Morpho-molecular delineation of structurally important reef species, the fire corals, Millepora spp., at Réunion Island, Southwestern Indian Ocean

Abstract

Looking at taxa that could dominate Anthropocene reefs, the fire corals, Millepora spp., represent compelling alternative because of their similar role than scleractinian corals. However, species identification has been the subject of much debate over the past 150 years. As they may turn as among the last refuges for reef biodiversity, it is critical to accurately delimit their species boundaries to appreciate better their resilience to future environmental conditions. Combining morphological and molecular approaches, we investigated Millepora species delimitation in Réunion Island where three species co-occur: Millepora exaesa, Millepora platyphylla and Millepora tenera. Our results showed that both pore characters and polyp morphologies successfully distinguished species. Gastropore and dactylopore numbers and diameters should be used as standard traits in Millepora. Regarding molecular delineation, the mitochondrial gene clearly segregated the species, whereas the nuclear gene showed shared haplotypes between species, likely influenced by ancestral polymorphism. Confirming the results of a recent study on Red Sea fire corals showing their distinction from the Indo-Pacific ones, we emphasize that formal re-descriptions of the Indo-Pacific M. cf. platyphylla and M. cf. exaesa are needed. Our study highlights the importance of a trait-based qualitative and quantitative approach coupled to molecular delineation, especially for structurally important reef species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

modified from Bourmaud et al., 2013)

Fig. 5

References

  1. Addinsoft, 2018. XLSTAT statistical and data analysis solution. Paris, France. https://www.xlstat.com.

  2. Alvarez-Filip, L., N. K. Dulvy, J. A. Gill, I. M. Cote & A. R. Watkinson, 2009. Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proceedings of the Royal Society B 276: 3019–3025.

    PubMed  Google Scholar 

  3. Amaral, F. M. D., A. Q. Steiner, M. K. Broadhurst & S. D. Cairns, 2008. An overview of the shallow-water calcified hydroids from Brazil (Hydrozoa: Cnidaria), including the description of a new species. Zootaxa 1930: 56–68.

    Google Scholar 

  4. Andréfouët, S., F. Benzoni & C. Payri, 2014. A monospecific Millepora reef in Marquesas Islands, French Polynesia. Coral Reefs 33: 463.

    Google Scholar 

  5. Arrigoni, R., D. Maggioni, S. Montano, B. W. Hoeksema, D. Seveso, T. Shlesinger, T. I. Terraneo, M. D. Tietbohl & M. L. Berumen, 2018. An integrated morpho-molecular approach to delineate species boundaries of Millepora from the Red Sea. Coral Reefs 37: 967–984.

    Google Scholar 

  6. Benzoni, F., F. Stefani, J. Stolarski, M. Pichon, G. Mitta & P. Galli, 2007. Debating phylogenetic relationships of the scleractinian Psammocora: molecular and morphological evidences. Contributions to Zoology 76: 35–54.

    Google Scholar 

  7. Benzoni, F., R. Arrigoni, F. Stefani, B. T. Reijnen, S. Montano & B. W. Hoeksema, 2012. Phylogenetic position and taxonomy of Cycloseris explanulata and C. wellsi (Scleractinia: Fungiidae): lost mushroom corals find their way home. Contributions to Zoology 81: 125–146.

    Google Scholar 

  8. Bickford, D., D. J. Lohman, N. S. Sodhi, P. K. L. Ng, R. Meier, K. Winker, K. K. Ingram & I. Das, 2007. Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22: 148–155.

    Google Scholar 

  9. Boissin, E., T. B. Hoareau, G. Paulay & J. H. Bruggemann, 2017. DNA barcoding of reef brittle stars (Ophiuroidea, Echinodermata) from the southwestern Indian Ocean evolutionary hot spot of biodiversity. Ecology and Evolution 7: 11197–11203.

    PubMed  PubMed Central  Google Scholar 

  10. Boissin, E., T. B. Hoareau, B. Postaire, N. Gravier-Bonnet & C. A. F. Bourmaud, 2018. Cryptic diversity, low connectivity and suspected human-mediated dispersal among 17 widespread Indo-Pacific hydroid species of the south-western Indian Ocean. Journal of Biogeography 45: 2104–2117.

    Google Scholar 

  11. Boissin, E., C. Pogoreutz, A. Pey, N. Gravier-Bonnet & S. Planes, 2019. Millepora platyphylla (Cnidaria, Hydrozoa) range extended back to the Eastern Pacific, thanks to a new record from Clipperton Atoll. Zootaxa 4668: 599–600.

    Google Scholar 

  12. Boschma, H., 1948. The species problem in Millepora. Zoologische Verhandelingen 1: 1–115.

    Google Scholar 

  13. Boschma, H., 1966. On a new species of Millepora from Mauritius with notes on specific characters of Millepora exaesa. Proc K Ned Akad Wet C 69: 409–419.

    Google Scholar 

  14. Bouillon, J., C. Gravili, F. Pagès, J.-M. Gili & F. Boero, 2006. An introduction to Hydrozoa. Mémoires du Muséum national d’Histoire naturelle 194: 1–591.

    Google Scholar 

  15. Bourmaud, C. A. F., J. K. L. Leung, S. Bollard & N. Gravier-Bonnet, 2013. Mass spawning events, seasonality and reproductive features in Milleporids (Cnidaria, Hydrozoa) from Réunion Island. Marine Ecology 34: 14–24.

    Google Scholar 

  16. Brown, D. & P. J. Edmunds, 2016. Differences in the responses of three scleractinians and the hydrocoral Millepora platyphylla to ocean acidification. Marine Biology 163: 62.

    Google Scholar 

  17. Bucklin, A., D. Steinke & L. Blanco-Bercial, 2011. DNA barcoding of marine Metazoa. In Carlson, C. A. & S. J. Giovannoni (eds), Annual Review of Marine Science, Vol 3, Book 3. Annual Reviews, Palo Alto.

    Google Scholar 

  18. Coni, E. O. C., C. M. Ferreira, R. L. de Moura, P. M. Meirelles, L. Kaufman & R. B. Francini, 2013. An evaluation of the use of branching fire-corals (Millepora spp.) as refuge by reef fish in the Abrolhos Bank, eastern Brazil. Environmental Biology of Fishes 96: 45–55.

    Google Scholar 

  19. Cunningham, C. W. & L. W. Buss, 1993. Molecular evidence for multiple episodes of paedomorphosis in the family Hydractiniidae. Biochemical Systematics and Ecology 21: 57–69.

    CAS  Google Scholar 

  20. de Souza, J. N., F. L. D. Nunes, C. Zilberberg, J. A. Sanchez, A. E. Migotto, B. W. Hoeksema, X. M. Serrano, A. C. Baker & A. Lindner, 2017. Contrasting patterns of connectivity among endemic and widespread fire coral species (Millepora spp.) in the tropical Southwestern Atlantic. Coral Reefs 36: 701–716.

    Google Scholar 

  21. Denis, V., J. Debreuil, S. De Palmas, J. Richard, M. M. M. Guillaume & J. H. Bruggemann, 2011. Lesion regeneration capacities in populations of the massive coral Porites lutea at Réunion Island: environmental correlates. Marine Ecology Progress Series 428: 105–117.

    Google Scholar 

  22. Drummond, A. J., M. A. Suchard, D. Xie & A. Rambaut, 2012. Bayesian Phylogenetics with BEAUti and the BEAST 17. Molecular Biology and Evolution 29: 1969–1973.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Dube, C. E., E. Boissin & S. Planes, 2016. Overgrowth of living scleractinian corals by the hydrocoral Millepora platyphylla in Moorea, French Polynesia. Marine Biodiversity 46: 329–330.

    Google Scholar 

  24. Dube, C. E., E. Boissin, J. A. Maynard & S. Planes, 2017a. Fire coral clones demonstrate phenotypic plasticity among reef habitats. Molecular Ecology 26: 3860–3869.

    CAS  PubMed  Google Scholar 

  25. Dube, C. E., S. Planes, Y. X. Zhou, V. Berteaux-Lecellier & E. Boissin, 2017b. Genetic diversity and differentiation in reef-building Millepora species, as revealed by cross-species amplification of fifteen novel microsatellite loci. PeerJ 5:e2936.

    PubMed  PubMed Central  Google Scholar 

  26. Duchassaing, P., 1850. Animaux radiaires des Antilles. Plon Frères, Paris: 48.

    Google Scholar 

  27. Duchassaing, P. & J. Michelotti, 1860. Memoire sur les Coralliaires des Antilles. Mem Ac Sc Turin Ser 2(19): 279–365.

    Google Scholar 

  28. Duchassaing, P. & J. Michelotti, 1864. Supplement au Mémoire sur les Coralliaires des Antilles. Mem Ac Sc Turin Ser 2(23): 1–256.

    Google Scholar 

  29. Edmunds, P. J., 1999. The role of colony morphology and substratum inclination in the success of Millepora alcicornis on shallow coral reefs. Coral Reefs 18: 133–140.

    Google Scholar 

  30. Essl, F., W. Rabitsch, S. Dullinger, D. Moser & N. Milasowszky, 2013. How well do we know species richness in a well-known continent? Temporal patterns of endemic and widespread species descriptions in the European fauna. Global Ecology and Biogeography 22: 29–39.

    Google Scholar 

  31. Faure, G., 1982. Recherche sur les peuplements de scleractiniaires des recifs coralliens de l’archipel des Mascareignes. PhD thesis, University Aix-Marseille, Vol. 2, 408.

  32. Frank, U. & B. Rinkevich, 1994. Nontransitive patterns of historecognition phenomena in the Red Sea hydrocoral Millepora dichotoma. Marine Biology 118: 723–729.

    Google Scholar 

  33. Gaither, M. R. & L. A. Rocha, 2013. Origins of species richness in the Indo-Malay-Philippine biodiversity hotspot: evidence for the centre of overlap hypothesis. Journal of Biogeography 40: 1638–1648.

    Google Scholar 

  34. Garcia, T. M., H. Matthews-Cascon & W. Franklin, 2008. Macrofauna associated with branching fire coral Millepora alcicornis (Cnidaria: Hydrozoa). Thalassas 24: 11–19.

    Google Scholar 

  35. Gelin, P., B. Postaire, C. Fauvelot & H. Magalon, 2017. Reevaluating species number, distribution and endemism of the coral genus Pocillopora Lamarck, 1816 using species delimitation methods and microsatellites. Molecular Phylogenetics and Evolution 109: 430–446.

    CAS  PubMed  Google Scholar 

  36. Geller, J., C. Meyer, M. Parker & H. Hawk, 2013. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Molecular Ecology Resources 13: 851–861.

    CAS  PubMed  Google Scholar 

  37. Gittenberger, A., B. T. Reijnen & B. W. Hoeksema, 2011. A molecularly based phylogeny reconstruction of mushroom corals (Scleractinia: Fungiidae) with taxonomic consequences and evolutionary implications for life history traits. Contributions to Zoology 80: 107–132.

    Google Scholar 

  38. Glynn, P. W., 2004. High complexity food webs in low-diversity eastern Pacific reef-coral communities. Ecosystems 7: 358–367.

    Google Scholar 

  39. Glynn, P. W. & W. H. De Weerdt, 1991. Elimination of two reef-building hydrocorals following the 1982–1983 El Niño warming event. Science 253: 69–71.

    CAS  PubMed  Google Scholar 

  40. Hasegawa, M., H. Kishino & T. A. Yano, 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22: 160–174.

    CAS  PubMed  Google Scholar 

  41. Hickson, S. J., 1898. On the species of the genus Millepora: a preliminary communication. Journal of Zoology 66: 246–257.

    Google Scholar 

  42. Hickson, S. J., 1902. Report on the specimens of the genus Millepora collected by Dr Willey. Journal of Zoology 119: 661–672.

    Google Scholar 

  43. Hoareau, T. B. & E. Boissin, 2010. Design of phylum-specific hybrid primers for DNA barcoding: addressing the need for efficient COI amplification in the Echinodermata. Molecular Ecology Resources 10: 960–967.

    CAS  PubMed  Google Scholar 

  44. Hughes, T. P., M. L. Barnes, D. R. Bellwood, et al., 2017. Coral reefs in the Anthropocene. Nature 546: 82–90.

    CAS  PubMed  Google Scholar 

  45. Katoh, K., K. Misawa, K. Kuma & T. Miyata, 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059–3066.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kayal, M. & E. Kayal, 2017. Colonies of the fire coral Millepora platyphylla constitute scleractinian survival oases during Acanthaster outbreaks in French Polynesia. Marine Biodiversity 47: 255–258.

    Google Scholar 

  47. Knowlton, N., 1993. Sibling species in the sea. Annual Review of Ecology and Systematics 24: 189–216.

    Google Scholar 

  48. Knowlton, N., 2000. Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420: 73–90.

    CAS  Google Scholar 

  49. Kozlov, A. M., D. Darriba, T. Flouri, B. Morel & A. Stamatakis, 2019. RAxML-NG: a fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz305.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Leal, I. C. S., P. H. C. Pereira & M. E. De Araujo, 2013. Coral reef fish association and behaviour on the fire coral Millepora spp. in north-east Brazil. Journal of the Marine Biological Association of the United Kingdom 93: 1703–1711.

    Google Scholar 

  51. Lewis, J. B., 1989. The ecology of Millepora—a review. Coral Reefs 8: 99–107.

    Google Scholar 

  52. Lewis, J. B., 2006. Biology and ecology of the hydrocoral Millepora on coral reefs. Advances in Marine Biology 50: 1–55.

    PubMed  Google Scholar 

  53. Manchenko, G. P., A. V. Moschenko & V. S. Odintsov, 1993. Biochimical genetics and systematics of Millepora (Coelenterata, Hydrozoa) from the shore of South Vietnam. Biochemical Systematics and Ecology 21: 729–735.

    CAS  Google Scholar 

  54. Marquez, L. M., M. J. H. van Oppen, B. L. Willis & D. J. Miller, 2002. Sympatric populations of the highly cross-fertile coral species Acropora hyacinthus and Acropora cytherea are genetically distinct. Proceedings of the Royal Society of London. Series B 269: 1289–1294.

    CAS  PubMed  Google Scholar 

  55. Meroz-Fine, E., I. Brickner, Y. Loya & M. Ilan, 2003. The hydrozoan coral Millepora dichotoma: speciation or phenotypic plasticity? Marine Biology 143: 1175–1183.

    Google Scholar 

  56. Moseley, H. N., 1880. Report on certain hydroid, alcyonarian and madreporarian corals procured during the voyage of H. M. S. Challenger in the years 1873–1876. Report on the scientific eesults of the voyage of H. M. S. Challenger during the years 1873–1876. Zoology 2: 1–248.

    Google Scholar 

  57. Moshchenko, A. V., 1993. Anatomy and morphology of skeleton and soft tissues of Millepora spp (Hydrozoa, Athecata, Milleporidae). Zool Zhurnal 72: 5–14.

    Google Scholar 

  58. Moshchenko, A. V., 1995. A quantitative evaluation of the structure of the pore apparatus of Millepora hydroids of Vietnam. Russian Journal of Marine Biology 21: 265–274.

    Google Scholar 

  59. Moshchenko, A. V., 1999. Distribution of Milleporine hydroids on the Vietnamese Reefs. Russian Journal of Marine Biology 25: 305–311.

    Google Scholar 

  60. Moura, C. J., M. R. Cunha, F. M. Porteiro & A. D. Rogers, 2012. A molecular phylogenetic appraisal of the systematics of the Aglaopheniidae (Cnidaria: Hydrozoa, Leptothecata) from the north-east Atlantic and west Mediterranean. Zoological Journal of the Linnean Society 164: 717–727.

    Google Scholar 

  61. Nemenzo, F., 1975. Millepores of the Philippines. The Philippine Scientist 12: 21–31.

    Google Scholar 

  62. Nylander, J., 2004. MrAIC.pl. Program Distributed by the Author, Evolutionary Biology CENTRE. Uppsala University, Sweden.

    Google Scholar 

  63. Pfenninger, M. & K. Schwenk, 2007. Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology 7: 121.

    PubMed  PubMed Central  Google Scholar 

  64. Pons, J., et al., 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55: 595–609.

    PubMed  PubMed Central  Google Scholar 

  65. Postaire, B., H. Magalon, C. A. F. Bourmaud & J. H. Bruggemann, 2016. Molecular species delimitation methods and population genetics data reveal extensive lineage diversity and cryptic species in Aglaopheniidae (Hydrozoa). Molecular Phylogenetics and Evolution 105: 36–49.

    PubMed  Google Scholar 

  66. Postaire, B., P. Gelin, J. H. Bruggemann, M. Pratlong & H. Magalon, 2017. Population differentiation or species formation across the Indian and the Pacific Oceans? An example from the brooding marine hydrozoan Macrorhynchia phoenicea. Ecology and Evolution 7: 8170–8186.

    PubMed  PubMed Central  Google Scholar 

  67. Puillandre, N., A. Lambert, S. Brouillet & G. Achaz, 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21: 1864–1877.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Randall, R. H., & R. F. Myers, 1983. Guide of the coastal resources of Guam. Vol II. The corals. University of Guam Marine Laboratory Contribution Number 189. University of Guam Press: 128.

  69. Razak, T. B. & B. W. Hoeksema, 2003. The hydrocoral genus Millepora (Hydrozoa: Capitata: Milleporidae) in Indonesia. Zoologische Verhandelingen Leiden 345: 313–336.

    Google Scholar 

  70. Ronowicz, M., E. Boissin, B. Postaire, C. A. F. Bourmaud, N. Gravier-Bonnet & P. Schuchert, 2017. Modern alongside traditional taxonomy-Integrative systematics of the genera Gymnangium Hincks, 1874 and Taxella Allman, 1874 (Hydrozoa, Aglaopheniidae). PLoS ONE 12: e0174244.

    PubMed  PubMed Central  Google Scholar 

  71. Ruiz-Ramos, D. V., E. Weil & N. V. Schizas, 2014. Morphological and genetic evaluation of the hydrocoral Millepora species complex in the Caribbean. Zoological Studies 53: 4.

    Google Scholar 

  72. Shearer, T. L. & M. A. Coffroth, 2008. Barcoding corals: limited by interspecific divergence, not intraspecific variation. Molecular Ecology Resources 8: 247–255.

    CAS  PubMed  Google Scholar 

  73. Shlesinger, T. & Y. Loya, 2019. Mass medusae release and temporal reproductive segregation among the three Red Sea fire coral species. Ecology. https://doi.org/10.1002/ecy.2581.

    Article  PubMed  Google Scholar 

  74. Shulman, M. J. & D. R. Robertson, 1996. Changes in the coral reefs of San Blas, Caribbean Panama: 1983 to 1990. Coral Reefs 15: 231–236.

    Google Scholar 

  75. Soong, K. & L. C. Cho, 1998. Synchronized release of medusae from three species of hydrozoan fire corals. Coral Reefs 17: 145–154.

    Google Scholar 

  76. Strömgren, T., 1976. Skeleton growth of the hydrocoral Millepora complanata Lamarck in relation to light. Limnology and Oceanography 21: 156–160.

    Google Scholar 

  77. Takama, O., I. Fernandez-Silva, C. Lopez & J. D. Reimer, 2018. Molecular phylogeny demonstrates the need for taxonomic reconsideration of species diversity of the hydrocoral genus Millepora (Cnidaria: Hydrozoa) in the Pacific. Zoological Science 35: 123–133.

    CAS  PubMed  Google Scholar 

  78. Teissier, G., 1926. Notes critiques sur la morphologie des gonophores chez les hydraires. I Caractères distinctifs des hétéromédusoides et des cryptomédusoides. Archives de Zoologie Expérimentale et Générale 65: 75–86.

    Google Scholar 

  79. van Oppen, M. J. H., B. J. McDonald, B. Willis & D. J. Miller, 2001. The evolutionary history of the coral genus Acropora (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: reticulation, incomplete lineage sorting, or morphological convergence? Molecular Biology and Evolution 18: 1315–1329.

    PubMed  Google Scholar 

  80. Veron, J. E. N., 1986. Distribution of reef-building corals. Oceanus 29: 27–31.

    Google Scholar 

  81. Wegener, C., B. Martin, C. Didden & P. J. Edmunds, 2018. Overgrowth of Caribbean octocorals by milleporid hydrocorals. Invertebrate Biology 137: 29–37.

    Google Scholar 

  82. White, T. J., T. Bruns, S. Lee & J. Taylor, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M. A., D. H. Gelfand, J. J. Sninsky & T. J. White (eds), PCR Protocols, a Guide to Methods and Applications. Academic Press, San Diego: 315–322.

    Google Scholar 

  83. Williams, G. J., N. A. J. Graham, J. B. Jouffray, et al., 2019. Coral reef ecology in the Anthropocene. Functional Ecology 33: 1014–1022.

    Google Scholar 

  84. WoRMS, 2019. Millepora Linnaeus, 1758. http://www.marinespecies.org/aphia.php?p=taxdetails&id=205902 Accessed 2019-02-09.

  85. Zhang, J. J., P. Kapli, P. Pavlidis & A. Stamatakis, 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29: 2869–2876.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

EB was supported by a Marie Curie fellowship MC-CIG-618480 to study the biogeography of Indo-Pacific fire corals. This study was supported by the program BIOTAS from the French Government (National Agency for Research, ANR-06-BDIV-002). We want to thank the center of studies of marine turtles from Réunion Island (Kelonia) where the study of living polyps could be kindly carried out in aquariums. We are grateful to Xavier Pochon and Ruth Gates who allowed the sequencing of some specimens during the stay of JKL at the Hawaii Institute of Marine Biology. VD benefits from a grant from the Ministry of Science and Technology (Taiwan, no. 107-2611-M-002-011).

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Boissin.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

GenBank accession numbers (MK990235-MK990274 and MK972718-MK972749).

Handling editor: Diego Fontaneto

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM_1

Supplementary material 1 Sampling details and GenBank accession numbers for the 16S mitochondrial gene and the ITS nuclear gene. All samples were collected on the same site, “Kiosque” at Saint Leu, Réunion Island. (DOCX 16 kb)

ESM_2

Supplementary material 2 Maximum Likelihood phylogenetic reconstruction based on the ITS2 gene of Millepora specimens from Réunion Island together with specimens of M. cf. dichotoma, M. intricata, M. tenera, M. cf. platyphylla and M. cf. exaesa from Okinawa (Takama et al. 2018). Numbers near the nodes are bootstrap supports (PDF 50 kb)

ESM_3

Supplementary material 3 Pore measurements of the 27 Millepora colonies analyzed: 3 M. cf. exaesa (colony E2 to E4), 6 M. cf. platyphylla (colony P22 to 26 and P30) and 18 M. tenera at 4 pore traits of datatype 1: GD = gastropore diameter, ND/C = number of dactylopores per cyclosystem, DD = dactylopore diameter and dis = mean distance between a gastropore and each dactylopore around it (DOCX 28 kb)

ESM_4

Supplementary material 4 Pore measurements of the 27 Millepora colonies analyzed: 3 M. cf. exaesa (colony E2 to E4), 6 M. cf. platyphylla (colony P22 to 26 and P30) and 18 M. tenera at 9 pore traits of datatype 2 with 5 replicates per colony: NG = number of gastropores, NDC = number of dactylopores included in a cyclosystem, NFD = number of free dactylopores, NTD = number of total dactylopores (= NDC + NFD), LNDC = least number of dactylopores per cyclosystem, MNDC = maximum number of dactylopores per cyclosystem, NSeC = number of separate cyclosystems, NShC = number of shared cyclosystems, NOC = number of open cyclosystems (DOCX 26 kb)

ESM_5

Supplementary material 5 Photos of polyps: dactylozoids and gastrozoids of the three species of Millepora from Réunion Island. a) M. cf. exaesa, b) M. tenera, c) M. cf. platyphylla (DOCX 878 kb)

ESM_6

Supplementary material 6 Distribution of intra and inter-specific genetic distances showing a barcoding gap. Plot produced on the web server ABGC (Puillandre et al. 2012) using the Kimura-2-Parameters genetic distance. (PDF 14 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boissin, E., Leung, J.K.L., Denis, V. et al. Morpho-molecular delineation of structurally important reef species, the fire corals, Millepora spp., at Réunion Island, Southwestern Indian Ocean. Hydrobiologia 847, 1237–1255 (2020). https://doi.org/10.1007/s10750-020-04179-0

Download citation

Keywords

  • Morphological identification
  • DNA barcoding
  • Species delimitation methods
  • Integrative taxonomy
  • Trait-based quantitative approach