Skip to main content

Advertisement

Log in

Biodiversity and structure of marine sponge assemblages around a subtropical island

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We evaluated the structural responses of marine sponge assemblages to different substrates as well as their positioning around Ilha Grande, a local hotspot of marine biodiversity sheltered in a bay area off Southeast Brazil. Sampling sites were distributed between sides of the island facing the continent (North) and ocean (South) across two depth-dependent substrates. As proved by ordination and permutation analyses, these two factors accounted for nearly half the variation observed among assemblages, either with species abundance or coverage area data. Out of 46 OTUs surveyed (~ 3000 individuals), Tedania (Tedania) ignis, Scopalina ruetzleri, and Iotrochota arenosa dominated the community, even though most of the dissimilarity detected among assemblages relied on 20% of the OTUs. The northern side was proved as more diverse, and the south-facing side held more unspecific, putatively new OTUs. Assemblages dwelling on rocky-to-sandy interface bottoms were meager in species number, although they mainly included Dragmacidon reticulatum and the endemic Brazilian sponge Polymastia janeirensis. By highlighting structuring factors operating on Ilha Grande’s sponge assemblage, we hope to support future monitoring surveys on an environment increasingly impacted by human activities over the years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achlatis, M., R. M. van der Zande, C. H. L. Schönberg, J. K. H. Fang, O. Hoegh-Guldberg & S. Dove, 2017. Sponge bioerosion on changing reefs: ocean warming poses physiological constraints to the success of a photosymbiotic excavating sponge. Science Reports 7: 10705.

    Google Scholar 

  • Aerts, L. A. M. & R. W. M. van Soest, 1997. Quantification of sponge/coral interactions in a physically stressed reef community, NE Colombia. Marine Ecology Progress Series 148: 125–134.

    Google Scholar 

  • Alcolado, P. M., 1999. Comunidades de esponjas de los arrecifes del Archipiélago Sabana-Camagüey, Cuba. Bol Invest Mar Cost 28: 95–124.

    Google Scholar 

  • Barnes, D. K. A., 1999. High diversity of tropical intertidal zone sponges in temperature, salinity and current extremes. African Journal of Ecology 37: 424–434.

    Google Scholar 

  • Barnes, D. K. A. & J. J. Bell, 2002. Coastal sponge communities of the West Indian Ocean: morphological richness and diversity. African Journal of Ecology 40: 350–359.

    Google Scholar 

  • Bastos, M. & C. H. Callado, 2009. O ambiente da Ilha Grande. Universidade do Estado do Rio de Janeiro,Centro de Estudos Ambientais e Desenvolvimento Sustentável, Rio de Janeiro: 562.

    Google Scholar 

  • Bell, J. J., 2008. The functional roles of marine sponges. Estuarine, Coastal and Shelf Science 79: 341–353.

    Google Scholar 

  • Bell, J. J. & D. K. A. Barnes, 2000a. The influences of bathymetry and flow regime upon the morphology of sublittoral sponge communities. Journal of the Marine Biological Association of the United Kingdom 80: 707–718.

    Google Scholar 

  • Bell, J. J. & D. K. A. Barnes, 2000b. A sponge diversity centre within a marine “island”. Hydrobiologia 440(55–472): 64.

    Google Scholar 

  • Bell, J. J. & D. Smith, 2004. Ecology of sponge assemblages (Porifera) in the Wakatobi region, south-east Sulawesi, Indonesia: richness and abundance. Journal of the Marine Biological Association of the United Kingdom 84: 581–591.

    Google Scholar 

  • Bell, J. J., D. K. A. Barnes & J. R. Turner, 2002. The importance of micro and macro morphological variation in the adaptation of a sublittoral demosponge to current extremes. Marine Biology 140: 75–81.

    Google Scholar 

  • Bell, J. J., E. McGrath, A. Biggerstaff, T. Bates, H. Bennett, J. Marlow & M. Shaffer, 2015. Sediment impacts on marine sponges. Marine Pollution Bulletin 94: 5–13.

    CAS  PubMed  Google Scholar 

  • Bergquist, P. R., 1978. Sponges. Hutchinson, London: 268.

    Google Scholar 

  • Biggerstaff, A., D. J. Smith, J. Jompa & J. J. Bell, 2017. Metabolic responses of a phototrophic sponge to sedimentation supports transitions to sponge-dominated reefs. Science Reports 7: 2725.

    Google Scholar 

  • Borcard, D., F. Gillet & P. Legendre, 2001. Numerical Ecology with R. Springer, New York: 306.

    Google Scholar 

  • Carballo, J. L., 2006. Effect of natural sedimentation on the structure of tropical rocky sponge assemblages. Ecoscience 13: 119–130.

    Google Scholar 

  • Cárdenas, C. A., S. K. Davy & J. J. Bell, 2012. Correlations between algal abundance, environmental variables and sponge distribution patterns on southern hemisphere temperate rocky reefs. Aquatic Biology 16: 229–239.

    Google Scholar 

  • Carraro, J. L. F., 2012. Esponjas marinhas do sul do Brasil: estrutura das assembleias, interações e biodiversidade. Doctorate thesis, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul.

  • Cebrian, E. & M. J. Uriz, 2007. Contrasting effects of heavy metals and hydrocarbons on larval settlement and juvenile in sponges. Aquatic Toxicology 81: 137–143.

    CAS  PubMed  Google Scholar 

  • Cerrano, C., B. Calcinai, C. G. Di Camillo, L. Valisano & G. Bavestrello, 2007. How and why do sponges incorporate foreign material? Strategies in Porifera. In Custódio, M. R., G. Lôbo-Hajdu, E. Hajdu & G. Muricy (eds), Porifera Research: Biodiversity, Innovation and Sustainability. Museu Nacional, Rio de Janeiro: 239–246.

    Google Scholar 

  • Conway, K. W., J. V. Barrie & M. Krautter, 2005. Geomorphology of unique reefs on the western Canadian shelf: sponge reefs mapped by multibeam bathymetry. Geo-Marine Letters 25: 205–213.

    CAS  Google Scholar 

  • Creed, J. C., D. O. Pires & M. A. O. Figueiredo, 2007a. Biodiversidade Marinha da Baía da Ilha Grande. Ministério do Meio Ambiente, Brasília: 417.

    Google Scholar 

  • Creed, J. C., R. A. Ramos, F. A. Casares & A. E. S. Oliveira, 2007b. Características ambientais: Substrato da orla costeira. In Creed, J. C., D. O. Pires & M. A. O. Figueiredo (eds), Biodiversidade Marinha da Baía da Ilha Grande. Ministério do Meio Ambiente, Brasília: 133–152.

    Google Scholar 

  • Creed, J. C., F. A. Casares & A. E. S. Oliveira, 2007c. Características ambientais: água. In Creed, J. C., D. O. Pires & M. A. O. Figueiredo (eds), Biodiversidade Marinha da Baía da Ilha Grande. Ministério do Meio Ambiente, Brasília: 109–132.

    Google Scholar 

  • Custódio, M. R. & E. Hajdu, 2011. Checklist de Porifera do Estado de São Paulo, Brasil. Biota Neotropica 11: 427–444.

    Google Scholar 

  • de Goeij, J. M., D. Van Oevelen, M. J. Vermeij, R. Osinga, J. J. Middelburg, A. F. De Goeij & W. Admiraal, 2013. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342(6154): 108–110.

    PubMed  Google Scholar 

  • De Paula, A. F. & J. C. Creed, 2004. Two species of the coral Tubastraea (Cnidaria, Scleractinia) in Brazil: a case of accidental introduction. Bulletin of Marine Science 74: 175–183.

    Google Scholar 

  • Diaz, M. C. & K. Rützler, 2001. Sponges: an essential component of Caribbean coral reefs. Bulletin of Marine Science 69: 535–546.

    Google Scholar 

  • Duckworth, A. R., 2016. Substrate type affects the abundance and size of a coral-reef sponge between depths. Marine and Freshwater Research 67: 246–255.

    Google Scholar 

  • Feuda, R., M. Dohrmann, W. Pett, H. Philippe, O. Rota-Stabelli, N. Lartillot, G. Wörheide & D. Pisani, 2017. Improved modeling of compositional heterogeneity supports sponges as sister to all other animals. Current Biology 27: 3864–3870.

    CAS  PubMed  Google Scholar 

  • Hajdu, E., S. Peixinho & J. C. Fernandez, 2011. Esponjas marinhas da Bahia: Guia de campo e laboratório. Museu Nacional, Rio de Janeiro: 276.

    Google Scholar 

  • Hajdu, E., C. Castello-Branco, D. A. Lopes, P. Y. G. Sumida & J. A. A. Perez, 2017. Deep-sea dives reveal an unexpected hexactinellid sponge garden on the Rio Grande Rise (SW Atlantic). A mimicking habitat? Deep Sea Research Part II 146: 93–100.

    Google Scholar 

  • Hill, M. O. & H. G. Gauch Jr., 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47–58.

    Google Scholar 

  • Hooper, J. N. A. & C. Lévi, 1994. Biogeography of the Indo-west Pacific Sponges: Microcionidae, Raspailidae and Axinellidae. In van Soest, R. W. M., T. M. G. van Kempen & J. C. Braekman (eds), Sponges in Time and Space. Balkema, Rotterdam: 191–212.

    Google Scholar 

  • Huguenin, L., S. Salani, M. F. Lopes, R. M. Albano, E. Hajdu & E. L. Esteves, 2018. Integrative taxonomy of Hemimycale (Hymedesmiidae: poecilosclerida: Demospongiae) from Southeastern Brazil, with the description of two new species. Zootaxa 4442: 137–152.

    PubMed  Google Scholar 

  • Ignacio, B. L., L. M. Julio, A. O. R. Junqueira & M. A. G. Ferreira-Silva, 2010. Bioinvasion in a Brazilian Bay: filling gaps in the knowledge of Southwestern Atlantic biota. PLoS ONE 5: e13065.

    PubMed  PubMed Central  Google Scholar 

  • Ikeda, Y., S. S. Godoi & P. L. Cacciari, 1989. Um estudo de séries temporais de corrente na Baía da Ilha Grande. Relatório Interno do Instituto Oceanográfico 28: 1–24.

    Google Scholar 

  • Jackson, J. B. C. & L. Buss, 1975. Allelopathy and spatial competition among coral reef invertebrates. Proceedings of the National Academy of Sciences 72: 5160–5163.

    CAS  Google Scholar 

  • Johnsson, R. M. F. & S. M. Ikemoto, 2015. Diagnóstico do setor costeiro da Baía da Ilha Grande: Subsídios à elaboração do zoneamento ecológico-econômico costeiro. Instituto Estadual do Ambiente, Rio de Janeiro: 242.

    Google Scholar 

  • Knapp, I. S. S. & J. J. Bell, 2010. Effect of depth on sponge assemblage structure at Palmyra Atoll, Central Pacific. The Open Marine Biology Journal 4: 26–30.

    Google Scholar 

  • Lages, B. G., B. G. Fleury, C. Menegola & J. C. Creed, 2011. Change in tropical rocky shore communities due to an alien coral invasion. Marine Ecology Progress Series 438: 85–96.

    Google Scholar 

  • Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.

    PubMed  Google Scholar 

  • Lopes, R. M. C., L. Pombo, V. B. Cunha & D. Rimoldi, 2009. Informe sobre as espécies exóticas invasoras marinhas no Brasil. Ministério do Meio Ambiente, Brasília: 440.

    Google Scholar 

  • Mahiques, M. M. & V. V. Furtado, 1989. Utilização da análise dos componentes principais na caracterização dos sedimentos de superfície de fundo da Baía da Ilha Grande. Bol Institute Oceanography 37: 1–19.

    Google Scholar 

  • Mantelatto, M. C., B. G. Fleury, C. Menegola & J. C. Creed, 2013. Cost-benefit of different methods from monitoring invasive corals on tropical rocky reefs in the southwest Atlantic. Journal of Experimental Marine Biology and Ecology 449: 129–134.

    Google Scholar 

  • Mantelatto, M. C., L. F. Vidon, R. B. Silveira, C. Menegola, R. M. Rocha & J. C. Creed, 2016. Host species of the non-indigenous brittle star Ophiothela mirabilis (Echinodermata: ophiuroidea): an invasive generalist in Brazil? Marine Biodiversity Records. https://doi.org/10.1186/s41200-016-0013-x.

    Article  Google Scholar 

  • Marlow, J., D. Smith, S. Werorilang & J. J. Bell, 2018. Sedimentation limits the erosion rate of a bioeroding sponge. Marine Ecology 39: e12483.

    Google Scholar 

  • Miranda, L. B., Y. Ikeda, B. M. Castro-Filho & N. Pereira-Filho, 1977. Note on the occurrence of saline fronts in the Ilha Grande (RJ) region. Bolm Institute Oceanography 26: 249–256.

    Google Scholar 

  • Monteiro, L. C. & G. Muricy, 2004. Patterns of sponge distribution in Cagarras Archipelago, Rio de Janeiro, Brazil. Journal of the Marine Biological Association of the United Kingdom 84: 681–687.

    Google Scholar 

  • Moraes, F., E. P. Vilanova & G. Muricy, 2003. Distribuição das esponjas (Porifera) na Reserva Biológica do Atol das Rocas, Nordeste do Brasil. Arquivos do Museu Nacional 61: 13–22.

    Google Scholar 

  • Muricy, G., 1989. Sponges as pollution-biomonitors at Arraial do Cabo, Southeastern Brazil. Revista Brasileira de Biologia 49: 347–354.

    Google Scholar 

  • Muricy, G., E. Hajdu, M. Custodio, M. Klautau, C. Russo & S. Peixinho, 1991. Sponge distribution at Arraial do Cabo, SE Brazil. Ocean & Coastal Management 2: 1183–1196.

    Google Scholar 

  • Muricy, G., D. Lopes, E. Hajdu, M. Carvalho, F. Moraes, M. Klautau, C. Menegola & U. Pinheiro, 2011. Catalogue of Brazilian Porifera. Museu Nacional, Rio de Janeiro: 300.

    Google Scholar 

  • Muricy, G., E. L. Esteves, L. C. Monteiro, B. R. Rodrigues & R. M. Albano, 2015. New species of Haliclona (Demospongiae: haplosclerida: Chalinidae) from southeastern Brazil and the first record of Haliclona vansoesti from the Brazilian coast. Zootaxa 3925: 536–550.

    PubMed  Google Scholar 

  • Oksanen, J., F. G., Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, & H. Wagner, 2018. vegan: Community Ecology Package. R package version 2.5-2. https://CRAN.R-project.org/package=vegan.

  • Oliveira, A. E. Z., 2016. Poríferos da costa do rio grande do sul: novas ocorrências e validação dos registros para o Atlântico Sul. Master thesis, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul.

  • Palumbi, S. R., 1986. How body plans limit acclimation: responses of a demosponge to wave force. Ecology 67: 208–214.

    Google Scholar 

  • Pawlik, J. R., T. L. Loh & S. E. McMurray, 2018. A review of bottom-up vs top-down control of sponges on Caribbean fore-reefs: what’s old, what’s new, and future directions. PeerJ 6: e4343.

    PubMed  PubMed Central  Google Scholar 

  • Pineda, M. C., A. Duckworth & N. S. Webster, 2016. Appearance matters: sedimentation effects on different sponge morphologies. Journal of the Marine Biological Association of the United Kingdom 96: 481–492.

    Google Scholar 

  • Pineda, M. C., B. Strehlow, M. Sternel, A. Duckworth, J. Haan, R. Jones & N. S. Webster, 2017a. Effects of sediment smothering on the sponge holobiont with implications for dredging management. Nature. https://doi.org/10.1038/s41598-017-05243-x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pineda, M. C., B. Strehlow, J. Kamp, A. Duckworth, R. Jones & N. S. Webster, 2017b. Effects of combined dredging related stressors on sponges: a laboratory approach using realistic scenarios. Nature. https://doi.org/10.1038/s41598-017-05251-x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pisani, D., W. Pett, M. Dohrmann, R. Feuda, O. Rota-Stabelli, H. Philippe, N. Lartillot & G. Wörheide, 2015. Genomic data do not support comb jellies as the sister group to all other animals. Proceedings of the National Academy of Sciences 112: 15402–15407.

    CAS  Google Scholar 

  • Reiswig, H. M., 1971. In situ pumping activities of tropical Demospongiae. Marine Biology 9: 38–50.

    Google Scholar 

  • Rützler, K., 1978. Sponges in coral reefs. In Stoddart, D. R. & R. E. Johannes (eds), Coral Reefs: Research Methods, Monographs on Oceanographic Methodology, Vol. 5. UNESCO, Paris: 299–313.

    Google Scholar 

  • Rützler, K., 2004. Sponges on coral reefs: a community shaped by competitive cooperation. Boll Mus Degli Ist Biol dell’ Università di Genova 68: 85–148.

    Google Scholar 

  • Santos, A. V., F. Giacobo, A. R. Hadlich, R. B. R. Macedo & R. Bittencourt, 2015. Porto de Angra dos Reis—Plano Mestre. Secretaria de Portos da Presidência da República—SEP/PR.

  • Sarà, M. & J. Vacelet, 1973. Écologie des Démosponges. In Grassé, P. P. (ed.), Spongiaires, Vol. 3. Masson & Co, Paris: 462–576.

    Google Scholar 

  • Schneider, C. A., W. S. Rasband & K. W. Eliceiri, 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671–675.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schönberg, C. H. L., 2016. Happy relationships between marine sponges and sediments—a review and some observations from Australia. Journal of the Marine Biological Association of the United Kingdom 96: 493–514.

    Google Scholar 

  • Schröder, H. C., S. M. Efremova, B. A. Margulis, I. V. Guzhova, V. B. Itskovich & W. E. G. Müller, 2006. Stress response in Baikalian sponges exposed to pollutants. Hydrobiologia 568: 277–287.

    Google Scholar 

  • Signorini, S. R., 1980. A study of the circulation in bay of Ilha Grande and Bay of Sepetiba. Part I. Asurvey of the circulation based on experimental field data. Bol Institute Oceanograpghy 29: 41–55.

    Google Scholar 

  • Silva, A. G., A. F. De Paula, B. G. Fleury & J. C. Creed, 2014. Eleven years of range expansion of two invasive corals (Tubastraea coccinea and Tubastraea tagusensis) through the southwest Atlantic (Brazil). Estuarine, Coastal and Shelf Science 141: 9–16.

    Google Scholar 

  • Silva, A. G., H. F. M. Fortunato, G. Lôbo-Hajdu & B. G. Fleury, 2017. Response of native marine sponges to invasive Tubastraea corals: a case study. Marine Biology. https://doi.org/10.1007/s00227-017-3112-2.

    Article  Google Scholar 

  • Skinner, L. F., D. F. Barboza & R. M. Rocha, 2016. Rapid Assessment Survey of introduced ascidians in a region with many marinas in the southwest Atlantic Ocean, Brazil. Management of Biological Invasions 7: 13–20.

    Google Scholar 

  • Spalding, M., H. Fox, G. Allen, N. Davidson, Z. Ferdaña, M. Finlayson, B. Halpern, M. Jorge, A. Lombana, S. Lourie, K. Martin, M. Manus, J. Molnar, C. Recchia & J. Robertson, 2007. Marine ecoregions of the World: a bioregionalization of coastal and shelf areas. BioScience 57: 573–583.

    Google Scholar 

  • van Soest, R. W. M., N. Boury-Esnault, J. N. A. Hooper, K. Rützler, N. J. de Voogd, B. Alvarez, E. Hajdu, A. B. Pisera, J. Vacelet, R. Manconi, C. Schoenberg, D. Janussen, K. R. Tabachnick, & M. Klautau, 2019. World Porifera database. http://www.marinespecies.org/porifera. Accessed 26 February 2019

  • Vilanova, E., M. Mayer-Pinto, M. P. Curbelo-Fernandez & S. H. G. Silva, 2004. The impact of a nuclear power plant discharge on the sponge community of a tropical bay (SE Brazil). In Pansini, M., R. Pronzato, G. Bavestrello & R. Manconi (eds), Boll Mus Degli Ist Biol dell’, Vol. 68. Università di Genova, Genoa: 647–654.

    Google Scholar 

  • Wahab, M. A. A., J. Fromont, O. Gomez, R. Fisher & R. Jones, 2017. Comparisons of benthic filter feeder communities before and after a large-scale capital dredging program. Marine Pollution Bulletin 122: 176–193.

    PubMed  Google Scholar 

  • Wisshak, M., C. H. L. Schönberg, A. Form & A. Freiwald, 2014. Sponge bioerosion accelerated by ocean acidification across species and latitudes? Helgoland Marine Research 68: 253–262.

    Google Scholar 

  • World Resources Institute, 2019. http://www.wri.org/. Accessed 26 February 2019.

  • Wulff, J., 2000. Sponge predators may determine differences in sponge fauna between two sets of mangrove cays, Belize barrier reef. Atoll Research Bulletin 477: 249–263.

    Google Scholar 

  • Wulff, J., 2006. Resistance vs. recovery: morphological strategies of coral reef sponges. Functional Ecology 20: 699–708.

    Google Scholar 

  • Wulff, J., 2012. Ecological interactions and the distribution, abundance and diversity of sponges. Advances in Marine Biology 6: 273–344.

    Google Scholar 

  • Wulff, J., 2017. Bottom-up and top-down controls on coral reef sponges: disentangling within-habitat and between-habitat processes. Ecology 98: 1130–1139.

    PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank the ‘Centro de Estudos Ambientais e Desenvolvimento Sustentável’ (CEADS) of ‘Universidade do Estado do Rio de Janeiro’ (UERJ), Brazil, for providing laboratory facilities and accommodation at Ilha Grande, Brazil. The ‘Programa de Monitoramento de Ocorrências de Tartarugas Marinhas’ (PROMONTAR-ANGRA), Brazil, is thanked for logistic support on SCUBA dives. We also thank PhD Breylla Carvalho for the GIS mapping, and BSc Marcella Frazão for the microscopic slide preparations. MA Tatiana Afonso de Barros is thanked for language review. Authors are fully acknowledged for the significant contributions provided by reviewers and editors to improve this manuscript.

Funding

HFMF thanks ‘Coordenação de Aperfeiçoamento de Pessoal de Nível Superior’ (CAPES), Brazil, for a master scholarship. GM and GLH acknowledge CAPES for research funding (Grant # AUXPE CIMAR 1986/2014). ELE, GM, and GLH thank ‘Conselho Nacional de Desenvolvimento Científico e Tecnológico’ (CNPq), Brazil, and ‘Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro’ (FAPERJ), Brazil, for grants and fellowships.

Author information

Authors and Affiliations

Authors

Contributions

HFMF, TSP, and GLH conceived the experiments. HFMF, ELE, and GLH conducted the field experiments. HFMF and ELE performed the taxonomical identifications. HFMF, TSP, and GM analyzed the data. HFMF and GM wrote the initial draft as part of HFMF master dissertation of the ‘Programa de Pós-Graduação em Ecologia e Evolução’ (PPGEE) of UERJ. HFMF, TSP, and GLH wrote the final manuscript. All the authors improved the final manuscript.

Corresponding author

Correspondence to Gisele Lôbo-Hajdu.

Ethics declarations

Conflict of interest

Authors declare that they have no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All necessary permits for animals sampling in the current study have been obtained from ‘Instituto Estadual do Ambiente’ (INEA; Case # 030/2012) and ‘Instituto Chico Mendes de Conservação da Biodiversidade’ (ICMBio; Case # 33745-1).

Additional information

Handling editor: Iacopo Bertocci

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fortunato, H.F.M., de Paula, T.S., Esteves, E.L. et al. Biodiversity and structure of marine sponge assemblages around a subtropical island. Hydrobiologia 847, 1281–1299 (2020). https://doi.org/10.1007/s10750-020-04183-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04183-4

Keywords

Navigation