Fluctuations in plankton community structure of endorheic soda lakes of southeastern Transbaikalia (Russia)

Abstract

The aim of present research is to study the patterns of phyto- and zooplankton fluctuations in endorheic soda lakes (Uldz Gol-Torey Basin, southeastern Transbaikalia, Russia) under arid conditions because studied area is becoming increasingly arid. Plankton samples were collected in summer during time intervals with different lake water levels using standard hydrobiological methods. We detected four patterns of change in plankton communities with changing environmental conditions (increasing total dissolved solid, pH and temperature, and decreasing depth). The first pattern is characterized by a predominance of green algae, charophytes, diatoms and euglenophytes; the species composition and dominant zooplankton assemblage are the same in different years. The second pattern is characterized by a loss of cryptophyte and chrysophyte algae, a dominance of green and blue-green algae, a decrease in zooplankton species diversity, and an increased abundance of zooplankton, the dominant species are consistent over time. The third pattern exhibits marked decreases in phytoplankton diversity and density, a dominance of green algae and diatoms, a further decrease in the species richness of zooplankton, and increased abundance and biomass of some species. The fourth pattern is a marked by a reduction in plankton species diversity to a monospecific community.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Afonina, E. Y. & N. A. Tashlykova, 2018. Plankton community and the relationship with the environment in saline lakes of Onon-Torey Plain, Northeastern Mongolia. Saudi Journal of Biological Sciences 25(2): 399–408.

    PubMed  Article  PubMed Central  Google Scholar 

  2. Afonina, E. Yu. & N. A. Tashlykova, 2019. Influence of environmental factors on the structure of plankton communities in saline lakes at different water-fill phases. Moscow University Biological Sciences Bulletin 74(1): 1–6.

    Article  Google Scholar 

  3. Balushkina, E. B. & G. G. Vinberg, 1979. The relationship between body weight and length in planktonic animals. In Vinberg, V. V. (ed.), General Principles of Study of Aquatic Ecosystems. Nauka, Leningrad: 169–172 (in Russian).

    Google Scholar 

  4. Bazarova, B. B., N. A. Tashlykova, E. Yu. Afonina, A. P. Kuklin, P. V. Matafonov, G. Ts. Tsybekmitova, E. P. Gorlacheva, M. Ts. Itigilova, A. V. Afonin & M. N. Butenko, 2019. Long-term fluctuations of the aquatic ecosystems in the Onon-Torey Plain (Russia). Acta Ecologica Sinica 39: 157–165.

    Article  Google Scholar 

  5. Bazhenova, O. I., 2013. Modern dynamics of lake-fluvial systems of Onon-Torey High Plain (Southern Transbaikalia). Tomsk State University Bulletin 371: 171–177 (in Russian).

    Google Scholar 

  6. Boros, E. & M. Kolpakova, 2018. A review of the defining chemical properties of soda lakes and pans: an assessment on a large geographic scale of Eurasian inland saline surface waters. PLoS ONE 13(8): e0202205.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. Boros, E., Z. Horváth, G. Wolfram & L. Vörös, 2014. Salinity and ionic composition of the shallow astatic soda pans in the Carpathian Basin. Annales de Limnologie: International Journal of Limnology 50: 59–69.

    Article  Google Scholar 

  8. Comín, F. A., X. Rodó & P. Comín, 1992. Lake Gallocanta (Aragon, Ne. Spain), a paradigm of fluctuations at different scales of time. Limnetica 8: 79–86.

    Google Scholar 

  9. Comín, F. A., M. Cabrera & X. Rodó, 1999. Saline lakes: integrating ecology into their management future. Hydrobiologia 395(396): 241–251.

    Article  Google Scholar 

  10. Dalgaard, P., 2008. Introductory Statistics with R. Springer, New York.

    Google Scholar 

  11. Dokulil, M., 2013. Impact of climate warming on European inland waters. Inland Waters 4: 27–40.

    Article  Google Scholar 

  12. García, C. M. & F. X. Niell, 1993. Seasonal change in a saline temporary lake (Fuente de Piedra, southern Spain). Hydrobiologia 267: 211–223.

    Article  Google Scholar 

  13. García, C. M., R. García-Ruiz, R. Manuel, F. X. Niell & J. Lucena, 1997. Hydrological cycle and interannual variability of the aquatic community in a temporary saline lake (Fuente de Piedra, Southern Spain). Hydrobiologia 345: 131–141.

    Article  Google Scholar 

  14. Gasse, F., P. Barker, P. A. Gell, S. C. Fritz & F. Chalie, 1997. Diatom-inferred salinity in palaeolakes: an indirect tracer of climate change. Quaternary Science Reviews 16: 547–563.

    Article  Google Scholar 

  15. Guiry, M. D. & G. M. Guiry, 2020. Algaebase. World-wide electronic publication © 1996–2020. National University of Ireland, Galway [available on internet at http://www.algaebase.org/]. Accessed 10 January 2020.

  16. Hammer, U. T., 1986. Saline Lake Ecosystems of the World. Springer, Dordrecht.

    Google Scholar 

  17. Hammer, U. T., 1990. The effect of climate change of the salinity? Water levels and biota of Canadian prairie saline lakes. Internationale Vereinigung für Theoretische und Angewandte Limnologie 24: 321–326.

    Google Scholar 

  18. Hammer, M. L. & C. C. Appleton, 1991. Physical and chemical characteristics and phyllopod fauna of temporary pools in north-eastern Natal, RSA. Hydrobiologia 212: 95–104.

    Article  Google Scholar 

  19. Hammer, U. T., J. Shamess & R. C. Haynes, 1983. The distribution and abundance of algae in saline lakes of Saskatchewan, Canada. Hydrobiologia 105: 1–26.

    Article  Google Scholar 

  20. Harper, D. M., R. B. Childress, M. M. Harper, R. R. Boar, P. Hickley, S. C. Mills, N. Otieno, T. Drane, E. Vareschi, O. Nasirwa, W. E. Mwatha, J. P. E. C. Darlington & X. Escute-Gasulla, 2003. Aquatic biodiversity and saline lakes: Lake Bogoria National Reserve, Kenya. Hydrobiologia 500: 259–276.

    Article  Google Scholar 

  21. Horváth, Z., C. F. Vad, A. Tóth, K. Zsuga, E. Boros, L. Vörös & R. Ptacnik, 2014. Opposing patterns of zooplankton diversity and functioning along a natural 4 stress gradient: when the going gets tough, the tough get going. Oikos 123(4): 461–471.

    Article  Google Scholar 

  22. Horváth, Z., R. Ptacnik, C. F. Vad & J. M. Chase, 2019. Habitat loss over six decades accelerates regional and local biodiversity loss via changing landscape connectance. Ecology Letters 22: 1019–1027.

    PubMed  PubMed Central  Article  Google Scholar 

  23. Ionescu, V., M. Nǎstǎsescu, L. Spiridon & V. C. Bulgǎreanu, 1998. The biota of Romanian saline lakes on rock salt bodies: a review. International Journal of Salt Lake Research 7: 45–80.

    Google Scholar 

  24. Ivanova, M. B. & T. I. Kazantseva, 2006. Effect of water pH and total dissolved solids on the species diversity of pelagic zooplankton in lakes: a statistical analysis. Russian Journal of Ecology 37(4): 264–270.

    Article  Google Scholar 

  25. Jeppesen, E., S. Brucet, L. Naselli-Flores, E. Papastergiadou, K. Stefanidis, T. Nõges, P. Nõges, J. L. Attayde, T. Zohary, J. Coppens, T. Bucak, R. F. Menezes, F. R. S. Freitas, M. Kernan, M. Søndergaard & M. Beklioğlu, 2015. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750: 201–227.

    Article  Google Scholar 

  26. Kazanci, N., S. Girgin & M. Dügel, 2004. On the limnology of Salda Lake, a large and deep soda lake in southwestern Turkey: future management proposals. Aquatic Conservation: Marine and Freshwater Ecosystems 14: 151–162.

    Article  Google Scholar 

  27. Kiselev, I. A., 1969. Plankton of the Sea and Continental Reservoirs. Nauka, Leningrad (in Russian).

    Google Scholar 

  28. Krienitz, L., P. K. Dadheech & K. Kotut, 2013. Mass developments of the cyanobacteria Anabaenopsis and Cyanospira (Nostocales) in the soda lakes of Kenya: ecological and systematic implications. Hydrobiologia 703: 79–93.

    CAS  Article  Google Scholar 

  29. Kuklin, A. P., G. Ts. Tsybekmitova & E. P. Gorlacheva, 2013. State of lake ecosystems in Onon-Torei Plain in 1983–2011 (Eastern Transbaikalia). Arid Ecosystems 6(3): 122–130.

    Article  Google Scholar 

  30. Leira, M. & M. Cantonati, 2008. Effects of water-level fluctuations on lakes: an annotated bibliography. Hydrobiologia 613: 171–184.

    Article  Google Scholar 

  31. Leland, H. V. & W. R. Berkas, 1998. Temporal variation in plankton assemblages and physicochemistry of Devils Lake, North Dakota. Hydrobiologia 377: 57–71.

    CAS  Article  Google Scholar 

  32. Lengyel, E., A. W. Kovács, J. Padisák & C. Stenger-Kovács, 2015. Photosynthetic characteristics of the benthic diatom species Nitzschia frustulum (Kützing) Grunow isolated from a soda pan along temperature-, sulfate- and chloride gradients. Aquatic Ecology 49: 401–416.

    CAS  Article  Google Scholar 

  33. Lengyel, E., J. Padisák, E. Hajnal, B. Szabó, A. Pellinger & C. Stenger-Kovács, 2016. Application of benthic diatoms to assess efficiency of conservation management: a case study on the example of three reconstructed soda pans, Hungary. Hydrobiologia 777: 95–110.

    CAS  Article  Google Scholar 

  34. Litvinenko, L. I., 2008. Plankton of hyperhalinic lakes in Western Siberia. Fish Farming 12: 95–102 (in Russian).

    Google Scholar 

  35. Litvinenko, L. I., A. I. Litvinenko, E. G. Boyko & K. V. Kutsanov, 2013. Effect of environmental factors on the structure and functioning of biocoenoses of hyperhaline water reservoirs in the South of Western Siberia. Contemporary Problems of Ecology 6(3): 252–261.

    Article  Google Scholar 

  36. MacIntyre, S. & J. M. Melack, 1982. Meromixis in an equatorial African soda lake. Limnology and Oceanography 27: 595–609.

    CAS  Article  Google Scholar 

  37. McCulloch, G. P., K. Irvine, F. D. Eckardt & R. Bryant, 2008. Hydrochemical fluctuations and crustacean community composition in an ephemeral saline lake (Sua Pan, Makgadikgadi Botswana). Hydrobiologia 596: 31–46.

    CAS  Article  Google Scholar 

  38. Nédli, J., L. De Meester, Á. Major, K. Schwenk, I. Szivák & L. Forró, 2014. Salinity and depth as structuring factors of cryptic divergence in Moina brachiata (Crustacea: Cladocera). Fundamental and Applied Limnology 184(1): 69–85.

    Article  CAS  Google Scholar 

  39. Nogrady, T., 1983. Succession of planktonic rotifer populations in some lakes of the Eastern Rift Valley, Kenya. Hydrobiologia 98: 45–54.

    Article  Google Scholar 

  40. Obiazov, V. A., 2012. Change of climate and hydrological regime of the rivers and lakes in Dahurian ecoregion. In Kirilyuk, O. (ed.), Problems of Adaptation and Climate Change in the River Basins of Dahuria: Ecological and Hydroeconomic Aspects. Ekspress-izdatel’stvo, Chita: 24–45 (in Russian).

    Google Scholar 

  41. Ostroumov, S. A., 2003. Aquatic organisms as a factor of regulation of the flow of matter and migration of elements in aquatic ecosystems. Izvestia of Samara Scientific Center of the Russian Academy of Sciences 5(2): 249–255 (in Russian).

    Google Scholar 

  42. Padisák, J. & M. Dokulil, 1994. Meroplankton dynamics in a saline, turbulent, turbid shallow lake (Neusiedlersee, Austria and Hungary). Hydrobiologia 289: 23–42.

    Article  Google Scholar 

  43. Pálffy, K., T. Felfo, A. Mentes, H. Horváth, K. Márialigeti, E. Boros, L. Vörös & B. Somogyi, 2014. Unique picoeukaryotic algal community under multiple environmental stress conditions in a shallow, alkaline pan. Extremophiles 18: 111–119.

    PubMed  Article  PubMed Central  Google Scholar 

  44. Reati, G. J., M. Florin, G. J. Fernandez & C. Montes, 1997. The Laguna de Mar Chiquita (Córdoba, Argentina): a little known, secularly fluctuating, saline lake. International Journal of Salt Lake Research 5: 187–219.

    Article  Google Scholar 

  45. Ruttner-Kolisko, A., 1977. Suggestions for biomass calculation of plankton rotifers. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 8: 71–76.

    Google Scholar 

  46. Sadchikov, A. P., 2003. The Study Methods of Freshwater Phytoplankton. Universitet I Shkola, Moscow (in Russian).

    Google Scholar 

  47. Schagerl, M. (ed.), 2016. Soda Lakes of East Africa. Springer, Cham.

    Google Scholar 

  48. Schagerl, M. & O. S. Oduor, 2008. Phytoplankton community relationship to environmental variables in three Kenyan Rift Valley saline-alkaline lakes. Marine and Freshwater Resources 59: 129–136.

    Article  Google Scholar 

  49. Schagerl, M., A. Burian, M. Gruber-Dorninger, S. O. Oduor & M. N. Kaggwa, 2015. Algal communities of Kenyan soda lakes with a special focus on Arthrospira fusiformis. Fottea, Olomouc 15(2): 245–257.

    Article  Google Scholar 

  50. Shadrin, N. V., 2012. Ecosystem dynamics and evolution: multiplicity of steady states and tipping points. Necessity of new understanding. Marine Ecological Journal 11(2): 85–95 (in Russian).

    Google Scholar 

  51. Shadrin, N. V., 2018. The alternative saline lake ecosystem states and adaptive environmental management. Journal of Oceanology and Limnology 36(6): 2010–2017.

    Article  Google Scholar 

  52. Shadrin, N. V. & E. V. Anufriieva, 2013. Climate change impact on the marine lakes and their crustaceans: the case of marine hypersaline Lake Bakalskoye (Ukraine). Turkish Journal of Fisheries and Aquatic Sciences 13(3): 603–611.

    Google Scholar 

  53. Shadrin, N. V., N. G. Sergeeva, A. A. Latushkin, E. A. Kolesnikova, L. M. Kipriyanova, E. V. Anufriieva & A. A. Chepyzhenko, 2016. Transformation of Gulf Sivash (the Sea of Azov) in conditions of growing salinity: changes of meiobenthos and other ecosystem components (2013–2015). Journal of Siberian Federal University. Biology 4(9): 452–466.

    Article  Google Scholar 

  54. Simon, S., J. Mádl-Szőnyi, I. Müller & G. Pogácsás, 2011. Conceptual model for surface salinization in an over pressured and a superimposed gravity-flow field, Lake Kelemenszék area, Hungary. Journal of Hydrogeology 19: 701–717.

    CAS  Article  Google Scholar 

  55. Sklyarov, E. V., O. A. Sklyarova, U. V. Men’shagin & M. A. Danilova, 2011. Mineralized lake of Trans-Baikal and North-Eastern Mongolia: specific features of occurrence and ore-generating potential. Geography and Natural Resources 32(4): 323–332.

    Article  Google Scholar 

  56. Tóth, A., Z. Horváth, C. F. Vad, K. Zsuga, S. A. Nagy & E. Boros, 2014. Zooplankton of the European soda pans: fauna and conservation of a unique habitat type. International Review of Hydrobiology 99: 1–22.

    Article  Google Scholar 

  57. Tsybekmitova, G. Ts., 2018. Hydrochemistry of certain lakes of the On-Torean High Plain. International Journal of Applied and Fundamental Research 11: 144–148 (in Russian).

    Google Scholar 

  58. Tsybekmitova, G. Ts. & I. A. Belozertseva, 2014. Hydrochemistry of saline lakes of Onon-Borzinskoe interfluve (Zabaykalsky krai). Water: Chemistry and Ecology 2: 3–8 (in Russian).

    Google Scholar 

  59. Venice System, 1959. Final resolution. The Venice System for the classification of marine waters according to salinity. 8–14 April 1958 Venice, Italy. In D. Ancona (ed), Symposium on the Classification of Brackish Waters. Archives Oceanography and Limnology 11: 243–248.

  60. Vignatti, A., G. Cabrera & S. Echaniz, 2012. Changes in the zooplankton and limnological variables of a temporary hypo-mesosaline wetland of the central region of Argentina during its drying. Pan-American Journal of Aquatic Sciences 7(2): 93–106.

    Google Scholar 

  61. Williams, W. D., 1991. Chinese and Mongolian saline lakes: a limnological overview. Hydrobiologia 210: 39–66.

    CAS  Article  Google Scholar 

  62. Williams, W. D., 1998. Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiologia 381: 191–201.

    Article  Google Scholar 

  63. Williams, W. D., 2002. Environmental threats to salts lakes and the likely status of inland saline ecosystems in 2025. Environmental Conservation 29(2): 154–167.

    Article  Google Scholar 

  64. Williams, W. D., A. J. Boulton & R. G. Taaffe, 1990. Salinity as a determinant of salt lake fauna: a question of scale. Hydrobiologia 197: 257–266.

    CAS  Article  Google Scholar 

  65. Zagorodnyaya, Yu. A., E. A. Batogova & N. V. Shadrin, 2008. Long-term transformation of zooplankton in the hypersaline lake Bakalskoe (Crimea) under salinity fluctuations. Marine Ecological Journal VII(4): 41–50 (in Russian).

    Google Scholar 

  66. Zamana, L. V. & S. V. Borzenko, 2010. Hydrochemical regime of saline lakes in the Southeastern Transbaikalia. Geography and Natural Resources 31(4): 370–376 (in Russian).

    Article  Google Scholar 

  67. Zamana, L. V. & I. L. Vakhnina, 2014. Hydrochemistry of saline lakes of the southeastern Transbaikalia under climate aridization in the beginning of 20th century. International Journal of Applied and Fundamental Research 11(4): 608–612 (in Russian).

    Google Scholar 

  68. Zhao, W. & Z. He, 1999. Biological and ecological features of inland saline waters in North Hebei, China. International Journal of Salt Lake Resources 8: 267–285.

    Google Scholar 

  69. Zhao, W., M. Zheng, X. Xu, X. Liu, G. Guo & Z. He, 2005. Biological and ecological features of saline lakes in northern Tibet, China. Hydrobiologia 541: 189–203.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Program for Basic Research of the Siberian Branch of the Russian Academy of Sciences, Project No. IX.137.1.1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Natalya A. Tashlykova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Judit Padisák

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Afonina, E.Y., Tashlykova, N.A. Fluctuations in plankton community structure of endorheic soda lakes of southeastern Transbaikalia (Russia). Hydrobiologia 847, 1383–1398 (2020). https://doi.org/10.1007/s10750-020-04207-z

Download citation

Keywords

  • Phytoplankton
  • Zooplankton
  • Fluctuations
  • Soda lakes
  • Uldz Gol-Torey Basin
  • Transbaikalia (Russia)