholar 

  • Vadeboncoeur, Y., E. Jeppesen, M. J. V. Zanden, H.-H. Schierup, K. Christoffersen & D. M. Lodge, 2003. From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography 48: 1408–1418.

    Google Scholar 

  • van der Grinten, E., P. H. Arni, K. de Mutsert, C. Barranguet & W. Admiraal, 2005. Temperature- and light-dependent performance of the cyanobacterium Leptolyngbya foveolarum and the diatom Nitzschia perminuta in mixed biofilms. Hydrobiologia 548: 267–278.

    Google Scholar 

  • Villanueva, V. D., J. Font, T. Schwartz & A. M. Romani, 2011. Biofilm formation at warming temperature: acceleration of microbial colonization and microbial interactive effects. Biofouling 27: 59–71.

    CAS  Google Scholar 

  • Wieland, A. & M. Kühl, 2006. Regulation of photosynthesis and oxygen consumption in a hypersaline cyanobacterial mat (Camargue, France) by irradiance, temperature and salinity. FEMS Microbiology Ecology 55: 195–210.

    CAS  PubMed  Google Scholar 

  • Williams, W. D., 2002. Environmental threats to salt lakes and the likely status of inland saline ecosystems in 2025. Environmental Conservation 29: 154–167.

    Google Scholar 

  • Williams, W. D., A. J. Boulton & R. G. Taaffe, 1990. Salinity as a determinant of salt lake fauna: a question of scale. Hydrobiologia 197: 257–266.

    CAS  Google Scholar 

  • Wurtsbaugh, W. A., 1992. Food-web modification by an invertebrate predator in the Great Salt Lake (USA). Oecologia 89: 168–175.

    PubMed  Google Scholar 

  • Wurtsbaugh, W. A., 2009. Biostromes, brine flies, birds and the bioaccumulation of selenium in Great Salt Lake, Utah. Natural Resources and Environmental Issues 15: 1–13.

    Google Scholar 

  • Wurtsbaugh, W. A., 2018. Effects of eutrophication on birds in three bays of Great Salt Lake: A comparative analysis with Utah DWR Waterbird Survey Data. Utah Division of Forestry, Fire and State Lands, Cedar City.

    Google Scholar 

  • Wurtsbaugh, W. A., J. Gardberg & C. Izdepski, 2011. Biostrome communities and mercury and selenium bioaccumulation in the Great Salt Lake (Utah, USA). The Science of the Total Environment 409: 4425–4434.

    CAS  PubMed  Google Scholar 

  • Wurtsbaugh, W., C. Miller, S. Null, P. Wilcock, M. Hahnenberger & F. Howe, 2016. Impacts of water development on Great Salt Lake and the Wasatch Front. Utah State University, Logan.

    Google Scholar 

Download references

Acknowledgements

Field assistance and funding were provided by the Great Salt Lake Ecosystem Program, Utah Division of Wildlife Resources. M. Igleski and L. Herrera aided in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine L. Barrett.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling editor: Stefano Amalfitano

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, N.L., Barrett, K.L., Jones, S.E. et al. Impact of abiotic factors on microbialite growth (Great Salt Lake, Utah, USA): a tank experiment. Hydrobiologia 847, 2113–2122 (2020). https://doi.org/10.1007/s10750-020-04235-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04235-9

Keywords

Navigation